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Fluctuation-induced distributed resonances in
oscillatory networks
Xiaozhu Zhang1*, Sarah Hallerberg2, Moritz Matthiae3, Dirk Witthaut3,4, Marc Timme1,5*

Across physics, biology, and engineering, the collective dynamics of oscillatory networks often evolve into self-
organized operating states. How such networks respond to external fluctuating signals fundamentally underlies
their function, yet is not well understood. Here, we present a theory of dynamic network response patterns and
reveal how distributed resonance patterns emerge in oscillatory networks once the dynamics of the oscillatory
units become more than one-dimensional. The network resonances are topology specific and emerge at an
intermediate frequency content of the input signals, between global yet homogeneous responses at low frequen-
cies and localized responses at high frequencies. Our analysis reveals why these patterns arise and where in the
network they are most prominent. These results may thus provide general theoretical insights into how fluctuat-
ing signals induce response patterns in networked systems and simultaneously help to develop practical guiding
principles for real-world network design and control.
INTRODUCTION
Collective oscillatory network dynamics prevail in natural and
technological systems alike, including neural and gene regulatory
circuits, communication networks, and AC power grids, among
others (1–8). A robust function is essential for all of these systems
and relies on how their collective dynamics self-organize and re-
spond to external signals. For example, modern power grids are
driven dynamically by predictable or random signals, e.g., the fluc-
tuating power feed-in from renewable energy sources, changes in
consumer behavior on many time scales, power trading, and fail-
ures of infrastructures, all of which cause fluctuations in grid fre-
quency in a nontrivial, distributed way (9). Human brain circuits,
as functionally and structurally connected oscillatory networks ex-
posed to external stimuli, exhibit complex activity patterns in a
wide frequency band extending up to five orders of magnitude
(10, 11). The dynamics of all oscillatory systems essentially underlie
system functions, and all are externally driven by planned interfer-
ence signals, random fluctuations, unit or link failures, etc. Yet, it is
not well known how oscillatory network systems respond to such
perturbations.

To analyze, understand, and predict the dynamics of coupled os-
cillators, networks of phase oscillators such as the paradigmatic
Kuramoto model are commonly used across fields (12–15). Phase
oscillator systems are preferred as generic models because they
are simple to simulate, partly analytically accessible, and exhibit a
wide range of collective dynamical phenomena observed in oscilla-
tory systems, including synchronization and phase locking, hetero-
clinic switching dynamics, collective irregular activity, metastable
synchronized states, and chimera states (16–21). In neuroscience,
Kuramoto oscillator networks capture some basic mechanisms
underlying cortical oscillations (15) and frequency-specific corre-
lation patterns in connectome network from encephalographic
recordings (22, 23). Some knowledge about how such networks
respond to external driving signals is already established. For in-
stance, regularly and sparsely connected networks of phase oscilla-
tors exhibit two response regimes that depend on the frequency
content of the driving signals (24, 25). At low driving frequencies,
the entire system dynamically responds homogeneously, i.e., all os-
cillators respond essentially identically. At high frequencies, the
dynamical responses are localized on the network (25) and re-
sponse amplitudes decay with distance, similar to the findings for
chains with single, constantly driven pacemaker units (26). For the
second-order Kuramotomodel, the network response to a local and
static perturbation may be localized or delocalized depending on
network topology and other parameters (27, 28). However, an
overarching theory of how networks respond systemically to dynam-
ic, fluctuating inputs is missing to date such that the range of possible
response patterns and the precise mechanisms underlying them are
unknown in general, and predicting them remains generally hard if
not impossible.

In this article, we develop a theory of dynamic response patterns
for oscillatory networks driven by fluctuating inputs. Evaluating a
network-wide linear response theory as an explicit function of fre-
quency content of the fluctuating signals, the network’s interaction
topology, and the exact location of driving and response nodes, we
uncover complex distributed resonance patterns in oscillatory net-
works with two-dimensional unit dynamics, which are absent in
standard phase oscillatory networks with one-dimensional units.
These network resonances emerge at intermediate frequency content
of the input signals, between global yet homogeneous responses at
low frequencies and localized responses at high frequencies (Fig. 1). Res-
onant responsesmay be an order ofmagnitude (greater than 10 times in
our examples) larger than static responses that occur in the limit of zero
frequencies in the identical network. The theory furthermore explicates
the origin and scaling of the localized as well as the homogeneous re-
sponse patterns present, explaining and generalizing previous works
(24–27). The finding and the explanation of the emergence of dis-
tributed resonance patterns together with the unifying theory we de-
rive offer explanatory and predictive power across fluctuation-driven
systems in nature and engineering.
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RESULTS
Model class
Consider a network of N units i ∈ {1, …, N} with dynamics

ai
dqi
dt

þ bi
d2qi
dt2

¼ Wi þ∑
j
Kijgðqj � qiÞ þ FiðtÞ ð1Þ

of phase angles qi(t) and phase velocities dqi(t)/dt at time t. Here,
Wi is the natural frequency (or acceleration) of unit i, and the units
interact with coupling strengths Kij = Kji ≥ 0 via a coupling function
g(⋅). Core parameters ai and bi in this model class set the relative
influences of the rates of change of the phase angles and those of the
phase velocities. The phenomena presented below for homogeneous
ai ≡ a and bi ≡ b stay qualitatively the same for inhomogeneous
systems (see section S1.4). The model class (Eq. 1) generalizes stan-
dard phase oscillator networks (13, 14) that are recovered for b = 0.
Taking generically both a, b > 0 and g(⋅) = sin(⋅) yields coupled
second-order Kuramoto models characterizing AC power grids, the
swing equation on networks (5, 6, 29), on which we focus in the main
part of this article. For such systems, qi(t) describes the mechanical
angle of a synchronous machine relative to a reference frame rotating
at the nominal grid reference frequency of, e.g., 2p × 50 Hz in Europe
including the United Kingdom [see (5, 6) for details]. Normal sta-
tionary operation of a grid is given by a phase-locked state, where
Eq. 1 exhibits a fixed vector ðq∗1 ;…; q∗NÞ of relative phases in the ab-
sence of any fluctuations [Fi(t) ≡ 0]. The functions Fi(t) represent the
fluctuations in the production and consumption at unit i and together
constitute a high-dimensional, distributed dynamic driving signal to
the network. How does the network collectively respond to such dy-
namic signals?

Fluctuation-induced dynamic network responses
Observing the distributed network responses induced by a single local
signal, Fi(t) ∼ dik, already poses puzzles about how the responses de-
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pend on the driving and the response unit on the network topology
and on the frequency content of the signal, as illustrated in Fig. 1. Spe-
cifically, responses to low-frequency inputs appear to be dynamic in
time yet homogeneous across the network (Fig. 1, D and E), and re-
sponses to high-frequency inputs seem to be localized (Fig. 1,H and I),
whereas at intermediate frequencies, responses appear to be irregular
in time and across units (Fig. 1, F andG), with severe consequences for
the entire collective response pattern (compare Fig. 1, B and C).

To gain analytic insights and thereby intuition about such dynamic
response patterns, we start by focusing on the responses generated at
one fixed (but arbitrary) unit k by signals of fixed (arbitrary) frequen-
cies w and develop a linear response theory expanding in the ampli-
tudes of the response signals into Fourier modes. In a second step, we
considermore complex, distributed, and nonperiodic input signals be-
low. Taking Fi(t) = edike

i(wt + φ) and expanding the phase responses to
first order in the signal amplitude e, we obtain

qðkÞi ðtÞ ¼ q∗i þ eQðkÞ
i ðtÞ þ ehi ð2Þ

where

QðkÞ
i ðtÞ ¼ AðkÞ

i eiðwtþDðkÞ
i Þ ð3Þ

denotes the oscillatory response at unit i of amplitudeAðkÞ
i and phase

DðkÞ
i . hi = h≠ 0 is an overall homogeneous phase shift that results from

the dynamics of the average phase (see section S1.2) and emerges de-
spite zero average input. For each input frequency w, a matrix equation

½�w2bþ iwaþ L�QðkÞðtÞ ¼ FðkÞðtÞ ð4Þ

thus describes the network response vector QðkÞðtÞ ¼ ðQðkÞ
1 ðtÞ;⋯;

QðkÞ
N ðtÞÞ as a function of time. The network response vector depends
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Fig. 1. Fluctuation-induced dynamic response patterns. A sample network (A) driven by Brownian noise (B) at a single unit k = 1 exhibiting (C) complex dynamic
response patterns that nonlinearly vary with frequency content of the input signal (D, F, and H) as well as with graph-theoretic distance between the input and the
response unit (E, G, and I). Three response classes emerge: homogeneous responses at low frequencies (D and E), spatiotemporally irregular patterns at intermediate
frequencies (F and G), and localized responses at high frequencies (H and I). To identify frequency regimes, we selected specific frequency bands [yellow in (D), (F), and
(H)] from the spectrum of the original noise realization (B), and all others are displayed in purple. (C), (E), (G), and (I) display the time series of driving signal at unit k = 1 (top)
and the response in the phase velocities of the units i ∈ {1, …,4} (bottom). In (C), (E), (G), and (I), the time series of the band-filtered signal are displayed together with the
responses (yellow for unit 1 and green for units 2 to 4). Our theory (Eq. 5) (thin black lines) well predicts the system responses obtained from direct numerical simulations.
(For details of further settings, see Materials and Methods.)
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on the perturbation site k, the perturbation vectorF(k) with only one non-
zero componentFðkÞ

i ¼ dikeeiðwtþφÞ, parameters b and a, and a weighted
graph LaplacianmatrixLwith elementsLij≔� Kijcosðq�j � q�i Þ for i≠ j
and Lii ¼ �∑N

n¼1;n≠iLni. As L is real and symmetric, its N eigenvalues
are real, positive in normal operating states where ∣q�j � q�i ∣≤ p=2 for
all edges (i, j). Its eigenvalues are ordered as l[N−1] >⋯ > l[1] > l[0] =
0, and its eigenvectors {v[0],⋯, v[N−1]} form an orthogonal basis. The
response vector

QðkÞ ¼ eiðwtþφÞ ∑
N�1

ℓ¼0

v½ℓ�k
�bw2 þ iawþ l½ℓ�

v½ℓ� ð5Þ

thus provides a general first-order prediction for the induced response
patterns across all connected network topologies [compare (30)].

After a transient time set by the intrinsic dissipation time scale 1/a,
this time-dependent vector function (Eq. 5), integrated across the
signal’s frequency content, well predicts the dynamic response patterns
of the entire network, see, e.g., Fig. 1. We emphasize that the prediction
(Eq. 5) immediately generalizes to all network systems described by
(Eq. 1) for arbitrary antisymmetric coupling function g(qj − qi). The
asymmetry of g(. ) ensures a real and symmetric Laplacian matrix and
thus the orthogonality of Laplacian eigenvectors.

Emergence of distributed resonance patterns
The network response theory presented above provides an analytical
expression of steady nodal responses (Eq. 5), thus paving the way to a
deeper understanding of the emergent complex response patterns
across the network. How does this response theory predict the differ-
ent response regimes observed (Fig. 1)? More specifically—How can
we explicitly extract the dependences of the network response patterns
on the frequency of the driving signal, on the network interaction to-
Zhang et al., Sci. Adv. 2019;5 : eaav1027 31 July 2019
pology, and on the graph-theoretic distance between driving and re-
sponse units? To revealmore detailed insights, we systematically analyze
the response strength of phase velocities dqi(t)/dt to a driving signal at
unit k across many orders of magnitude of the frequency and for all
response units i in a network. In this section, we assume b = 1 without
loss of generality.

Such responses in phase velocities reflect deviations of the units’
frequencies of power grids from their nominal value 2p × 50 Hz and
are, thus, more directly relevant than deviations in the phase angles
themselves. Graphing the response strengths

A∗ðkÞ
i ðwÞ≔ wAðkÞ

i ðwÞ
lim
w′→0

w′AðkÞ
i ðw′Þ

¼ NawAðkÞ
i ðwÞ ð6Þ

relative to their low-frequency limit clearly indicates the three fre-
quency regimes of characteristic responses (see Fig. 2A).

Dynamic resonance patterns emerge if the signal frequenciesw are of
the same order of magnitude as the eigenfrequencies (see section S2.1)

w∗
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l½n� � a2

4

r
; for n ∈ f1;⋯;N � 1g ð7Þ

The system responds with a distributed, network- and frequency-
specific pattern given by Eq. 5 (Fig. 2, A, C, and F). Network resonance
patterns are typically heterogeneous, exhibiting no monotonicity in
frequency or with respect to the topological distance between the sig-
nal and the response unit. In contrast to resonance phenomena in
low-dimensional oscillatory systems common in physics and non-
linear dynamics, the response patterns are node specific in a highly
nontrivial way.Depending on an overlap factorv½ℓ�k v½ℓ�i of the responding
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Fig. 2. Emergence of resonances and prediction of distinct network responses. (A) The relative response strength A∗ðkÞi of each unit in the fluctuation-driven
network illustrated in Fig. 1A versus the signal frequency w, color coded by the graph-theoretic distance d from the driven to the responding unit. The eigenfrequencies
are indicated by gray vertical lines, and the three regimes of homogeneous bulk responses, heterogeneous resonant responses, and localized responses by the gray-
level gradient bar at the bottom. (B to D) The relative response strengths characteristically depend on graph-theoretic distance, shown for individual frequencies
representative for each of the three regimes. (E) In the localized regime, the response amplitudes A∗ðkÞ

i for units 1 to 4 (marked in Fig. 1A) are well approximated
by the analytic prediction (dashed lines) (Eq. 8). (F) Relative response strengths (plotted on linear scale) at resonance peaks may be an order of magnitude (here up to
12 times) larger than in the static response limit of w → 0.
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node iwith the driven node k in eigenmode ℓ, the contribution from the
various eigenmodes can be positive, negative, or zero, which leads to
different canceling or accumulating total responses for each frequency
w. The overlap factor acts as a node-specific weight in the eigenvector
superposition, thus intuitively explaining the complex distributed dy-
namic response patterns. The response amplitude at resonance peaks
may be an order ofmagnitude larger than for static responses appearing
in the limit of w → 0 (cf. Fig. 2F).

For frequencies substantially below the eigenfrequencies w∗
n , all

units exhibit similar response strengths, in particular independent of
the topological distance between signal input and response sites (Fig. 2,
A and B). At the low-frequency limit w → 0, A*ðkÞ

i approaches Na, a
constant containing only intrinsic network parameters, not encoding
any topology dependence. This explains the observation of homoge-
neous responses in Fig. 1 (D and E).

For sufficiently large driving frequencies w≫ w∗
n , the response

strengths decay as a power law with frequency. This decay is essen-
tially exponential over the topological distance between signal input
and unit response sites (Fig. 2, A and D). Writing the response am-
plitudes as rational functions ofw, withF½2N�1�j�

ki as coefficients ofw2j

in the numerator of ReðQðkÞ
i ðtÞÞ (see section S2.1.3), we obtain the

first nonzero termwith the highest power ofw in the numerator to be
F½d�

ki w
4N�2�2d , where d ≔ d(k, i) is the topological distance between

the driving unit k and the responding one i. The highest power w4N ap-
pearing in the denominator, thus, yields the exact asymptotic expansion

A∗ðkÞ
i ðwÞ∼Na∣F½d�

ki ∣w
�2d�1 ð8Þ

as w→∞ via definition (Eq. 6). Here, the frequency dependence is en-
coded solely in the term w−2d−1. The topological distance d appears
explicitly twice, andF½d�

ki encodes the overall topological properties
of the network as well as the identity of the driving and the respond-
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ing nodes. This result (Eq. 8) is based on exact zeros of lower-order coef-
ficients (see section S2.1.3 for a detailed derivation) that appear because
the relevant matrix element of them-th power of the Laplacian is zero,
(Lm)ki = 0, if m < d(k, i) as there exists no path from k to i of length
smaller than d(k, i). Consequently, for any given frequency in this re-
gime, the response strengths decay approximately exponentially with
the distance.

We emphasize that the above analysis about the three regimes of
response patterns holds without any assumptions on the network
topology, and thus is general for arbitrary interaction structures.
See Fig. 3 for an illustration of the generality of the response regimes
across different networks.

Fluctuation-induced distributed resonances
So far, we have systematically studied the patterns of network re-
sponses to trigonometric, sufficiently weak fluctuating signals affect-
ing just one unit in the network. What can we say about the dynamic
response patterns in networks with stronger, more irregular, andmore
distributed driving signals?

For input signals that are both distributed across the network and
contain a broad range of frequency components (w > 0), the linear
response theory predicts the units’ responses as a linear superposition
across input locations and frequencies via Eq. 5. Specifically, the phase
velocity at unit i reads (see section S3)

:
q
ðkÞ
i ¼ ∑

k∈k

e0;k
Na

þ∑
n
ien;kwn;k ∑

N�1

ℓ¼0

v½ℓ�k v½ℓ�i eiðwn;ktþφn;kÞ
�bw2

n;k þ iawn;k þ l½ℓ�

 !
ð9Þ

where k denotes the set of all units driven by fluctuating signals and
n, k labels the dominant Fourier modes with nonzero frequencies at
each such unit k. The constant drift speed e0;k

Na results from the zero-
frequency component with magnitude e0,k in the signal at node k.
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Generically, our theory (Eq. 9) has strong predictive power for all
combinations of differently fluctuating inputs distributed across the
network (see Fig. 4 andmore details inMaterials andMethods).More-
over, the eigenvector-based overlap factor v½ℓ�k v

½ℓ�
i in (Eq. 9) clearly

demonstrates how frequency components in the driving signal that
are close to the eigenfrequencies induce network-wide resonances in
a specific, highly topology-dependent way.

To illustrate how distributed network resonances are induced by
a noisy fluctuation signal due to its resonant frequency components,
we computed the response time series for a power grid model
network with the topology used for Fig. 1A. The fluctuating signals
were experimentally recorded from renewable energy sources. The
results indicate similarities and notable differences between the re-
sponses to the recordings from photovoltaic and wind power sources.
Specifically, we find that for both time series samples, fluctuations in
wind power and fluctuations in the power from a photovoltaic panel
(see Materials and Methods), predictions are highly accurate after a
transient time (Fig. 5, A and B). In both sample time series of power
fluctuation, the low-frequency components are dominant (Fig. 5, C
and D) and induce low-frequency fluctuations that are homoge-
neous across the network (Fig. 5, A and B). In addition, the stronger
and faster input fluctuations in photovoltaic power generate re-
sponses that are highly precise in time yet more inhomogeneous
across the network (Fig. 5, B, D, and E). This phenomenon originates
from the resonances induced by the fluctuation signal: The Fourier
spectrum of the photovoltaic power fluctuation contains relatively
stronger frequencies close to the resonance frequencies than the
Fourier spectrum of the wind power fluctuation (see Fig. 5, C and
D, Materials and Methods, and section S3.2).
Zhang et al., Sci. Adv. 2019;5 : eaav1027 31 July 2019
DISCUSSION
To conclude, we established a theory of dynamic response patterns
in fluctuation-driven oscillatory network systems by systematically
analyzing the response patterns in every dynamical range of the
signal’s frequency content.We revealed the emergence of the distrib-
uted resonance patterns in the intermediate frequency regime and
demonstrated that they result from the externally driven second dy-
namic variable of individual oscillators, which are known to be ab-
sent in Kuramoto oscillator systems (24, 25). Resonance patterns are
topology dependent, heterogeneous, nonlinear, and nonmonotonic
in distance. For high- and low-frequency regimes, we analytically
derived the generic response patterns, i.e., the homogeneous patterns
at low frequencies and the localized patterns at high frequencies, by
rigorously extracting the dependence of the response on distance,
providing solid theoretical support and broad generalization for pre-
vious works (24–27).

The reported findings on network response patterns exhibit a
number of implications for the operation and control of real-world
network systems in biology and engineering. For the example of power
grids, it is often believed that the AC frequency is homogeneous across
the entire interconnected power system, thus the notion “grid fre-
quency” in power grid literature [e.g., (31)]. In strong contrast, our
results demonstrate that the frequency responses are indeed highly
heterogeneous; therefore, grid frequency makes sense only in the re-
gime of slow-changing driving signals. In particular, anomalous
broad-range fluctuations of grid frequencies (9) may, in part, result
from the combination of different response patterns to various input
fluctuations across grid nodes. The network resonance phenomena
here may moreover help to explain how external inputs induce the
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complex oscillation patterns in cortical networks, while the bulky slow
oscillations and the localized high-frequency oscillations observed in
experiments (10) are consistent with our theory.

The phenomenon of resonance was known before from complex
dynamic systems if they were driven by external signals that act globally
on all units. For instance, in 1981, Benzi reported that stochastic
resonance may arise from global, homogeneous periodic forcing of
stochastic dynamical systems (32–34). Even earlier (nonstochastic)
resonance of molecular excitations was triggered by incident photons
with a frequency matching the energy of an electronic transition of
the molecule and was exploited in resonance Raman spectroscopy
(35). Already in the 1950s, related fundamental phenomena were
exploited to reveal energy spectra, e.g., of atomic nuclei (36). The work
presented here demonstrates network-wide distributed resonances that
emerge in oscillatory networks due to distributed fluctuations imping-
ing distinctly on the different individual units. Previously found “reso-
nances” in networks of (Kuramoto) phase oscillators exhibit a single
response peak consistently appearing at zero frequency, independent
of the network topology and the system’s natural frequencies (24, 25).
In stark contrast, the resonances revealed and explained above are
strongly specific to the interaction topology.

Together, our results indicate that external driving on the second
dynamical dimension of an oscillator (its variable local frequency)
present in the general model class (Eq. 1) induces characteristic dy-
namic and distributed resonance patterns strongly depending on
which units are driven by fluctuations and on how the entire network
is connected. The topology and the explicit distance dependence as
well as the frequency dependence of the responses revealed here may
not only provide a general theoretical prediction of how networks
respond to distributed input fluctuations but may also find a range
of useful applications. For instance, given the typical frequency con-
tent of fluctuation signals at specific units, our theory enables the
identification of the most susceptible units in the network and there-
by suggests dynamically motivated design constraints and the pre-
vention or mitigation of systemic risks of functional failure.
MATERIALS AND METHODS
Settings for Fig. 1
Random geometric topology in Fig. 1A was generated according to a
growth model of power grids (37), where the cost-versus-redundancy
trade-off parameter r=0,meaning line redundancy is disregarded in the
network growth. Squares represent generators with rated power inputs
Wi = 30 s−2, and disks represent consumers with power consumption
Wi = 10 s−2. Number of unitsN = 80. For all transmission lines,Kij =
K = 100 s−2, and for all units, a = 1 s−1. The fluctuation signal was
generated by the Wiener process with drift 0 and volatility 1.

Settings for Fig. 4
In Fig. 4 (C and D), to assess the quality of the prediction for phase
velocity, we define the prediction error as

E ¼ :
q
LRT
i ðtÞ � :

q
num
i ðtÞ

� �2� �1
2

t;i

ð10Þ

where
:
q
LRT
i and

:
q
num
i are the phase velocity responses obtained from

the above linear response theory (Eq. 9) and direct numerical simula-
tions, respectively. The angular brackets indicate the average over time
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and over all units in the network. The error bars in Fig. 4C indicate
the standard deviation of prediction error across 70 realizations of
noisy signals. In Fig. 4D, by proportionally amplifying the power
generation and consumption Wi with an incrementally increasing
factor r: Wi → rWi, we systematically increased the line loads L�ij ¼
jsinðq�j � q�i Þ∣ for every link (i, j) at the steady state and tested the pre-
diction error for the same noise time series as in Fig. 4 (A and B). In the
prediction, 50 dominant Fourier components were included. The data
pointswere color coded by themaximum line load in thenetwork under
perturbation in a time interval t = 20 s. The error bars stand for the stan-
dard deviation of prediction error over the network. The time average of
the prediction error for individual nodes is plotted as light gray lines.

Settings for Fig. 5
(A to D) The recordings of the fluctuating power output from
renewable energy sources, wind turbines, and photovoltaic panels
are obtained from and available under Reference (20) of (38). In the
computation of network responses, we used a coarse-grained model
of power grids, with each node representing a coherent subgrid. See
section S3.2 for details of the model. In Fig. 5E, the nodal response
inhomogeneity of node i is defined as the uncorrelatedness between
the response time series of response at node i and the response time
series 〈dqj/dt〉j averaged across the network: 1 − corr(dqi/dt, 〈dqj/dt〉j),
with corr(x, y) being the normalized cross correlation between time
series x and y

corrðx; yÞ≔
∑
t
xðtÞyðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
t
xðtÞ2∑

t′
yðt′Þ2

r ð11Þ

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/7/eaav1027/DC1
Section S1. Theory of dynamic response patterns in oscillatory networks
Section S2. Frequency regimes of dynamic response patterns
Section S3. Predicting dynamic responses to irregular and distributed noises
Section S4. Limit of validity of linear response theory
Fig. S1. Estimating response strength in inhomogeneous networks.
Fig. S2. Dynamic network response patterns in three regimes.
Fig. S3. Three frequency regimes of response patterns in networks of first-order (Kuramoto)
oscillators.
Fig. S4. An illustration of the frequency sampling method.
Fig. S5. Grid responses to real-world power fluctuations.
Fig. S6. Limit of validity of linear response theory under strong perturbations.
Fig. S7. Breakdown of linear response theory at the fully loaded point.
Fig. S8. Limit of validity of linear response theory in heavily loaded networks.
Movie S1. Network response to Brownian noise at one node (accompanying Fig. 1).
Movie S2. Network response to independent Brownian noise at all nodes (accompanying
Fig. 4, A and B).
Movie S3. Network response to a sinusoidal signal in bulk regime (accompanying Fig. 2B).
Movie S4. Network response to a sinusoidal signal in resonance regime (accompanying Fig. 2C).
Movie S5. Network response to a sinusoidal signal in localized regime (accompanying Fig. 2D).
Movie S6. Network response to a real-world wind power fluctuation (accompanying Fig. 5A).
Movie S7. Network response to a real-world photovoltaic power fluctuation (accompanying
Fig. 5B).
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