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Background
The presence of homologous recombination deficiency (HRD) 
due to DNA double-strand break (DSB) repair deficiency is 
the hallmark of cancers that carry abnormalities in breast can-
cer gene 1/2 (BRCA1/2) genes.1-4 The demonstration of HRD 
has been accepted as a biomarker for response to DSB-inducing 
drugs, including platinum salts and poly ADP-ribose polymer-
ase inhibitors (PARPis).5,6 Typically, the presence of a germline 
mutation in BRCA1/2 is considered the gold standard bio-
marker for response to PARPi.7-13

Most of the testing for the presence of HRD is based on 
testing of the presence of mutations in BRCA1/BRCA2 genes 

or in other genes involved in homologous recombination repair 
(HRR), such as PALB2 or RAD51.14-16 However, the effects of 
HRD can be demonstrated by the so-called genomic scars 
detected in the genome of a cancer resulting from the onco-
genesis driven by HRD.14-16 This approach is also reported to 
be specifically helpful in cases where the gene involved in the 
HRR is inactivated by a mechanism other than mutations such 
as methylation or deletion.15,16 The Food and Drug 
Administration (FDA) has approved the tests that predict 
these genomic scars as companion tests for certain PARPi.

The evaluation of these genomic scars is based on assessing 
chromosomal structural alterations that are typically detected 

Homologous Recombination Abnormalities Associated 
With BRCA1/2 Mutations as Predicted by Machine Learning 
of Targeted Next-Generation Sequencing Data

Maher Albitar1, Hong Zhang1, Andrew Pecora2, Stanley Waintraub2, 
Deena Graham2, Mira Hellmann2, Donna McNamara2, Ahmad Charifa1, 
Ivan De Dios1, Wanlong Ma1 and Andre Goy2

1Genomic Testing Cooperative, Irvine, CA, USA. 2John Theurer Cancer Center at Hackensack 
University Medical Center, Hackensack, NJ, USA.

ABSTRACT

Background: Homologous recombination deficiency (HRD) is the hallmark of breast cancer gene 1/2 (BRCA1/2)-mutated tumors and 
the unique biomarker for predicting response to double-strand break (DSB)–inducing drugs. The demonstration of HRD in tumors with muta-
tions in genes other than BRCA1/2 is considered the best biomarker of potential response to these DSB-inducer drugs.

Objectives: We explored the potential of developing a practical approach to predict in any tumor the presence of HRD that is similar to 
that seen in tumors with BRCA1/2 mutations using next-generation sequencing (NGS) along with machine learning (ML).

Design: We use copy number alteration (CNA) generated from routine-targeted NGS data along with a modified naïve Bayesian model for 
the prediction of the presence of HRD.

Methods: The CNA from NGS of 434 targeted genes was analyzed using CNVkit software to calculate the log2 of CNA changes. The log2 
values of various sequencing reads (bins) were used in ML to train the system on predicting tumors with BRCA1/2 mutations and tumors with 
abnormalities similar to those detected in BRCA1/2 mutations.

Results: Using 31 breast or ovarian cancers with BRCA1/2 mutations and 84 tumors without mutations in any of 12 homologous recombi-
nation repair (HRR) genes, the ML demonstrated high sensitivity (90%, 95% confidence interval [CI] = 73%-97.5%) and specificity (98%, 95% 
CI = 90%-100%). Testing of 114 tumors with mutations in HRR genes other than BRCA1/2 showed 39% positivity for HRD similar to that seen 
in BRCA1/2. Testing 213 additional wild-type (WT) cancers showed HRD positivity similar to BRCA1/2 in 32% of cases. Correlation with pro-
portional loss of heterozygosity (LOH) as determined using whole exome sequencing of 51 samples showed 90% (95% CI = 72%-97%) con-
cordance. The approach was also validated in an independent set of 1312 consecutive tumor samples.

Conclusions: These data demonstrate that CNA when combined with ML can reliably predict the presence of BRCA1/2 level HRD with 
high specificity. Using BRCA1/2 mutant cases as gold standard, this ML can be used to predict HRD in cancers with mutations in other HRR 
genes as well as in WT tumors.
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when BRCA1/2 genes are mutated and driving oncogenesis. 
This approach allows for the detection of BRCA-like tumors 
that may be responsive to DSB-inducing drugs.

Most of the methods used for detecting these scars are 
based on evaluating loss of heterozygosity (LOH) as well as 
structural rearrangements. It has been documented that the 
level of chromosomal aberrations correlates with HRD status. 
Patients with high LOH (>16%) showed some improved 
response to PARP inhibitor (rucaparib) as compared with pla-
cebo control, but not as good as that seen in the BRCA-
mutated group.17 This suggested that LOH is associated with 
a higher likelihood of response to DSB-inducing. Subsequent 
studies added to the level of LOH deletion of stretches larger 
than 15 Mb but smaller than the whole chromosome,18 telom-
eric allelic imbalance (TAI), and large-scale transitions (LSTs). 
The addition of these measurements improved the prediction 
of the presence of BRCA1/2-associated scars.17 Telomeric 
allelic imbalance evaluates if the paternal and maternal alleles 
are equal; LST evaluates chromosomal aberrations involving 
large chromosomal regions more than 10 Mb apart.18 This 
combination of abnormalities generates a score that is currently 
used for selecting patients for therapy with DSB-inducer drugs. 
In a retrospective study of chemotherapy in breast and ovarian 
cancer, patients with known BRCA1/2 status were used as con-
trol. A score of 42 showed good prediction of BRCA1/2 muta-
tion, and HRD was a significant predictor of residual cancer 
burden and pathologic complete response (pCR) when 
BRCA1/2 were included, but it was borderline statistically rel-
evant when BRCA1/2 nonmutated cases were considered.18 
Different approaches have been explored to evaluate HRD 
including whole-genome sequencing (WGS),19 comparative 
genomic hybridization (CGH),20 and expression profiling20 
and functional assays.14 Multiple subsequent studies in breast 
and ovarian cancer have also studied such scores and demon-
strated that the presence of BRCA mutation is the best predic-
tor of response to DSB-inducers; having a low HRD score in a 
non-BRCA1/2 tumor can be used as an indicator of poor 
response to PARPi.21

More recent study (SWOG S9313 phase 3 study)22 has 
demonstrated that disease-free survival (DFS) was better for 
triple-negative breast cancer patients with HRD in general as 
compared with patients without HRD. Unfortunately, the 
design of this study did not allow for determining the predic-
tive value of the HRD score by itself.22

Overall, the currently used assays for predicting HRD are 
useful and accepted by FDA as companion tests. However, 
some studies in both high-grade serous ovarian or endometrial 
cancers and triple-negative breast cancer suggested that value 
of the HRD score is of limited clinical value.22-24

We rationalized that the key for predicting the presence or 
absence of HRD is to compare genomic abnormalities of 
tumors with those BRCA1/2 mutation-positive tumors. We 

used copy number alteration (CNA) abnormalities detected in 
BRCA1/2 mutation-positive cases along with a machine learn-
ing (ML) to build a model for predicting HRD. In this model, 
we demonstrate very high sensitivity in predicting cases with 
BRCA1/2 mutations and in predicting cases with similar 
abnormalities. Although there is overlap between our approach 
and prior approaches, the use of ML may improve the approach.

Methods
Patient samples

Formalin-fixed, paraffin-embedded (FFPE) cancer samples 
were sequenced using a targeted next-generation sequencing 
(NGS) panel of 434 genes. This included 31 patients with 
breast or ovarian cancer with confirmed BRCA1/BRCA2 
mutations, 84 cancer samples with no evidence of mutations in 
BRCA1/2 or any HRR genes, 114 cancers with mutations in 
one of the genes involved in HRR, 213 additional breast or 
ovarian samples wild-type (WT) for HRR genes, and 51 ran-
dom samples tested with the targeted sequencing panel and 
with whole exome sequencing (WES; Table 1). The 31 
BRCA1/2-mutated samples used for establishing the ML 
included 22 (74%) with breast cancer and 9 (26%) with ovarian 
cancer whereas the negative samples included 28 (33%) with 
breast cancer, 18 (22%) with lung cancer, 27 (32%) with ovarian 
cancer, 8 (10%) with pancreatic cancer, and 3 patients (3%) 
with prostate cancer. The HRR genes that were considered 
included PALB2, CDK12, RAD50, RAD51, RAD51C, 
RAD54L, MRE11A, NBM, ATM, ATR, FANCA, and FANCC. 
Cases were considered DSB mutant if the mutation was hete-
rozygous or homozygous. In addition, after developing the ML 
and in a prospective testing, we analyzed HRD in 1312 con-
secutive solid tumor samples from various tissue including 
breast, lung, colorectal, head and neck, ovary, skin, pancreas, 
and others. Homologous recombination deficiency results were 
correlated with BRCA1/2 and other genes involved in HRR in 
these tumors. The tumor tissue was macrodissected from slides, 
and only samples with tumor percentage at 30% or greater were 
included. Our validations showed that all chromosomal struc-
tural abnormalities are adequately captured when tumor frac-
tion is ⩾30%.

Targeted next-generation sequencing and copy 
number variation evaluation

The DNA from FFPE was extracted using FormaPure and 
KingFisher Flex. The extracted DNA from FFPE was 
sequenced using 100 ng of DNA. Library for targeted 434 gene 
sequencing is based on Single Primer Extension (SPE) chem-
istry. The 434 gene panel was a custom panel included genes 
reported to play a role in the oncogenesis of various types of 
solid tumors. The DNA sequencing includes all coding exons 
of the 434 genes. For each exon, approximately 50 intronic 
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nucleotides were also sequenced. Genomic DNA samples were 
end repaired and A-tailed, and then added unique medical 
identifiers (UMIs) and sample index. Target enrichment is per-
formed post-UMI assignment to ensure that DNA molecules 
containing UMIs are sufficiently enriched in the sequenced 
library. For enrichment, ligated DNA molecules were subjected 
to several cycles of targeted polymerase chain reaction (PCR) 
using 1 region-specific primer and 1 universal primer comple-
mentary to the adapter. A universal PCR was ultimately carried 
out to amplify the library and add platform-specific adapter 
sequences and additional sample indices. Normal tissue was 
sequenced and used for the CNVkit algorithm. The sequenc-
ing was conducted using the Illumina NovaSeq 6000 or 
NextSeq 550 instruments. The BRCA1/2 genomic point muta-
tions, deletions, or duplication alterations were defined as path-
ogenic, or variants of unknown significance mainly based on 
ClinVar database. Accuracy was confirmed by manual inspec-
tion of BAM files.

Using CNVkit for copy number detection

The CNVkit software was implemented to evaluate CNA in 
the analyzed samples.18 Briefly, the software takes advantage of 
both on-target and off-target sequencing reads, compares 
binned read depths in on-target and off-target regions to 

pooled normal reference, and estimates the copy number at 
various resolutions.

Using machine learning model for classifying 
samples

The log2 of the normalized data of various segments (bins) of 
the 434 sequenced genes generated by CNVkit (total 26 940) 
was used in the ML approach for predicting the presence or 
absence of BRCA1/BRCA2 mutations. This was achieved 
through 2 separate steps. In the first step, we selected the bins 
that distinguished between BRCA1/2 mutated and unmutated 
and ranked them. In the second step, we used naïve Bayes with 
selected combination of bins to distinguish between the 2 groups.

To avoid overfitting, we applied a modified version of 
naïve Bayes (Geometric Mean Naïve Bayes [GMNB]). The 
conditional independence assumption of the naïve Bayes is 
selected because it is useful tool to resolve a very high-dimen-
sional problem with a limited sample size. Estimating the 
correlations between bins would be counterproductive. The 
naïve Bayes approach has a small number of parameters and 
hence, a lower capacity as a learning system, which will help 
address the overfitting problem according to statistical learn-
ing theory. We used the GMNB method to address the 
numeric underflow issue of standard naïve Bayes when 

Table 1.  List of samples used for training and validating the machine learning algorithm.

Number HRD

BRCA1/2-mutated ovarian/breast cases 31 98%

No mutation in HRR genes (WT) ovarian/breast cases 84 5%

Ovarian/breast samples with mutations in genes other than BRCA1/2 114 39%

Ovarian breast cases with no mutation in HRR genes (WT) 213 32%

WES cases 51 57%

Prospective validation; consecutive solid tumorsa 1312 6%

Breast 136 24%

Lung 307 1%

Colorectal 310 1%

Head and neck 20 0%

Ovarian 124 26%

Esophageal 31 0%

Pancreas 90 7%

Brain 145 0%

Other 149 1%

Abbreviations: BRCA1/2, breast cancer gene 1/2; HRD, homologous recombination deficiency; HRR, homologous recombination repair; WES, whole exome sequencing; 
WT, wild-type.
The HRD results are also shown.
aOf these, HRD was detected in 97% of 58 cases that were in breast, ovarian, pancreas, and prostate and had BRCA1/2 mutations.
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applied to a high-dimensional problem. In GMNB, we 
applied the geometric mean to the conditional probabilities. 
The method is documented in a separate article.25 We show 
that the geometric mean is essentially the only operation that 
will preserve the conditional independence of naïve Bayes 
and will not cause underflow.

In the selection and ranking of the specific bins, we used 2 
criteria to facilitate effective and stable selection. The first cri-
terion is a performance-based measure for selecting relevant 
bins capable of discriminating different classes. This method 
uses cross-validation to obtain a realistic performance measure. 
The second criterion is a stability measure based on statistical 
significance tests (2-tailed t-test significance) to ensure the 
robustness and stability of the selected bin.

The first criterion is a direct performance measure by the 
cross-validation errors
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The cross-validation errors are from the individual genes 
independently. Because it is a 1-variable classifier, almost any 
simple classifier would give similar results.

The second measure is a P value obtained with analysis of 
variance (ANOVA; or equivalently t-test for 2-class problems). 
For a data set with sample size n and k classes, the ANOVA 
coefficient is defined as
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where MSB  is the mean sum of squares between the groups, 
and MSW  is the mean sum of squares within the groups. The 
ANOVA coefficient F  follows the F-distribution with degrees 
of freedom k n k− −1, . The P value can be obtained from the 
F  statistic. The minimum threshold for d/k (where k is the 
number of classes) would be 0.5. If d/k ⩽ 0.5, then there would 
be no evidence that the bin has any power in distinguishing the 
classes. Such a bin should be eliminated. We used a canonical 
5% t-test P value in this process.

The selected and ranked bins using the above 2 criteria were 
then used to distinguishing between BRCA1/2-positive and 
BRCA1/2-negative cases with k-fold cross-validation proce-
dure (with k = 12). The k-fold was applied during the bin selec-
tion stage only. A naïve Bayesian classifier was constructed on 
the training of k − 1 subsets and tested on the other testing sub-
set. We applied GMNB as the classifier to predict specific class. 
The classifier (GMNB) over the filtered bins is not used dur-
ing the filtering process. The classifier used in the first measure 
for filtering is a trivial one with only 1 input variable. This pro-
cess does not repeat iteratively.

The training and testing subsets are then rotated, and the 
average of the classification errors is used to measure the 

relevancy of the bin. The classification system is trained 
with the selected subset of most relevant segments of the 
genes. The processes of bins selection and cancer classifica-
tion are applied iteratively to obtain an optimal classifica-
tion system and a subset of bins relevant to the specific class. 
The code for the ML will be available on direct request to 
the corresponding author.

Whole exome sequencing and LOH calculation

For the exome library preparation, 50 ng of DNA of each sample 
was used with Nextera Rapid Capture Expanded Exome 
(Illumina), according to the manufacturer’s recommendations. 
Quantified DNA library was loaded on flow cell for subsequent 
cluster generation. Samples were paired-end sequenced on 
Illumina NextSeq 500 High-Output Kit—300 cycles (Illumina). 
Copy number variation (CNV) and LOH percentage were cal-
culated from the CNVkit segmented format (.cns) data and the 
GATK SNP format variant call format (VCF). Each segment 
has a weighted mean log2 value that is then used to calculate 
percent-LOH. As each segment is of a different size, the weights 
differ and thus this affects the total calculation. Percent-LOH is 
calculated as the sum of all segment weights with a detected 
LOH divided by the sum of all segment weights. This provides 
a simple method of assessing LOH in the samples.

Results
High sensitivity and specif icity in predicting the 
presence of BRCA1/2 mutations

Using log2 normalized copy number of the 26 940 segments 
(bins) of the 434 sequenced genes in ML model, we explored 
the potential of distinguishing between BRCA1/2 mutated 
samples and BRCA1/2 unmutated cases. We used 31 cases with 
confirmed BRCA1/2 mutation and 84 cases confirmed nega-
tive for mutations in BRCA1/2 or any of the genes implicated 
in HRR. These control cases had the expected CAN that are 
typically seen in solid tumors without any specific selection. 
The automated ML system that we developed selected 15 000 
markers (bins) (Supplemental Table 1) for best separation 
between BRCA1/2-positive and BRCA1/2-negative cases. The 
receiver-operating characteristic curve showed AUC (area 
under the curve) of 0.984 (Figure 1). Using smaller numbers of 
markers showed significantly less prediction, although using a 
larger number of markers did not change the prediction signifi-
cantly. Based on using a cut-off point of the ML of 0.486, the 
sensitivity was 90% and specificity was 98% (Table 2). The 
selected cut-off point emphasizes specificity over sensitivity. 
However, the cut-off point can be changed if clinical trials with 
outcome data suggest a better optimal cut-off point. The actual 
log2 copy ratio by CNVkit of 1-positive and 1-negative exam-
ple is shown in Figure 2.
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Predicting homologous recombination deficiency 
in cancers with mutations in various homologous 
recombination repair genes as compared with wild-
type cancers

To explore the value of the developed ML model after training 
to predict BRCA1/2 positive tumors, we tested 124 ovarian/
breast cancers without mutations in any of the HRR genes and 
114 cancers with mutations in one of the genes involved in 
HRR. These HRR genes-positive cases included cancers with 
mutations in ATM (N = 36), ATR (N = 17), CDK12 (N = 14), 
Fanconi anemia genes (N = 16), NBN (N = 12), RAD50 (N = 9), 
RAD51B (N = 1), RAD51 (N = 6), and RAD54L (N = 4). The 
ML classified 44 of the 114 samples (39%) as having structural 
genomic abnormalities similar to those detected in BRCA1/2-
positive cases, implying high positivity for HRD. These HRD-
positive cases had mutations in ATM (N = 13), CDK12 (N = 5), 
Fanconi genes (N = 6), ATR (N = 26), NBN (N = 6), RAD51 
(N = 3), RAD54L (N = 1), and RAD50 (N = 4). All these genes 

have been reported to be associated with HRD phenotype.16 
Testing 213 random cancer cases without HRR mutations 
showed 68 cancer (32%) positive scores similar to those seen in 
BRCA1/2 cases (Figure 3). There was significant difference in 
score between Mut-positive cases with genes other than 
BRCA1/2 and BRCA1/2-positive cases (P < .0001) (Kruskal-
Wallis ANOVA test), but there was no difference between 
Mut-positive cases and WT cancers (P = .47) (Kruskal-Wallis 
ANOVA test). This suggests that cancers with mutations in 
HRR genes other than BRCA1/2 are heterogeneous, and overall 
more similar to WT cases than to BRCA1/2-mutant cancers.

Correlation with loss of heterozygosity

To correlate with other methods used in predicting HRD, we 
compared the HRD prediction using our CNV/ML method 
with LOH data resulting from WES in 51 selected tumor 
samples. As the LOH is calculated from WES rather than 
whole genome, we used a 9% LOH as cut-off between positive 
and negative LOH.20 The LOH positive cases (>9%) were 29 
and negative cases (LOH ⩽ 9%) were 22. Of the positive cases, 
26 (90%) (95% confidence interval [CI] = 72%-97%) were also 
positive by our CNV/ML method, and of the negative cases, 
16 (73%) (95% CI = 50%-88%) were negative.

Validation using independent set of samples

Prospective testing of independent set of solid tumors from 
various types including (Table 1) from lung, melanoma, colo-
rectal, ovary, brain, breast head and neck, and others showed 
detection of HRD in 81 out of 1312 samples (6%). Germline 
and somatic BRCA1/2 mutations were detected 117 (9%) of 
these cases. Of these BRCA1/2 mutant tumors but HRD 

Figure 1.  Receiver-operating characteristic (ROC) curve for prediction of HRD in samples with BRCA1/2 mutations. The area under the curve (AUC) of 

0.984 is obtained using 31 samples with pathogenic BRCA1/2 mutations and 84 samples with no evidence of mutations in any of the HRR genes.
BRCA1/2 indicates breast cancer gene 1/2; HRD, homologous recombination deficiency; FPF, false-positive fraction (specificity); TPF, true-positive fraction (sensitivity).

Table 2.  Sensitivity and specificity of detecting the presence of HRD 
associated with BRCA1/2 mutations using copy number alteration 
(CNA) and machine learning algorithm.

95% confidence interval

Sensitivity 97% 81.5%-99.8%

Specificity 95% 87.6%-98.5%

PPV 88% 71.6%-96.2%

NPV 99% 92.4%-99.9%

Abbreviations: BRCA1/2, breast cancer gene 1/2; HRD, homologous 
recombination deficiency; NPV, negative predictive value; PPV, positive predictive 
value.
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negative, 59 were from tumors other than ovarian, breast, 
pancreas, or prostate. This suggests that the HRD phenotype 
is not necessarily associated with mutations in BRCA1/2 in 
tumors other than breast, ovarian, and pancreas. Only 2 cases 
of the 58 (3%) with BRCA1/2 mutations from ovarian, breast, 
pancreas, and prostate cancers showed negative HRD. One of 
these 2 cases had a somatic BRCA1 mutation that is detected 
in subclone at variant allele frequency of 7%. The second case 
had a missense mutation (S2670L) in BRCA2 that is likely 
not pathogenic. Of the remaining negative cases for BRCA1/2 

mutations, 25 (2%) cases had HRD positivity, most of which 
had mutations in genes other than BRCA1/2 that are involved 
in double-strand DNA repair.

Discussion
Clinical studies have suggested that response to DSB-
inducing agents is best in cancers that have genomic abnor-
malities dictated by BRCA1/2 mutations.1-7 These genomic 
abnormalities are typically manifested by structural chromo-
somal abnormalities resulting from HRD including CNVs, 

Figure 2.  Representative example plots of log2 copy ratio of sequence segments (bins) in 1 example of breast cancer with BRCA mutation (A) and breast 

cancer without BRCA mutation (B).
BRCA indicates breast cancer gene.

Figure 3.  Box plots showing the HRD scores obtained by machine learning for samples with BRCA1/2 mutations (No. 31), with HRR mutations other than 

BRCA1/2 (No. 84), and with no mutation in any HRR genes (WT) (No. 114). There was significant difference (P < .0001) (Kruskal-Wallis ANOVA test) 

between BRCA1/2 mutant and other HRR-mutant group as well as between HRR-mutant (other than BRCA1/2) and the WT group. The score is based on 

the ROC curve shown in Figure 1.
ANOVA indicates analysis of variance; BRCA1/2, breast cancer gene 1/2; HRD, homologous recombination deficiency; HRR, homologous recombination repair; ROC, 
receiver-operating characteristic; WT, wild-type.
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translocations, and LOH. Tumors with BRCA1/2 are consid-
ered the gold standard for these abnormalities. Tumors with 
abnormalities similar to those seen in cases with BRCA1/2 
are currently classified as eligible for treatment with DSB-
inducer agents. The chromosomal structural abnormalities 
historically were measured using approaches involving evalu-
ation of LOH, TAI, and LST.14 The results of these measure-
ments are combined giving a score that is used to determine 
which tumor might respond to DSB-inducer therapy. 
Multiple studies demonstrated that this approach is useful for 
selecting patients, but there is room to improve on current 
methods and more accurately select patients.

With the advances in NGS, chromosomal structural abnor-
malities can be measured and quantified. Kim et al26 measured 
HRD using the same approach (LOH, TAI, and LST) using 
NGS and WES and demonstrated that HRD-high tumors had 
significantly (P = .003) higher pCR rates and higher near-pCR 
rates (P  = .049) compared with those of the HRD-low tumors. 
High score was detected in tumors with germline mutations in 
HRR genes, but not in somatic mutations. Eeckhoutte et al27 
used a shallow WGS for measuring large-scale genomic altera-
tion and predicting HRD. Whole-genome sequencing and 
mutation profile were also used by Davies et al28 for detecting 
HRD using a supervised lasso logistic regression model.

Here, we present data for predicting HRD based on using 
routinely generated sequencing data from targeted molecular 
profiling used for the detection of various clinically relevant 
mutations in solid tumors, measuring tumor mutation burden 
and microsatellite instability (MSI). The assay is specifically 
designed to be cost-effective and amenable for adaptation in 
routine clinical laboratories. The panel included targeted cod-
ing regions of 434 genes. We used the normalized log2 ratio of 
sequenced fragments (bins) generated by CNVkit software in 
an ML model to develop a model for classifying tumors with 
BRCA1/2 mutations vs tumors without BRCA1/2 mutations. 
Practically, this approach quantifies gains and losses of various 
DNA fragments in the genomic areas covered by these 434 
genes, and then uses an ML model for classifying cases. As 
shown in Figure 1, this approach allows us to distinguish 
between BRCA1/2-positive and BRCA1/2-negative cases with 
high sensitivity and specificity (AUC = 98.4%). Accuracy (sen-
sitivity and specificity) can be estimated from the receiver-
operating characteristic (ROC) curve. We selected a cut-off 
that provided sensitivity of 90% and specificity of 98%. The 
demonstration that CNA abnormalities are adequate to distin-
guish tumors with BRCA1/2 mutations from BRCA1/2-null 
cases indicates that CNV changes when used in ML model 
reflect the biology that drives the specific neoplastic process 
drive by BRCA1/2 mutations. The use of highly sophisticated 
ML model for first selecting the proper changes markers (bins) 
and then using these markers for comparing with the findings 
in typical BRCA1/2-positive cases in automated fashion is cru-
cial for the success of this approach. However, this approach 

success depends on the tumor fraction in the analyzed samples. 
Only samples with 30% or greater tumor fraction are accepted 
for such an approach.

We show that 39% of cases with mutations in HRR genes 
other than BRCA1/2 can be classified as having genomic struc-
tural abnormalities similar to those seen in BRCA1/2-positive 
cases, whereas 32% of WT ovarian or breast cancers had HRD 
similar to that seen in the BRCA1/2 cases. This confirms that 
HRR genes vary in the level of deficiency in homologous 
recombination they cause. As we use HRD caused by BRCA1/2 
as the gold standard, it is expected that any scar caused by other 
HRR genes that does not meet the BRCA1/2 standard level 
will be considered negative for HRD. On the contrary, HRD 
can be seen in some cancers possibly due to multigene effects, 
and these cases can be HRD positive despite lack of mutations 
in specific HRR genes. There was significant difference in the 
HRD score (P < .0001) (Kruskal-Wallis ANOVA test) 
between BRCA1/2-positive cancers and cases with mutations 
in HRR genes other BRCA1/2 as well as WT cases. There was 
no significant difference (P = .47) (Kruskal-Wallis ANOVA 
test) between Mut-positive and WT cases (Figure 3). This sug-
gests that mutations in HRR genes other than BRCA1/2 are 
associated with increased tendency to have HRD, but HRD 
can also be seen in WT cases. This may explain the reason that 
clinical trials failed to show significant improvement in out-
come in cancers with mutations in HRR genes other than 
BRCA1/2 when treated with PARPi.29 Testing random con-
secutive cancer samples that included lung, colon, brain, sar-
coma, and others in addition to ovarian and breast showed 
HRD only in only 6% of cases. The low number of cases with 
HRD in this group of samples most likely reflects the high 
stringency (specificity) of our approach in predicting HRD.

Using LOH for comparison with our methodology for 
detecting HRD, we show 90% concordance in detecting HRD-
positive cases and 73% concordance with HRD-negative cases. 
The high concordance with HRD-positive cases suggests simi-
lar sensitivity. The relatively less robust concordance with 
HRD-negative cases is likely due difference in the approaches. 
Homologous recombination deficiency testing based on LOH 
may not be the gold standard for predicting HRD. Loss of het-
erozygosity has not shown high level of prediction HRD and 
response to PARPi.22 Irrespective, clinical trials with clinical 
outcome data are needed to better understand the biological 
reasons for such difference and for determining which approach 
is more accurate in predicting response to PARPi. We specu-
late that by focusing on predicting similarity to BRCA1/2 biol-
ogy, our approach is more accurate in predicting HRD than 
LOH scoring system which uses an arbitrary cut-off point to 
distinguish between HRD-positive and HRD-negative cases.22

Methylation of BRCA1/2 has been reported in significant 
number of breast and ovarian cancers, and this methylation is 
reported to be associated with positive HRD.30-33 This may 
explain that we detected HRD in cases without mutations. The 
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32% HRD positivity we detected in our testing of WT ovarian 
and breast cancer cases is likely driven in part by BRCA1/2 
methylation. The high specificity of our ML in detecting 
BRCA1/2 mutations may overcome the problem of basing eli-
gibility for PARPi based on methylation alone. Our ML 
detects HRD solely based on detecting genomic scars that are 
strictly caused by BRCA1/2 mutation and may be more robust 
than the conventional methods which rely on using a specific 
cut-off for detecting genomic scars. The clinical relevance of 
promoter methylation remains controversial, and it has been 
reported that cases with promoter methylation are able to 
adaptively lose methylation.31

In summary, using our approach, cancers can be classified into 
2 groups: (1) high HRD score including BRCA1/2-positive and 
cases with score similar to BRCA1/2-positive irrespective if they 
have mutations in HRR genes or not and (2) negative HRD 
score including cancers with HRD score lower than that seen in 
cases with BRCA1/2 genes. This suggests that high-score can-
cers can be considered eligible for treatment with DSB-inducing 
drugs. This assumption requires confirmation by clinical studies. 
However, the demonstrated high sensitivity and specificity of 
this approach in predicting BRCA1/2-associated genomic 
abnormalities suggests that this approach has high potential for 
predicting response to PARPi. Furthermore, this approach can 
predict increased susceptibility to homologous recombination 
due to causes other than mutations, such as methylation, dele-
tion in HRR genes, multigenic factors, and others. The weakness 
of our study is lack of clinical correlation with treatment and 
outcome. Head-to-head comparison of our approach with other 
approaches in detecting HRD and comparing the prediction of 
HRD of each methodology with clinical outcome may advance 
this field significantly.
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