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Accurate inference of population structure is important in many studies of population genetics. Here we present HaploNet,

a method for performing dimensionality reduction and clustering of genetic data. Themethod is based on local clustering of

phased haplotypes using neural networks from whole-genome sequencing or dense genotype data. By using Gaussian mix-

tures in a variational autoencoder framework, we are able to learn a low-dimensional latent space in which we cluster hap-

lotypes along the genome in a highly scalable manner.We show that we can use haplotype clusters in the latent space to infer

global population structure using haplotype information by exploiting the generative properties of our framework. Based

on fitted neural networks and their latent haplotype clusters, we can perform principal component analysis and estimate

ancestry proportions based on a maximum likelihood framework. Using sequencing data from simulations and closely re-

lated human populations, we show that our approach is better at distinguishing closely related populations than standard

admixture and principal component analysis software. We further show that HaploNet is fast and highly scalable by apply-

ing it to genotype array data of the UK Biobank.

[Supplemental material is available for this article.]

Understanding population structure is a cornerstone in popula-
tion and evolutionary genetics as it provides insights into demo-
graphic events and evolutionary processes that have affected a
population. The most common approaches for inferring popula-
tion structure from genetic data are using principal component
analysis (PCA) (Patterson et al. 2006) and clustering algorithms
such as STRUCTURE (Pritchard et al. 2000), or derivations thereof.
PCA infers continuous axes of genetic variation that summarize
the genetic relationship between samples, whereas clustering algo-
rithms assign samples to a fixed or variable number of ancestral
sources while allowing for fractional membership. The inferred
axes of PCA are very useful to account for population or cryptic
structure in association studies or even to simply visualize the ge-
netic data. A limitation for most PCA and clustering algorithms is
that they assume all single-nucleotide polymorphisms (SNPs) to be
independent, and they do therefore not benefit from the informa-
tion of correlated sites or theymay be biased thereof in their global
estimates (Tang et al. 2005; Patterson et al. 2006). A notable excep-
tion is ChromoPainter (Lawson et al. 2012), which uses the Li and
Stephens (2003) hidden Markov model for haplotype sampling in
order to model and use correlations between SNPs, by letting sam-
ples be a mosaic of each other’s haplotypes. This has improved the
fine-scale resolution, and ChromoPainter has become state of the
art for inferring fine-scale population structure.

Gaussian mixture models and k-means are other commonly
used methods for performing unsupervised clustering (Saxena
et al. 2017). However, these methods suffer from the curse of di-
mensionality in which relative distances between pairs of samples
become almost indistinguishable in high-dimensional space
(Zimek et al. 2012). A popular approach to overcome the curse of
dimensionality is to perform dimensionality reduction, for exam-
ple, using PCA, and then perform clustering in the low-dimension-
al space that still captures most of the variation in the full data set

(Ding and He 2004). Recently, deep autoencoder methods have
been very successful for large-scale data sets as they perform di-
mensionality reduction and clustering either sequentially or joint-
ly to benefit from induced nonlinearity and scalability of deep
learning architectures using neural networks (NNs) (Xie et al.
2016; Yang et al. 2017). Deep autoencoders have also been intro-
duced in generativemodels, for example, variational autoencoders
(VAEs), in which the unknown data generating distribution is
learned by introducing latent random variables, such that new
samples can be generated from this distribution (Kingma and
Welling 2013; Rezende et al. 2014).

Most studies in population genetics using NNs for parameter
inference have mainly focused on supervised learning through
simulations from demographic models (Sheehan and Song 2016;
Chan et al. 2018; Schrider and Kern 2018; Flagel et al. 2019;
Gower et al. 2021). Here, an overall demography is assumed, based
on previous literature, and a lot of different data sets are simulated
using small variations in model parameters, for example, selection
coefficient or recombination rate, with evolutionary simulators
(e.g., msprime [Kelleher and Lohse 2020] or SLiM [Haller and
Messer 2019]). The studies usually convert a simulated haplotype
matrix into a downscaled fixed sized image with rows and/or col-
umns sorted based on some distancemeasure. The network is then
trained on the simulated data sets to learn the specified model pa-
rameters with feature boundaries in convolutional layers, and in
the end, the model is tested on a real data set. However, recently,
more studies have instead focused on deep generative models for
data-driven inference or simulation using unsupervised learning
approaches, which will also be suitable for the growing number
of unlabeled large-scale genetic data sets (Montserrat et al. 2019;
Battey et al. 2021; Wang et al. 2021; Yelmen et al. 2021;
Ausmees and Nettelblad 2022). There has also been a recent
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interest in the application of the nonlin-
ear dimensionality reduction method
UMAP in population genetics (Diaz-
Papkovich et al. 2019).

We here present HaploNet, a meth-
od for inferring haplotype clusters and
population structure using NNs in an
unsupervised approach for phased hap-
lotypes of whole-genome sequencing
(WGS) or genotype data. We use a VAE
framework to learn mappings to and
from a low-dimensional latent space in
whichwewill perform indirect clustering
of haplotypes with a Gaussian mixture
prior. Therefore, we do not have to rely
on simulated training data from demo-
graphic models with a lot of user-speci-
fied parameters but are able to construct
a fully data-driven inference framework
in which we can infer fine-scale population structure. We locally
cluster haplotypes and exploit the generative nature of the VAE
to perform PCA and to build a global clustering model similar to
NGSadmix (Skotte et al. 2013), which we fit using an accelerated
expectation–maximization (EM) algorithm to estimate ancestry
proportions, as well as frequencies of our NN-inferred haplotype
clusters.

Results

Simulation scenarios

We performed a simulation study of five populations inspired by
the simple demography by Lawson et al. (2012) and applied
HaploNet to four different scenarios. The demography used for
simulation is displayed in Figure 1A. We simulated three different
scenarios of various population split times with a constant popula-
tion size of 10,000, as well as another scenariowith a constant pop-
ulation size of 50,000, to counteract the increased genetic drift in
an increase of population split times. In all scenarios, we simulated
500 diploid individuals with 100 from each of the five popula-
tions. We compare the estimated ancestry proportions from our
HaploNet clustering algorithm against results from ADMIXTURE
based on signal-to-noise ratio measures (Supplemental Table S1)
and their ability to separate ancestry sources. We further compare
the inferred population structure from our PCA approach to the
PCA from ChromoPainter and standard PCA using PLINK based
on signal-to-noise ratiomeasures of the inferred top principal com-
ponents that capture the population structure (Supplemental
Table S2). The results of the ancestry estimation of all simulation
scenarios are shown in Supplemental Figure S2.

Simulation 1 is the hardest scenario in which the split times
measured in generations between populations are very recent, t1
= 100, t2 = 60, t3 = 40, and t4 = 20, with a constant population size
of 10,000. Here, we see HaploNet capturing more structure and
able to better separate the five populations than ADMIXTURE, as
also seen in the signal-to-noise ratio measures. As expected owing
to the recent split between them, pop4 and pop5 have not had
time to become two distinct homogeneous populations, and we
are not able to perfectly separate them into homogeneous clusters.
For the PCAs, visualized in Supplemental Figure S3, we see that all
threemethods are able to split the five populationswith only small
overlap between a few individuals of pop4 and pop5 on PC4.

In Simulations 2 and 3, the split times are, respectively, two
and 10 times longer than in Simulation 1, and in these easier sce-
narios, the admixture proportion estimates from ADMIXTURE are
still very noisy, whereas HaploNet has better separation of the pop-
ulations (Fig. 1B; Supplemental Fig. S2). All methods are able to in-
fer distinct clusters of the populations using PCA (Supplemental
Figs. S4, S5), with ChromoPainter having the best signal-to-noise
ratio for scenario 2 and a similar performance to HaploNet in sce-
nario 3 (Supplemental Table S2).

Simulation 4 has the same split times as Simulation 3 (t1 =
1000, t2 = 600, t3 = 400, and t4 = 200) but with a constant popula-
tion size of 50,000, which lowers the effect of genetic drift that
makes the populations less distinct and thus makes the scenario
harder than Simulation 3. We observe that HaploNet is still capa-
ble of perfectly separating the ancestry sources, whereas
ADMIXTURE has noisy estimates for all individuals. We note
that ChromoPainter was prematurely terminated owing to memo-
ry error for 13.4 million SNPs by exceeding the available memory
on the test machine (128 GB), and the expected runtime would
have been approximately 1.5 months. HaploNet and PLINK are
able to perfectly split and cluster the populations in PC space as vi-
sualized in Supplemental Figure S6. In all scenarios, we performed
the ADMIXTURE analyses and the PLINK PCA with and without
LD pruning. For all analyses, themethod performed slightly better
with LD-pruned data (Supplemental Table S1, S2).

1000 Genomes Project

We applied HaploNet to the entire 1000 Genomes Project and sep-
arately to each of its five superpopulations (African [AFR], American
[AMR], East Asian [EAS], European [EUR], and South Asian [SAS]).
Each superpopulation had between 347 and 661 individuals and
3.2–8.4 common (MAF>5%) SNPs (Table 2). We compare the esti-
mated individual ancestry proportions from our clustering algo-
rithm with results from ADMIXTURE based on signal-to-noise
ratio measures (Supplemental Table S3), and we compare the in-
ferred population structure from our PCA approach with the PCA
from ChromoPainter and standard PCA using PLINK, as well based
on signal-to-noise ratio measures of the inferred principal compo-
nents (Supplemental Table S4) for each of the superpopulations.
We only use the principal components capturing the population
structure as displayed in Supplemental Figure S23 for the EUR super-
population. Additionally, we compare the runtimes of HaploNet

A B

Figure 1. Inference of population structure in different simulation configurations. (A) Overview of sim-
ulation configuration of four splits into five populations with equal population sizes at all times. The time
of population splits are designated t1, t2, t3 and t4, measured in generations. (B) Estimated ancestry pro-
portions in one of the four simulation scenarios (Simulation 2) with t1 = 200, t2 = 120, t3 = 80, and t4 = 40
using HaploNet (top) and ADMIXTURE (bottom).
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and ChromoPainter for Chromosome 2 in each of the five superpo-
pulations using both GPU and CPU for training HaploNet, which is
summarized in Table 1. Overall illustrations of ancestry estimations
for the full data set (K=15) and for each superpopulation are depict-
ed in Figures 2 and 3, respectively. The application of HaploNet on
the full data set has been performed to validate the fine-scale struc-
ture in the superpopulation applications. Another visualization of
ancestry estimations in the full data set is shown in Supplemental
Figure S24 for K=14, which was the highest K for which
ADMIXTURE has reached convergence.

The AFR superpopulation includes 661 individuals from seven
populations with two populations also having European ancestry
(African Caribbean [ACB] and African American [ASW]). The in-
ferred population structure for different Ks and PCs is shown in
Supplemental Figures S7 and S8. The benefit of using haplotype in-
formation is immediately clear, as the estimated ancestry propor-
tions from HaploNet are much better at separating the populations
as also seen by the signal-to-noise ratio measure in comparison to
ADMIXTURE. This is clearly visible for K=5 (Fig. 3), where the
Mende in Sierra Leone (MSL) population is represented by its own
component and its ancestry is also seen in the GWD and YRI popu-
lations, which makes sense from a geographical viewpoint. For PCA
(Supplemental Fig. S8), the beneficial effect of using the haplotype-
based methods is not apparent as the large-scale structure from the
European ancestrywithinACBandASWmakes it hard todistinguish
fine-scale structure within the African ancestry. This European an-
cestry is correctly inferred in the full data set with K=15 (Fig. 2),
where bothASWandACBhave substantial north European ancestry
(British in England and Scotland [GBR] and Utah residents with
Northern and Western European ancestry [CEU]).

The results of the AMR superpopulation containing 347 in-
dividuals are visualized in Supplemental Figures S9 and S10.
These populations consist of many indi-
viduals with both European and Native
American ancestry. We observe that
HaploNet and ADMIXTURE cluster the
individuals differently: HaploNet splits
the Puerto Rican in Puerto Rico (PUR)
and Colombian in Medellin (CLM) pop-
ulations, which could correspond to two
different European ancestry sources,
whereas ADMIXTURE splits the Native
American ancestry within the Peruvian
in Lima (PEL) and Mexican Ancestry in
Los Angeles (MXL) populations, for K=
3, 4. In K=4, we see that HaploNet cap-
tures an African ancestry signal in PUR
and to a lesser degree in CLM. This is

consistent with previous studies (Gravel et al. 2013) and validated
from running on the full data set (Fig. 2). In the full data, we can
also see that the European ancestry in the Mexican population
(MXL) is mainly from southern European (Toscani in Italy [TSI]
and Iberian populations in Spain [IBS]), whereas the PUR and
CLM European ancestry gets its own component. In the PCA
plots (Supplemental Fig. S10), we see that HaploNet and
ChromoPainter are clustering the populations slightly better
than standard PCA by making them more separable and by sep-
arating the signal captured by PC3 and PC4.

We next analyzed the 504 individuals in the EAS superpopu-
lation (Fig. 3; Supplemental Figs. S11, S12). From the estimated an-
cestry proportions, HaploNet performs much better than
ADMIXTURE and is able to cleanly separate the Vietnamese ances-
try (KHV) from the ancestry signal of the Dai people (CDX) for K=
4. We see a very similar pattern on the PCA plots, where the hap-
lotype-based methods are able to separate the two populations as
well, whereas the standard PCA approach cannot.

The results of the EUR superpopulation are visualized in
Supplemental Figures S13 and S14 for ancestry proportions and
PCA, respectively. For K=4 (Fig. 3), we observe that HaploNet is
able to distinguish between the two Southern European popula-
tions (IBS and TSI), which is not the case for ADMIXTURE. We
also see from the signal-to-noise ratio measures that HaploNet is
much better at separating the five populations. A similar pattern
is observed in the population structure inferred using PCA for
HaploNet and ChromoPainter, where they are able to separate
the Southern European populations on PC3 as also verified with
their signal-to-noise ratio measures.

Finally, the results of the SAS superpopulation are visualized
in Supplemental Figures S15 and S16. We see that the complex
population structure of the SAS superpopulation makes it hard
for the haplotype-based methods to separate the populations on
a finer scale than the standard approaches.

The presented analyses were run on computer clusters and in
order to benchmark the runtimes, we timed the analyses of
Chromosome 2 on a single machine with both CPU and
GPU. HaploNet was about twice as fast using the GPU compared
with CPU and ChromoPainter was 10–30 times slower (Table 1),
and we were not able to run it on the full 1000 Genomes Project
data.

Robustness

To test the robustness of HaploNet in terms of hyperparameters,
model, and data type, we applied it to the European

Table 1. Runtimes for Chromosome 2 in the five superpopulations of
the 1000 Genomes Project using HaploNet and ChromoPainter

HaploNet (GPU) HaploNet (CPU) ChromoPainter

AFR 1.8 h 3.9 h 95.7 h
AMR 0.7 h 1.6 h 21.8 h
EAS 0.8 h 1.9 h 41.7 h
EUR 0.9 h 2.1 h 45.6 h
SAS 0.9 h 2.1 h 41.9 h

HaploNet has been trained both on a GPU and a CPU on a machine
with 24 threads. In all scenarios, models were trained with a fixed
window size of 1024 SNPs and a batch-size of 128 for 200 epochs.

Figure 2. Estimated ancestry proportions in the full 1000 Genomes Project using HaploNet for K =15.
ADMIXTURE was not able to converge to a solution in 100 runs for this scenario.
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superpopulation under various scenarios and compared the perfor-
mance to the results above. The performances are summarized in
Supplemental Table S5.

We varied window sizes and evaluated its performance on in-
ferring population structure based on both ancestry proportions
and PCA. The results are displayed in Supplemental Figures S17
and S18. HaploNet estimates very similar ancestry proportions
for each of the window sizes where we are able to separate the
Southern European populations. However, we see a decreasing de-
gree of resolution in the ancestry proportions as the window size
becomes larger. For the PCA plots, we observe that all windows

sizes are able to separate the Southern European populations and
have similar performances in terms of signal-to-noise ratio
measures.

We investigated the effectiveness of theGaussianmixture pri-
or model by only having a model with a categorical latent variable
and a linear decoder. The model would then perform amortized
haplotype clustering with the decoding process directly modeling
haplotype cluster frequencies. The results are shown in
Supplemental Figure S19, where we see a decrease in the model’s
sensitivity to separate the Southern European populations in com-
parison to our full model.

Figure 3. Estimated ancestry proportions in the superpopulations of the 1000 Genomes Project using HaploNet (left column) and ADMIXTURE (right
column) for African (AFR), American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS), respectively.
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We also verified the model’s dependency on LD structure to
infer fine-scale population structure. Here, we permuted SNP posi-
tions of all chromosomes to distort and remove the LD structure in
the data. The results are visualized in Supplemental Figure S20,
where the model is not able to infer any meaningful population
structure further than on PC1.

Lastly, we analyzed only the SNPs found on the high density
genotype chip of the Omni platform (The 1000 Genomes Project
Consortium 2015) to test how well HaploNet would perform on
SNP array data. After filtering, the data set contained 1.3 million
SNPs, and we have used a window size of 256 in HaploNet. The re-
sults are visualized in Supplemental Figures S21 and S22, where
HaploNet has similar performance in comparison to when it is
used on the full data set and is also fully able to split the two
Southern European populations, which was not possible for
ADMIXTURE with the full data set.

UK Biobank

We further applied HaploNet to SNP array data of the UK Biobank
data set and infer population structure on a subset of 276,732 un-
related with self-reported ethnicity as “white British” with a total
of 567,499 SNPs after quality control and filtering. It took 7.3 h
to train HaploNet on the Chromosome 2 with a window size of
256 and a batch-size of 8196 for 100 epochs. The results are dis-
played in Figure 4 and Supplemental Figure S26 for estimating an-
cestry proportions and inferring population structure using PCA,
respectively. For K=3, HaploNet infers three clear ancestral com-
ponents that reflect English, Scottish, andWelsh sources, whereas
for K=4, we infer an additional ancestral component capturing a
signal in Northwest England.We have visualized the distributions
of ancestry proportions stratified by country of birth for K=4 in
Supplemental Figure S25. For the population structure inferred us-
ing our PCA method, we capture similar structure in the top PCs,
wherewe additionally see a component capturing the variation be-
tween North and South Wales. On PC6, we capture structure that
does not reflect population structure but instead captures variation
that could be owing to SNP ascertainment or strong LD structure as
previously observed for the UK Biobank (Privé et al. 2020). The sig-
nal is caused by a single genomic region as shown by the SNP load-

ings in Supplemental Figure S27. Similar cluster patterns in the
Northwest England have previously been observed before (Saada
et al. 2020) in the “white British” subset of the UK Biobank.

Discussion

We have presented our new framework, HaploNet, which per-
forms dimensionality reduction and clusters haplotypes using
NNs.We explored its capability to infer population structure based
on local haplotype clusterings, which are performed in windows
along the genome, as well as its generative properties for estimat-
ing NN likelihoods. We show the benefits of merging machine
learning with traditional statistical frameworks, as we developed
a novel method for estimating ancestry proportions from NNs in
a likelihood model. We tested HaploNet in simulation scenarios
and data from the 1000 Genomes Project and compared its results
to commonly used software for inferring population structure
based on ancestry proportions or PCA. We show that HaploNet
is capable of using haplotype information for inferring fine-scale
population structure that outperforms ADMIXTURE with respect
to signal-to-noise ratio. On real data sets, HaploNet infers similar
population structure to ChromoPainter using PCA, while being
much faster. However, in several simulations, ChromoPainter sep-
arated the populations better than HaploNet. It was not computa-
tionally feasible to run ChromoPainter for larger data sets in terms
of both speed and memory usage. We further showed the scalabil-
ity of HaploNet by applying it to genotype data of the UK Biobank
with hundreds of thousands of individuals, which is not possible
with ADMIXTURE or ChromoPainter, and we are able to infer
four ancestry sources for individuals born within the United
Kingdom.

We have also reported the performances of ADMIXTURE and
PLINK on a LD-pruned version of all data sets for ancestry estima-
tion and PCA, respectively. In all cases, we observed similar or
slightly better performance in comparison to using the full non-
pruned data set. However, the consequence of LDpruning in a het-
erogeneous data set with population structure besides losing
information is not fully understood because the population struc-
ture will increase the LD between SNPs. LD pruning can greatly
decrease FST values between populations Li et al. (2019) and thus

affects the distribution of eigenvalues
because they are proportional to FST
(McVean 2009). Therefore, we havemea-
sured the accuracy of PCA (PLINK) and
ADMIXTURE with and without pruning
for eachof the superpopulations. Howev-
er, for computational reasons, we have
only used a LD-pruned version when an-
alyzing the full 1000 Genomes Project
data with ADMIXTURE. Another factor
that can affect measures of population
structure is minimum minor allele fre-
quency cutoffs. We have chosen the
standard 5% cutoff for most analyses, in-
cluding ADMIXTURE and PCA in PLINK.
Rare alleles can reduce the performance
of these methods (Ma and Shi 2020)
and are harder to phase, which can be a
problem for HaploNet and Chromo-
Painter. On the other hand, they can
also be informative about a more recent
population structure. However, we have

Figure 4. Estimated ancestry proportions in the subset of unrelated self-identified “white British” of the
UK Biobank using HaploNet for K=3 and K=4, respectively. Individuals are plotted by their birthplace
coordinates and colored by their highest associated ancestry component.
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not explored the effect of including the more rare alleles in this
study.

The number of clusters, C, is usually a nontrivial hyperpara-
meter to set in a Gaussian mixture model or in a genetic clustering
setting. Multiple runs of varyingC are usually performed and eval-
uated based on some criteria. In our study, we saw that HaploNet
seemed capable of inferring the optimal number of haplotype clus-
ters to use by setting C to a high fixed number (C=32 in all anal-
yses). HaploNet will then only use a subset of the possible
haplotype clusters to model the haplotype encodings, which has
also been observed in a different application of the Gaussian mix-
ture VAE (GMVAE) model (Bozkurt Varolgünes ̧ et al. 2020). At a
lower C, for example, 20, we observed slightly worse performances
for all superpopulations in the 1000 Genomes Project (Supple-
mental Table S6). The decrease in performance appears to be relat-
ed to the number of evaluated windows and, therefore, the genetic
diversity in each superpopulation.

A limitation of our model and other deep learning models is
that usually only relatively small genetic data sets are available to
researchers, which introduces problemswith training convergence
and overfitting. To combat these issues, we kept the number of pa-
rameters low and used an autoencoder architecture that naturally
regularizes its reconstruction performance. Another advantage of
having a small model configuration is observed for the low train-
ing times on both GPU and CPU setups that broadens the applica-
tion opportunities of HaploNet. However, the difference between
the GPU and CPU runtimes will be larger when running chromo-
somes in parallel. For all analyses in this study, including the UK
Biobank data, we have been using the entire data for training our
NNs to model all available haplotypes, whereas with larger labeled
data sets, one could have a separate training data. We have also
limited ourselves to using fixed window lengths across chromo-
somes for the matter of simplicity and ease of use, where we in-
stead could have included external information from genetic
maps to define windows of variable size. We show that HaploNet
is somewhat robust to changes in window size when inferring
global population structure, either using PCA or ancestry propor-
tions; however, for fixed-size windows, there is a trade-off in reso-
lution and training time that is a subject for future research. We
further show that we are able to capture fine-scale structure
when only evaluating variable sites available on a common geno-
type chip that allows for broader applications of our method.

Ourmodel serves as a proof of concept and an exploration for
how nonlinear NNs and specialized architectures can be used to
learn haplotype clusters and encodings across a full genome in a
very scalable procedure. We hypothesize that as the number of
large-scale genetic data sets are growing, we will see the increasing
importance of deep learning in population genetics, as deeper
models can be trained and more bespoke architectures will be de-
veloped. As shown in our study,we can even use learnedmappings
together with standard statistical frameworks to further improve
our understanding of genetic variation. Future developments of
our framework are to use the haplotype clusters in sequentialmod-
els to, for example, infer local ancestry and IBD tracts in hidden
Markov models, as well as investigate its potential integration
into imputation based on haplotype reconstruction and associa-
tion studies.

Methods

The method is based on phased haplotype data from diallelic
markers.We define the datamatrixX as a 2N×M haplotypematrix

for a given chromosome,whereN is the number of individuals and
M is the number of SNPs along the chromosome. The entries of the
matrix are encoded as either zero or one, referring to themajor and
minor allele, respectively.

For each chromosome, we divide the sites intoWwindows of
a fixed length of L SNPs, whichwe assume ismuch smaller thanM.
The windows are nonoverlapping, and wewill further assume that
the parameters estimated in a window are independent from pa-
rameters estimated in adjacent windows. The length of the geno-
mic windows can also be defined by a recombination map;
however, we have kept it fixed for the sake of generalizability
and ease of application in this study. For each defined window
along a chromosome, we independently train NNs in a VAE frame-
work to learn haplotype clusters and encodings using a Gaussian
mixture prior. We define haplotype clusters as a collection of hap-
lotypes that cluster together based on similarities in their encod-
ings. In the model, they are identified by their latent state (y)
whosemean structure predicts a distribution of similar haplotypes.
We are then able to calculate a likelihood for an observed haplo-
type given an inferred haplotype cluster that resembles calculating
genotype likelihoods in WGS data from the trained networks.

Variational autoencoder

An autoencoder is a state-of-the-art approach for performing di-
mensionality reduction by learning a mapping of the space of
the input data, X , to a low-dimensional space, Z, and a mapping
back to the input data (Rumelhart et al. 1985; Baldi 2012). More
formally, we can describe the two mapping functions as g:X 7! Z
and f :Z 7! X , which are commonly called the encoder and the
decoder, respectively. Both the encoder and the decoder are pa-
rameterized by (deep) NNs to learn the mappings, as multilayer
feed-forward NNs are universal function approximators (Hornik
et al. 1990).

A probabilistic variant of this NN architecture is introduced in
the VAE, where the unknown generating process of the input data
is modeled by introducing latent variables and the joint probabil-
ity is approximated through variational inference. As an optimiza-
tion method, variational inference is often used to approximate
the posterior distribution of a set of latent variables, z, p(z|x), by
fitting a function that describes a chosen family of distributions,
qf(z|x). Thus, variational inference turns it into an optimization
problem, where the objective is to maximize the evidence lower
bound (ELBO) of the marginal log-likelihood of the data, pu(x), it-
eratively. In contrast, Monte CarloMarkov chainmethods approx-
imate the joint probability of the data and the latent variables
by sampling from the posterior distribution (Blei et al. 2017).
The function approximating the posterior distribution is parame-
terized with variational parameters ϕ. Kingma and Welling
(2013) introduced the stochastic gradient variational Bayes
(SGVB) estimator of the ELBO for approximate posterior inference
in a VAE framework (as well as Rezende et al. 2014), where a set of
parameters, (θ, ϕ), are optimized with amortized inference using
mappings parameterized by NNs. Here, the marginal log-likeli-
hood of the data, pu(x), is parameterized with parameters θ. This
amortization means that the number of parameters does not
depend on sample size as in traditional variational inference but
depends on the network size (Shu et al. 2018). The VAE can be
seen as an autoencoder with its latent space being regularized by
a chosen prior distribution to make the inferred latent space
more interpretable and to preserve global structure. A standard
Gaussian prior is the most common choice; however, it is often
too simple, and a lot of effort has been made to make the approx-
imate posterior richer with normalizing flows and additional

Inferring structure using neural networks

Genome Research 1547
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276813.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276813.122/-/DC1


stochastic layers (Rezende andMohamed
2015; Kingma et al. 2016; Sønderby et al.
2016).

In our proposedmethod, HaploNet,
we construct a generative model and use
a VAE framework to learn low-dimen-
sional encodings of haplotypes in win-
dows along the genome. However, we
also introduce an additional categorical
variable, y, to represent haplotype clus-
ters as mixture components such that
we assume a Gaussian mixture prior in
the generative model. In this way, we
are able to jointly perform dimensionali-
ty reduction and cluster haplotypes in a
highly scalable approach for a given ge-
nomic window. In the following model
descriptions, we will follow the mathe-
matical notation used in the machine
learning literature and by Kingma and
Welling (2013), where pu and qf are prob-
ability functions that define the decoder
and encoder part, respectively. θ and ϕ are
the parameters (biases and weights) in
the NNs. We have provided a visualiza-
tion of our overall network architecture,
including descriptions of the major sub-
structures, in Figure 5A–C. We define
the following latent variable model for a
single haplotype in a single genomic
window with data x∈ {0, 1}L, Gaussian
latent variables z [ RD, and categorical
latent variable y∈ {0, 1}C (one-hot encod-
ed) such that x is conditionally indepen-
dent of y:

pu(x, z, y) = pu(x|z)pu(z|y)p(y), (1)

with generative processes defined as

p(y) = Cat(y; C−11), (2)
pu(z|y) = N (z; mu(y), s

2
u (y)1), (3)

pu(x|z) = Ber(x; pu(z)). (4)

Here z is a D-dimensional vector representing the latent hap-
lotype encoding, andC is the number of haplotype clusters, where-
as mu:{0, 1}

C 7! RD, s2
u :{0, 1}

C 7! RD and pu:RD 7! [0, 1]L are
mapping functions parameterized by NNs with network parame-
ters θ. In this case, Ber(x; pu(z)) is a vectorized notation of
Bernoulli distributions, and each of the L sites will have an inde-
pendent probability mass function. We assume that the covari-
ance matrix of the multivariate Gaussian distribution is a
diagonal matrix that will promote disentangled factors. We as-
sume the following inference (encoder) model that constitutes
the approximate posterior distribution:

qf(z, y |x) = qf(z|x, y)qf(y |x), (5)
qf(y |x) = Cat(y; pf(x)), (6)

qf(z|x, y) = N (z; mf(x, y), s
2
f(x, y)1), (7)

where mf:{0, 1}
L+C 7! RD, s2

f:{0, 1}
L+C 7! RD and

pf:{0, 1}
L 7! [0, 1]C again are mapping functions parameterized

by NNs with network parameters ϕ. Therefore, the marginal poste-
rior distribution and marginal approximate posterior distribution
of z will both be a mixture of Gaussians. Thus, qf(z, y |x) and
pu(x|z) will constitute the probabilistic encoder and decoder, re-

spectively, in comparison to the deterministic encoder and
decoder of the standard autoencoder.

From the marginal log-likelihood of the data, we derive the
following ELBO (Blei et al. 2017) of our VAEmodel for haplotype i,

log pu(xi) ≥ L(f, u; xi)

= Eqf(z,y |xi) log pu(xi |z)− log
qf(z|xi, y)
pu(z|y) − log

qf(y |xi)
p(y)

[ ]
,

(8)

where the marginal log-likelihood of the full data in a window is
given by

log pu(x1, . . . , x2N ) =
∑2N
i=1

log pu(xi). (9)

The full derivation of this ELBO is described in the Supplemental
Material, as well as reparameterization tricks that are needed to ap-
proximate and optimize it throughMonte Carlo samples of the la-
tent variables.We immediately see that the first term in Equation 8
describes the reconstruction error of mapping from the latent
space back to the input space as in an autoencoder framework.

A

C

B

Figure 5. TheNN architecture of HaploNet split into threemajor substructures. Here the solid lines rep-
resent the estimation of distribution parameters, and the dashed lines represent sampling of latent var-
iables. (A) The NN parameterizing the distribution qf(y |x), for sampling the haplotype cluster; (B) the
network parameterizing the regularizing distribution of the sampled encoding, pu(z|y); and (C) the net-
work parameterizing the distribution qf(z|x, y), for sampling the haplotype encoding, as well as the net-
work decoding the sampled encoding to reconstruct our input. Note that the colors of the network
blocks are coherent across substructures such that the sampled y in A is used in both B and C.
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The next two terms act as regularization on the learned latent spac-
es, where the second term encourages the variational Gaussian dis-
tributions to be close to the estimated prior distributions, whereas
the last term encourages anticlustering behavior to prevent all hap-
lotypes to cluster in one component. This is a modification of the
unsupervised loss of the M2 model (Kingma et al. 2014), as de-
scribed by Shu (2016), where information of the haplotype cluster
is also propagated through pu(z|y). However, we further approxi-
mate the categorical latent variable with samples from a
Gumbel–Softmax distribution (Jang et al. 2016; Maddison et al.
2016) instead of the categorical distribution. The Gumbel–
Softmax distribution is a continuous approximation to the cate-
gorical distribution that can be easily reparameterized for differen-
tiable sampling and gradient estimations (Supplemental Fig. S1).
In this way, we can avoid an expensive computational step of hav-
ing to marginalize over the categorical latent variable in the SGVB
estimator of the ELBO as is performed in the original model. A lot
of different interpretations and implementations of the GMVAE
have been proposed (Dilokthanakul et al. 2016; Jiang et al. 2016;
Collier and Urdiales 2019; Bozkurt Varolgünes ̧ et al. 2020), and a
similar architecture to ours has been implemented (Figueroa
2019).

NN likelihoods

We can exploit and use the generative nature of our GMVAEmodel
based on the parameters of the trained NNs for a window to
construct likelihoods from the mean latent encodings of the esti-
mated haplotype clusters through reconstruction. We define
p(x(w)

i,a |yi,a = c), with yi,a being one-hot encoded, as the NN
likelihood that the data are generated from the cth haplotype
cluster, for the ath haplotype of individual i in window w.
The NN likelihoods are calculated as follows using the proba-
bilitymass functionof the Bernoulli distribution and the properties,
E[pu(z|y)] = mu(y) and E[pu(x|mu(y))] = pu(mu(y)):

p(x(w)
i,a |yi = c)

/
∏L
l=1

p(w)
u (m(w)

u (yi,a = c))x
(w)
i,a,l (1− p(w)

u (m(w)
u (yi,a = c)))1−x(w)

i,a,l ,

(10)

for c=1, …, C (one-hot encoded) and x(w)
i,a [ {0, 1}L are the data of

the ath haplotype of individual i in window w with L being the
number of SNPs. Here E[pu(z|y)] = m(w)

u (y) describes the learned
mean latent encoding of a given haplotype cluster, y, in the gener-
ativemodel, andE[pu(x|m(w)

u (y))] = p(w)
u (m(w)

u (y)) is the learnedmean
reconstruction of the mean latent encoding.

Ancestry proportions and haplotype cluster frequencies

A widely used approach for inferring population structure is esti-
mating ancestry proportions. We propose a model for estimating
ancestry proportions and haplotype cluster frequencies assuming
K ancestral components based on the model introduced in
NGSadmix (Skotte et al. 2013), as an extension to the
ADMIXTURE model (Alexander et al. 2009), where instead of la-
tent states of unobserved genotypes, we have latent states of hap-
lotype clusters. We can then construct the following likelihood
model of the data X using the above-defined NN likelihoods given
the genome-wide ancestry proportions Q and window-based an-
cestral haplotype frequencies F:

L(Q, F; X)/
∏W
w=1

∏N
i=1

∏2
a=1

∑K
k=1

∑C
c=1

p(x(w)
i,a |y = c)fwkcqik, (11)

with k describing the ancestral state, for Q∈ [0, 1]N×K with
constraint

∑K
k=1 qik = 1 and F∈ [0, 1]W×K×C with constraint∑C

c=1 fwkc = 1. Here W is the total number of windows
across chromosomes, N is the number of individuals, and C is
the number of haplotype clusters. Maximum likelihood estimates
of F and Q are obtained using an EM algorithm. The full descrip-
tion of the EM algorithm is detailed in the Supplemental
Material. We use the S3 scheme of the SQUAREM methods
(Varadhan and Roland 2008) for accelerating our EM implementa-
tion, such that one large step is taken in parameter space based on
the linear combination of two normal steps.

Inference of population structure using PCA

We can also use the NN likelihoods to infer population structure us-
ing PCA; however, the approach is not as straightforward as for the
model-based ancestry estimation. We use a similar approach as in
microsatellite studies in which we assume that all clusters are an in-
dependent marker, and we simply sum the cluster counts for each
individual in each window by taking the most probable cluster for
each haplotype to construct a N×W×C tensor, Y.

ŷ(w)i,a = argmax
c

p(x(w)
i,a |y = c), (12)

yi,w,c = I(ŷ(w)i,1 = c)+ I(ŷ(w)i,2 = c). (13)

We can now treat the task as a standard PCA approach in popula-
tion genetics based on a binomial model (Patterson et al. 2006)
such that the pairwise covariance is estimated as follows for indi-
vidual i and j:

cov(i, j) = 1
WC

∑W
w=1

∑C
c=1

(yi,w,c − 2ŷw,c)(y j,w,c − 2ŷw,c)

2ŷw,c(1− ŷw,c).
(14)

where ŷw,c is the frequency of the cth haplotype cluster in window
w. We can finally perform eigendecomposition on the covariance
matrix to extract principal components.

Implementation

We have implemented HaploNet as a Python program using the
PyTorch library (v.1.10) (Paszke et al. 2019), and it is freely avail-
able at GitHub (https://github.com/rosemeis/HaploNet). We
have used the NumPy (Harris et al. 2020) and scikit-allel (https
://doi.org/10.5281/zenodo.4759368) libraries for preprocessing
the data from variant call format (VCF) into data structures to be
used in HaploNet. The EM algorithm for estimating ancestry pro-
portions and the algorithm for performing PCA have been imple-
mented in Cython (Behnel et al. 2011) for speed and parallelism.

An overall detailed description of the network architectures
used in different scenarios can be found in the Supplemental Ma-
terial. We have used fully connected layers throughout the net-
work, and for all inner layers in our NNs, we are using rectified
linear unit (ReLU(x) =max (0, x)) activations to induce nonlinear-
ity into the networks, followed by batch normalization (Ioffe
and Szegedy 2015), whereas all outer layers are modeled with lin-
ear activations. The usage of linear activations means that the net-
works are estimating the logits of the probabilities instead the
probabilities directly in pu(z) and pf(x) for computational stabil-
ity, as well as for s2

u (y) and s2
f(x, y) that represent logσ

2 in inner
computations.

We are training our networks with the Adam optimizer
(Kingma and Ba 2014) using default parameters with a learning
rate of 1.0 × 10−3, β1 = 0.9, and β2 = 0.999. The batch sizes and num-
ber of epochs are detailed in the Supplemental Material for each of
the different data sets. We have used a fixed temperature in the
sampling from the Gumbel–Softmax distribution of τ=0.1 to
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approximate and encourage a categorical sampling, and we use
one Monte Carlo sample of the latent variables to approximate
the expectation in Equation 8.

Simulations

We have simulated five populations from a simple demography
with four population splits (t1, t2, t3,t4) using msprime (Fig. 1A;
Kelleher and Lohse 2020). We have simulated 500 diploid individ-
uals in four different scenarios with various changes to the chosen
population split times and the population sizes. A uniform recom-
bination rate of 1.0 × 10−8 has been assumed in all simulations as
well as a mutation rate of 2.36×10−8 (Tennessen et al. 2012) for
a sequence of 1.0 × 109 bases.

Simulation 1 has the following population split times: t1 =
100, t2 = 60, t3 = 40, and t4 = 20 with an assumed constant popula-
tion size of 10,000 at all points. After filtering for minor allele fre-
quency threshold of 0.05, the data set consists of 2.8million SNPs.

Simulation 2 has the following population split times: t1 =
200, t2 = 120, t3 = 80, and t4 = 40 with an assumed constant popula-
tion size of 10,000 at all points. After filtering for minor allele fre-
quency threshold of 0.05, the data set consists of 2.7million SNPs.

Simulation 3 has the following population split times: t1 =
1000, t2 = 600, t3 = 400, and t4 = 200 with an assumed constant
population size of 10,000 at all points. After filtering for minor al-
lele frequency threshold of 0.05, the data set consists of 2.7million
SNPs.

Simulation 4 has the following population split times: t1 =
1000, t2 = 600, t3 = 400, and t4 = 200 with an assumed constant
population size of 50,000 at all points. After filtering for minor al-
lele frequency threshold of 0.05, the data set consists of 13.4 mil-
lion SNPs.

In all simulation scenarios, we have used a fixed window size
of 1024 SNPs, corresponding to a mean window size of 0.37 Mb in
scenario 1, 2, 3, and 0.08 Mb in scenario 4.

1000 Genomes Project

We have applied HaploNet to the phase 3 data of the 1000
Genomes Project (The 1000 Genomes Project Consortium 2015).
The entire data set consists of phased genotype data of 2504 unre-
lated individuals from26 different populations that are assigned to
five superpopulations, which are AFR, AMR, EAS, EUR, and SAS,
and we inferred local haplotype structure and global population
structure for each superpopulation. The information of the data
set and each superpopulation is summarized in Table 2.

For each of the superpopulations, we have filtered their SNPs
with a minor allele frequency threshold of 0.05. The AFR data set
consists of 661 individuals and 8.4 million SNPs from the follow-
ing seven populations: African Caribbean in Barbados (ACB),
Gambian in Western Division (GWD), Esan in Nigeria (ESN),
Mende in Sierra Leone (MSL), Yoruba in Ibadan (YRI), Luhya in
Webuye (LWK), and African Ancestry in Southwest US (ASW).

The AMR data set consists of 347 individuals and 6.2 million
SNPs from the following four populations: Puerto Rican in
Puerto Rico (PUR), Colombian in Medellin (CLM), Peruvian in
Lima (PEL), and Mexican Ancestry in Los Angeles (MXL). The
EAS data set consists of 504 individuals and 5.6 million SNPs
from the following five populations: Han Chinese South (CHS),
Chinese Dai in Xishuangbanna (CDX), Kinh in Ho Chi Minh
City (KHV), Han Chinese in Beijing (CHB), and Japanese in
Tokyo (JPT). The EUR data set consists of 503 individuals and 6
million SNPs from the following five populations: British in
England and Scotland (GBR), Finnish in Finland (FIN), Iberian
populations in Spain (IBS), Utah residents with Northern and
Western European ancestry (CEU) and Toscani in Italy (TSI). The
SAS data set consists of 489 individuals and 6.2 million SNPs
from the following five populations: Punjabi in Lahore (PJL),
Bengali in Bangladesh (BEB), Sri Lankan Tamil in the UK (STU),
Indian Telugu in the UK (ITU), and Gujarati Indians in Houston
(GIH). We have used a fixed window size of 1024 SNPs for all
superpopulations.

We have additionally used the EUR superpopulation to eval-
uate various aspects of our proposed method. We have applied
HaploNet to a filtered SNP set that overlap with the SNP set of
the high-density genotype chip data of the 1000 Genomes
Project to explore our capabilities on genotype chip data sets,
while using a lower window size of 256. We have applied
HaploNet on haplotype matrices with permuted SNPs to ensure
that our model captures and uses the LD information in the hap-
lotypes. We have also tested different window sizes (L = {512,
1024, 2048}) to evaluate their effect on the inference of global pop-
ulation structure. Lastly, we have also tested a simpler version of
our model architecture in which we only use the categorical latent
variable with a linear decoder to investigate the importance of the
flexible Gaussian mixture prior. This version can be seen as amor-
tized haplotype clustering in which the decoder learns allele fre-
quencies for each haplotype cluster.

The 1000 Genomes Project phase 3 data used in this study are
publicly available at https://www.internationalgenome.org/
category/phase-3/.

UK Biobank

To test the scalabilty of HaploNet, we have also applied it to array
data of the UK Biobank using unrelated individuals who are self-re-
ported as “white British” as well as having similar genetic ancestry
based on PCA from genotype data. We only use SNPs from the UK
Biobank Axiom array, where we have filtered the SNPs based on
available QC information, a minor allele frequency threshold of
0.01, and a maximummissingness rate of 0.1 and additionally re-
moved variants in located known high LD regions. The final data
set consists of 276,732 individuals and 567,499 SNPs. We perform
phasing on the genotype data using SHAPEIT4without using a ref-
erence panel. Further details of the sample and variant filtering are
described in the Supplemental Material. We have used a fixed

Table 2. General data set information of the superpopulations in the 1000 Genomes Project and the number of windows and their mean size
used by HaploNet

Population No. of individuals No. of SNPs No. of windows Mean window size (in Mb)

AFR 661 8.4 million 8239 0.34
AMR 347 3.2 million 6071 0.46
EAS 504 5.6 million 5450 0.51
EUR 503 6.0 million 5904 0.47
SAS 489 6.2 million 6054 0.46
Full 2504 6.9 million 6705 0.41
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window size of 256 SNPs, corresponding to a mean window size of
0.6 Mb.

The genotype data from the UK Biobank (https://www
.ukbiobank.ac.uk/) can be obtained by application.

Computational comparisons

All models of HaploNet, as well as other analyses, presented in this
study have been run on a machine with a NVIDIA GeForce RTX
2080 Ti GPU (11GB VRAM), using CUDA v.10.2 and cuDNN
v.7.6.5, and an Intel Core i9-10920X CPU (3.5 GHz, 24 threads).
We compare HaploNet with widely used software based on perfor-
mance as well as runtime.

We have compared the estimated ancestry proportions of
HaploNet with the results of the widely used software
ADMIXTURE (v.1.3) (Alexander et al. 2009), which uses unphased
genotypes, in the simulation scenarios and in each of the superpo-
pulations in the 1000 Genomes Project. Both methods have been
run at least five times using different seeds and determined conver-
gence with three runs being within 10 log-likelihood units of the
highest achieved log-likelihood. We evaluate their performances
to distinguish populations based on a signal-to-noise ratiomeasure
using the available population labels. We use the average within-
population distance of ancestry proportions in comparison to
the average between-population distance as a measure of how
well populations are separable, similarly to the approach of
Lawson and Falush (2012). We included code and scripts for the
signal-to-noise ratio measure in the GitHub repository, and in
the Supplemental Material (S3).

For estimating the covariancematrix and performing PCA,we
have compared HaploNet to ChromoPainter (v.4.1.0) (Lawson
et al. 2012) and standard PCA in PLINK (v.2.0) (Chang et al.
2015) on unphased genotypes. We have used ChromoPainter to
estimate the shared genome chunks between individuals in an un-
supervised manner such that no population information is given
and all individuals can be used as donors of each other. We are us-
ing their linkedmodel that uses pre-estimated recombination rates
from genetic maps of the human chromosomes to model the cor-
relation between SNPs using default parameters. We have used
their own R library for performing PCA on the estimated chunk-
count matrix. As well as for the ancestry estimations, we also eval-
uate the population structure inferred using PCA based on the sig-
nal-to-noise ratio measure with the principal components. We
further compare the computational runtime of HaploNet and
ChromoPainter on Chromosome 2 for each of the
superpopulations.

Software availability

HaploNet is freely available at GitHub (https://github.com/
rosemeis/HaploNet) and as Supplemental Code.
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