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Abstract: With the increasing understanding of various disease-related noncoding RNAs, ncRNAs are
emerging as novel drugs and drug targets. Nucleic acid drugs based on different types of noncoding
RNAs have been designed and tested. Chemical modification has been applied to noncoding RNAs
such as siRNA or miRNA to increase the resistance to degradation with minimum influence on their
biological function. Chemical biological methods have also been developed to regulate relevant
noncoding RNAs in the occurrence of various diseases. New strategies such as designing ribonuclease
targeting chimeras to degrade endogenous noncoding RNAs are emerging as promising approaches
to regulate gene expressions, serving as next-generation drugs. This review summarized the current
state of noncoding RNA-based theranostics, major chemical modifications of noncoding RNAs to
develop nucleic acid drugs, conjugation of RNA with different functional biomolecules as well as
design and screening of potential molecules to regulate the expression or activity of endogenous
noncoding RNAs for drug development. Finally, strategies of improving the delivery of noncoding
RNAs are discussed.
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1. Introduction

In the gene expression process, RNA is at a central position between DNA and protein,
which is the product of DNA transcription and also serves as the blueprint for the transla-
tion of proteins. However, only less than 2% of RNAs can be translated into proteins [1],
while the remaining 98% without coding potential are known as noncoding RNAs (ncR-
NAs). ncRNAs were initially considered as “evolutionary junk” with no biological function.
However, in the past decades, accumulating evidences have suggested that various types
of ncRNAs are involved in many important cellular processes [2].

According to the different regulatory roles, ncRNA transcripts have been categorized
into two families: housekeeping ncRNAs and regulatory ncRNAs. Housekeeping ncRNAs
contain transfer RNA (tRNAs) for carrying amino acids, ribosomal RNAs (rRNAs) for
mRNA reading and decoding, small nuclear RNAs (snRNAs) for RNA splicing and small
nucleolar RNAs (snoRNAs) for RNA modification. Another family of ncRNAs is regulatory
ncRNAs, which are regulators of gene expressions at epigenetic, transcriptional, and
post-transcriptional levels. Regulatory ncRNAs consist of microRNAs (miRNAs), small
interfering RNAs (siRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs)
and PIWI-interacting RNAs (piRNAs). Based on the molecular length, regulatory ncRNAs
were generally classified into two subclasses: long (or large) ncRNAs (>200 nucleotides)
(nt) and short (or small) ncRNAs (<200 nt). Linear long noncoding RNAs (lncRNAs) and
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circular RNAs (circRNAs) are distinguished by their shapes. Small ncRNAs (sncRNAs)
include microRNAs (miRNAs), small interfering RNAs (siRNAs) and PIWI-interacting
RNAs (piRNAs) (Figure 1) [3].
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ncRNAs play important regulatory roles in physiological processes. The interaction
between ncRNA and target sequences leads to significant effects in different cellular pro-
grams, such as RNA maturation, RNA processing, signaling, gene expression, and protein
synthesis [2]. On the other hand, aberrantly expressed ncRNAs are closely related with
the pathogenesis of various diseases such as cancers. Under complex cancer conditions,
the deregulation or dysfunction of ncRNAs has been reported to affect multiple cellular
processes in almost all major cancers [4–7]. The roles of cancer-involved ncRNAs such as
miRNA, lncRNA and circRNA have been extensively studied, and their potential mech-
anisms in cancer development are progressively being established [8,9]. Although the
majority of miRNAs are still to be discovered, many of them have been demonstrated to
link to cancers as oncogenes or tumor suppressors, or metastatic miRNAs [7]. Similarly,
lncRNAs have been found to work in oncogenic or tumor suppressor manners as well [10].
Some circRNAs [11] and piRNAs [12] have also been identified to play an important role in
the progress of cancers.

ncRNA-based drugs, which refer to ncRNAs or their derivatives used as drugs, can in-
teract with multiple biological targets (e.g., nucleic acids and proteins) within cells and exert
therapeutic abilities. As the effect of ncRNAs in various diseases has been increasingly re-
vealed, it is possible to design novel ncRNA-based drugs for clinic use. ncRNA-based drugs,
different from the current pharmacotherapy such as small molecule drugs or antibody
drugs, offer a brand new perspective in drug design. The simple structures, the specific
complementary binding mode and the post-transcriptional regulation made ncRNAs at-
tractive therapeutical molecules. ncRNA molecules could be endogenous or exogenous,
natural or artificial modified, which endow ncRNAs different roles in disease theranostics.

2. Noncoding RNAs with Theranostic Applications

The emerging links between noncoding RNAs and diseases have provided opportu-
nities not only for understanding the prognostic mechanism, but also for finding novel
diagnostic biomarkers.

Many miRNAs, particularly circulating miRNAs in serum, plasma, urine, and saliva,
have already successfully served as biomarkers for many different diseases. In the context
of cancer, the oncogenes (or “onco-miRs”) such as miR-126, miR-17-92 cluster, miR-210
and miR-21 are highly expressed in cancer cells and promote cancer development [13–16].
Conversely, miRNAs such as miR-34a, let-7, miR-200 and miR-122 are downregulated
in cancers as tumor suppressors [17–20]. The dynamic balance between fine regulation
of oncogenes and tumor suppressors may indicate the early stage of tumoral develop-
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ment [21]. Moreover, many ncRNAs are significant factors in diseases including cardiovas-
cular diseases, metabolism disease, infectious diseases, immune disorders and neurological
diseases [10–12,21,22]. Differential expression levels of ncRNAs under disease conditions
make them potential biomarkers for diagnose.

For instance, increased levels of miR-21 have been reported as clinical diagnostic and
prognostic marker in various cancers. The serum levels of circulating miR-122, miR-22, and
miR-34a were correlated with liver injury in HIV patients and may serve as biomarkers [23].
After the outbreak of COVID-19, dozens of studies have shown that dysregulation of
certain miRNAs in the COVID-19 patients has a critical impact in terms of viral activity,
host responses, severity and mortality [24], suggesting that miRNAs may also serve as
potential predictors for COVID-19 [22,24,25]. Recently, emerging evidences have shown
that one kind of tRNA-derived RNAs (tsRNAs) was reported as diagnostic biomarkers in
several diseases including epilepsy, clear cell renal cell carcinoma and gastric cancer [26].
In addition, lncRNAs, circRNAs and piRNAs [26,27] have also been used as biomarkers
for diagnosis.

On the other hand, some endogenic ncRNAs control the expression of disease-related
genes. The aberrant expression of these ncRNAs induces the emergence of diseases, making
these ncRNAs potential targets for drug development. Aside from disease-associated
miRNAs and lncRNAs, intron–exon junctions and repetitive RNAs are also considered as
therapeutic targets for drug design [28]. Therefore, manipulation of their expressions could
be used as a new clinical treatment strategy.

The agents used for targeting ncRNAs can be either small molecules or synthetic
oligonucleotides. Traditional small molecules targeting specific RNAs are still promising as
a therapeutic strategy for diseases. However, due to the similarity of intracellular nucleic
acid structures, it is challenging to find small molecules that can both selectively bind
the target and be specifically active to the target. Therefore, it is crucial to screen small
molecules against specific ncRNAs as drugs. Early this year, Aguilar et al. established a
screening strategy that can identify ncRNA binding drug-like compounds with functional
effects on phenotype. With this strategy, the RNA-targeted compounds with disruption in
activity can be systematically screened [29].

Alternatively, it is much easier to design an oligonucleotide than a small molecule.
The complementary base-pairing recognition makes some “undruggable” targets for small
molecules accessible. There are several classes of oligonucleotides for targeting ncRNAs.
The most common strategies are antisense oligonucleotides (ASOs) and duplex RNAs
that elicit RNA interference. Other oligonucleotides-based agents, such as ribozyme and
CRISPR-cas13, could target and degrade the ncRNA in cells.

3. Noncoding RNAs in Approved and Emerging Nucleic Acid Drugs

Nucleic acid therapeutics use synthetic oligonucleotides to modulate gene expressions
for therapeutic effects [30]. Since 1970s, nucleic acid therapeutics have drawn extensive
attention [31]. The thriving studies in introducing nucleic acid molecules into cells to
permanently or transiently modulate the disease related genes paved a promising new
way in treating diseases. Aside from small molecules and antibody drugs, nucleic acid
drugs, particularly oligonucleotide-based drugs are now considered as the third major
drug discovery platform. To date, there are 16 nucleic acid therapeutics approved by the
United States Food and Drug Administration (FDA) and the European Medicines Agency
(EMA), most of which target orphan genetic diseases (Table 1).

The discovery of ncRNAs of different structures and functions has promoted the mech-
anistic understanding and possible therapeutic interventions. There are several strategies
to design ncRNA theraputics, such as inhibiting RNA activity by siRNA or antisense RNAs,
targeting proteins by aptamers, reprogramming genetic information by trans-splicing
ribozyme, targeting promoter sequences by saRNA to trigger gene production, gene modi-
fying by CRISPR guide RNAs (Figure 2). These types of nucleic acid drugs and some other
emerging ncRNA-based agents will be introduced below.
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Table 1. Nucleic acid drugs approved by FDA and EMA.

Type Drug Name Approval Indication Company

Antisense
Oligonucleotide

Vitravene (Fomivirsen) 1998 (Withdrawn) Cytomegalovirus retinitis Isis Pharmaecuticals/Novartis
Ophthalmics

Kynamro (Mipomersen) 2013 Homozygous familial
hypercholesterolemia Kastle Therapeutics

Exondys 51 (Eteplirsen) 2016 Duchenne muscular dystrophy Sarepta Therapeutics
Spinraza (Nusinersen) 2016 Spinal muscular atrophy Biogen

Tegsedi (Inotersen) 2018 Familial amyloid neuropathies Akcea Therapeutics
Vyondys 53 (Golodirsen) 2019 Duchenne muscular dystrophy Sarepta Therapeutics
Waylivra (Volanesorsen) 2019 Familial chylomicronemia syndrome Akcea Therapeutics

Viltepso (Viltolarsen) 2020 Duchenne muscular dystrophy Nippon Shinyaku with NCNP
Amondys 45 (Casimersen) 2021 Duchenne muscular dystrophy Sarepta Therapeutics

siRNA

Onpattro (Patisiran) 2018 Familial amyloid neuropathies Alnylam Pharmaceuticals
Givlaari (Givosiran) 2019 Acute hepatic porphyria Alnylam Pharmaceuticals
Oxlumo (Lumasiran) 2020 Primary hyperoxaluria type 1 Alnylam Pharmaceuticals

Leqvio (Inclisiran) 2021 Lower LDL cholesterol Novartis

Amvuttra (Vutrisiran) 2022 Hereditary transthyretin-mediated
amyloid polyneuropathy Alnylam Pharmaceuticals

Oligonucleotide
Macugen (Pegaptanib) 2004 Age-related macular degeneration

(AMD) of the retina OSI Pharmaceuticals

Defitelio
(Defibrotide sodium) 2016 Hepatic veno-occlusive disease Jazz Pharmaceuticals PlcMolecules 2022, 27, 6717 5 of 17 
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Short interfering RNA (siRNA) is a class of double-stranded RNA with 20–25 nt, which
triggers the RNA interference (RNAi) pathway in mammalian cells. siRNAs are used as
gene silencing tools for investigating gene function and as nucleic acid drugs [32,33]. To
date, five siRNA drugs have been used in clinic. In 2018, the first siRNA drug Onpattro
(patisiran) was approved by FDA for treating hereditary transthyretin-mediated (hATTR)
amyloidosis [34]. Aside from rare diseases, siRNA drug Leqvio is used to lower the levels
of low-density lipoprotein (LDL) cholesterol. Several siRNAs are under clinical trials to
treat different pathologies.

MicroRNAs (miRNAs) are evolutionary conserved, endogenous single-stranded, small
ncRNAs, influencing target mRNA expression via RNAi [35]. miRNAs play fundamental
functional roles in regulating gene expression at a post-transcriptional level. To alter
miRNA levels, there are two approaches: (1) miRNA mimics (miRNA-like dsRNAs) to
boost miRNA expression and (2) antagomirs (anti-miRNAs) with complementary sequences
to miRNAs to downregulate the target miRNAs level. Several miRNAs are under clinical
trials and have shown positive results in the initial phases. However, some miRNA drug
candidates have been tested to exert severe adverse effects. Further improvements such as
the delivery of specifically localized miRNAs to selected target sites are needed to get the
clinical approval.

RNA activation (RNAa), unlike RNAi pathway induced by miRNAs and siRNAs,
is a process where dsRNA triggers gene production by targeting promoter sequences.
Small activating RNA (saRNA) is a class of small dsRNA oligonucleotides synthesized
by homologous sequences close to or within gene promoters, which can positively and
reversibly upregulate the target genes by RNA-induced transcriptional activation (RITA)
complex in an Ago2-dependent manner [36–38]. MTL-CEBPA is the first saRNA in clinical
trials. It induces increased expression of a tumor suppressor CCAAT/enhancer-binding
protein alpha (CEBPα). It is presently in Phase I clinical trials for hepatocellular carcinoma
(HCC) [39].

ASOs are short, single-stranded RNA or DNA oligonucleotides that bind comple-
mentarily to the target mRNA. ASO drugs usually follow three types of mechanisms:
(1) recruiting RNase H and promoting degradation of mRNA, (2) sterically blocking the
interaction between mRNA and ribosome, (3) alternative splicing of pre-mRNA in exon
skipping or exon inclusion manner [40,41]. By now, nine ASO drugs have been approved
for clinical applications, most of which target rare disease such as Duchenne Muscular
Dystrophy (DMD). The high-throughput ASO screening platforms and AI technology
promote the design of ASO sequences with high efficacy, low off-target toxicity and clear
mode of action. The main concern of ASOs is how to maintain the structural integrity and
enhance the absorption during the delivery [42].

Aptamers are single-strand oligonucleotides with tertiary structure that can bind and
modulate specific proteins. The screening system known as systemic evolution of ligands
by exponential enrichment (SELEX) is used to produce aptamers in vitro. Aptamers are
called chemical antibodies because the synthetic molecules act similarly to antibodies [43].
Pegaptanib (Macugen) is a 28-nucleotides RNA aptamer targeting VEGF. It is the first
and only FDA-approval therapeutic aptamer to treat age-related macular degeneration
(AMD) [44]. There are several aptamer drugs in clinical trial towards different types of
tumors and other diseases. Aptamers have also been applied to inhibit SARS virus and the
diagnosis of COVID-19 by targeting antigenic viral proteins [45].

Ribozymes are RNA molecules with enzymatic activity. They bind to the target RNA
and lead to RNA cleavage in a recycling manner [46] Ribozymes are composed of two
domains: the recognizing region for target binding and the catalytic domain [47]. Ri-
bozymes require a conserved target gene, which plays critical part in biological processes
and accessible sterically for a smooth binding. Hence, ribozyme has relatively higher
specificity and lower immunogenicity than some other RNA drugs. The simple structure,
negligible toxicity, site-specific cleavage activity and recyclable catalytic potential of ri-
bozymes benefit their effective modulation of gene expression. Several ribozymes have
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already been tested in clinical trials for solid tumors, HIV, SARS and other disease [45,47].
However, it is challenging due to the new mutations in the conserved target region and
RNase degradation.

The rise of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas
(CRISPR-associated gene) systems has significantly improved the performance of genome
editing. The CRISPR system is composed of (1) a noncoding RNA known as guide RNA
(gRNA) for targeting the sequence to be engineered, (2) the endonuclease Cas to introduce
site-specific breaks in DNA or RNA [48]. The CRISPR-Cas9 system as a DNA editing tool
has been broadly used in genome modification for biology and therapeutic applications.
In addition, a RNA editing CRISPR-Cas system, CRISPR-Cas13, has also been developed,
which has a higher safety profile than CRISPR-Cas9 [47]. Recently, the CRISPR-Cas13-based
system named PAC-MAN (prophylactic antiviral CRISPR in human cells) has been used in
the treatment of SARS-CoV-2 [45]. More advanced RNA editing platforms that can elicit
ADAR-mediated RNA editing, have been engineered in humans, namely CIRTS, RESCUE,
RESTORE and LEAPER [49].

Xeno nucleic acids (XNA) are artificial nucleic acids with chemical modifications on
the natural sugar backbone of DNA and RNA [50]. XNA such as locked nucleic acid (LNA),
unlocked nucleic acid (UNA), threose nucleic acids (TNA) and peptide nucleic acids (PNA)
were used as therapeutic agents or tools. Normally, XNA possesses superior resistance to
nuclease degradation and thus displays high biological stability. Similar to natural RNA,
XNA could fold into tertiary structures and performed RNA-like biological functions, such
as binding towards complementary mRNA, suppression of target gene as an antisense
agents and inhibition of tumor growth in a xenograft model. Recent researches illustrated
that two TNA sequences screened by in vitro selection possess RNA ligase activity and
ribozyme-like RNA endonuclease activity, respectively. These findings provided TNA as
an attractive XNA-based molecular tool for future biomedical applications [51,52].

Very recently, several biotechnology companies including Alltrna, ReCode Thera-
peutics, Shape Therapeutics, Tevard Biosciences and hC Bioscience started the pursuit of
of tRNA-based therapeutics. The companies are focused on designing tRNAs to bypass
premature termination codons and incorporate desired amino acids instead. The premature
termination codons, which cause truncation of translated protein, are responsible for an
estimated 11% of all inherited disease. Suppressor tRNAs (sup-tRNAs) can read through a
premature stop codon to restore production of full-length proteins. It may open the door
for an entire new class of tRNA therapies [53].

4. Chemical Modifications of Noncoding RNA Backbone for Drug Development

Traditional small molecule and monoclonal antibody drugs require the recognition
of complex spatial conformations of target proteins, but many disease-associated target
proteins, whose surface lack some specific hydrophobic pockets, cannot be screened for
highly active and high-affinity drug molecules. Thus, these diseases are considered to
be unavailable for drug discovery. In contrast, noncoding RNAs like miRNA or siRNA
are simpler to design and can theoretically be used to down-regulate the expression of
almost all the genes in the body through Watson-Crick base pairing with target mRNAs,
offering a broader therapeutic scope than small molecule drugs [54,55]. Despite the great
clinical potential of noncoding RNAs, they are susceptible to degradation by endogenous
enzymes or rapid renal clearance in the human body, and have poor stability and pharma-
cokinetics. At the same time, RNA is negatively charged and has a large molecular weight,
making it difficult to penetrate the membrane into the cell. These problems have hindered
the rapid development of nucleic acid drug technology [56–59]. Since the development
of antisense therapies in the 1980s, some chemical modification methods of RNA have
emerged. Precise modification of noncoding RNAs can improve their efficacy, specificity
and stability, and reduce their toxicity and immunogenicity. Currently, the mainstream
modification methods are: (i) ribose modification; (ii) base modification; (iii) phosphate
backbone modification [60].
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As the siRNA and miRNA gene silencing activity is not dependent on ribose 2′-OH,
the chemical modification of 2′-OH has little effect on biological function of small nucleic
acid drugs. Currently, the dominant modification strategy is to replace 2′-OH with other
chemical groups, including 2′-O-methyl (2′-O-Me), 2′-fluoro (2′-F), 2′-O-methoxyethyl
(2′-O-MOE), etc. Modification of ribose 2′-OH can significantly enhance the ability of RNA to
resist nucleases, while being able to reduce RNA-mediated immunogenic responses [61–63].
The anti-miRNA oligonucleotides (AMO) introduced into the cell have the ability to de-
grade or form random duplexes with specific endogenous miRNAs. 2′-O-methyl (2′-OMe)
RNA-modified AMO has higher binding affinity to RNA targets and higher resistance to
nucleases [64]. In addition to 2′-C, 4′-C modification, even the entire sugar ring can be
modified. Locked nucleic acid (LNA) is a bicyclic structure containing a methylene bridge
between 2′-O and 4′-C to produce a stable ‘locked’ ring conformation, thus increasing the
resistance to nuclease degradation and significantly enhancing base pairing affinity [65].
Unlocked nucleic acid (UNA) ribose ring has higher flexibility and thermal stability due to
the lack of chemical bond between C2′ and C3′. In addition, UNA modification in the seed
region of the guide strand can reduce the off-target effects of miRNAs and has potential to
develop novel therapeutic miRNAs [66].

Base modification of NTPs is a common method for introducing additional function-
ality and increasing chemoselectivity. C5′ of the pyrimidine ring and C2′ of the purine
ring are common modification sites. Substitution of base analogues such as pseudouri-
dine, 2-thiouridine, N6-methyladenosine (m6A) and 5-methylcytidine can enhance the
stability of RNA while reducing its innate immunogenicity. It has been shown that m6A
promotes primary miRNA processing and X-inactive specific transcript (XIST)-mediated
transcriptional repression [62]. Zhang et al. found that the introduction of a 5-nitroindole-
modified nucleotide at position 15 of siRNA sense strand could greatly reduce its activity
without affecting the biological function of the antisense strand. This modification provides
a practical strategy to reduce off-target effects mediated by sense strand [67]. Besides,
6′-phenylpyrrolidine (PhpC) is a cytosine mimetic with excellent base-pairing fidelity,
thermal stability and high fluorescence. PhpC-containing siRNAs show gene silencing
activity similar to that of the parent molecule, and their fluorescent properties render them
applicability in fluorescence-based assays and the exploration of cellular uptake as well as
transport of siRNAs [68].

Phosphate backbone modifications improve the stability of nucleic acids primarily
by replacing the phosphodiester bond with other types of bonds. Phosphorothioate (PS)
is the most widespread strategy and this modification primarily uses the replacement of
a non-bridging oxygen of phosphodiester by a sulphur atom. PS-modified nucleotides
are more resistant to nucleases and are able to prolong the half-life of drug. PS was first
applied in the modification of antisense oligonucleotides (ASO). Although the modification
of siRNA could enhance the stability, it is also accompanied by the side effect of increased
toxicity and reduced gene silencing. This may be because siRNAs only tolerate limited
modifications to remain RNA-induced silencing complex (RISC) compatible. In addition to
PS, other residues have been also successfully used to replace phosphodiester groups in
oligonucleotides, including dithiophosphate (PS2), methyl phosphate (MP), methoxypropyl
phosphate (MOP), and peptide nucleic acid (PNA). Although less popular than PS, these
modifications have the same potential for clinical application development [69–71].

5. Bioconjugation of Noncoding RNA with Other Biomolecules

Various biomolecules have been conjugated to noncoding RNAs such as siRNA to
give RNA-X conjugates. Biomolecules including antibodies, membrane receptor ligands,
targeting peptides and aptamers conjugated to siRNA were functional with respect to
target recognition and membrane penetration (Figure 3) [72]. Due to endogenous transport
mechanisms, some proteins and peptides are able to penetrate into cells and bring in a
number of other molecules at the same time. Coupling targeted functional peptides with
therapeutic RNA drugs can aid RNA to enter cells and perform biological functions [73].
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For example, the cRGD (arginine-glycine-aspartate) cyclic peptide can bind tightly to the
transmembrane glycoprotein αvβ3 integrin, which is highly expressed on a variety of
tumor cells. Rudy and co-works covalently coupled bivalent, trivalent and tetravalent
cRGD ligands to the 3’ end of the luciferase siRNA sense strand and demonstrated that
high-affinity cRGD ligands strongly and specifically enhance siRNA uptake and inhibit
intracellular luciferase expression in cells expressing αvβ3 integrin [74]. Skin penetration
and cell entry (SPACE) peptides, with the ability to enhance the penetration of small
molecules and protein cargos through the stratum corneum into the epidermis and dermis,
also serve as excellent candidates for siRNA and miRNA delivery. Samir et al. coupled
SPACE peptides with IL-10 siRNA and GAPDH siRNA, respectively, to downregulate
IL-10 and GAPDH in animal epidermal cells [75]. By coupling with these peptides, the
targeting and membrane penetrating abilities of RNA are significantly enhanced, effectively
strengthening the biological functions of RNA drugs.
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Coupling RNAs to receptor ligands can effectively increase their specific targeting
ability as well. N-acetylgalactosamine (GalNAc) is a sugar derivative of galactose presented
on damaged glycoproteins. It is able to bind specifically to the trimeric desialic acid
glycoprotein receptor (ASGPR) (Kd = 2.5 nM), which is highly expressed on the surface
of liver cells. The strategy of modifying GalNAc on siRNA for targeted delivery has been
widely used [76–78]. Revusiran, the first GalNAc-siRNA coupling that enters clinical trials,
primarily targets the thyrotropin transport protein mRNA to inhibit gene expression for the
treatment of hereditary transthyretin amyloidosis (hATTR). Clinical trial results showed
that Revusiran achieved 55–90% reduction in serum TTR levels with good therapeutic
effects [79]. Besides, folic acid (FA) is a small molecule that binds tightly to folate receptors
(FRs) which are highly expressed on the surface of many malignant tumors. Due to
its small size, low immunogenicity, in vivo stability and strong binding affinity for FRs
(Kd = 0.1–1 nM), FA has attracted a lot of attention for targeted siRNA delivery [80]. For
instance, Thomas and his co-workers found that siRNAs modified with FA accumulated
more efficiently in mouse tumors in a dose-dependent manner. However, due to the
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complexity of the synthesis of FA and siRNA, the application of folate-modified siRNA is
currently only at the laboratory stage [81].

Although naked oligonucleotides are susceptible to degradation by nucleases, the
stability can be greatly increased by forming spherical nucleic acids via nanotechnology,
which allows the co-delivery of nucleic acid drugs with other types of drugs. Shi et al.
constructed a siRNA vesicle-based drug delivery nanostructure, which was obtained by
the self-assembly of siRNA-disulfide-poly (N-isopropylacrylamide) (siRNA–SS–PNIPAM)
diblock copolymers. By exploiting temperature changes and intracellular reduction reac-
tions, the loading of chemotherapeutic drugs into siRNA vesicles and the release of drugs
from cells can be effectively controlled. Results from MCF-7 cancer cells and mouse tumor
models showed that Dox-loaded siRNA nanovesicles could effectively inhibit tumor cell
growth [82]. Zhang et al. reported a novel photo-unstable spherical nucleic acid (PSNA).
The monomer was formed from hydrophilic HIF-1α siRNA and hydrophobic Bcl-2 peptide
nucleic acid (pASO) through a single linear oxygen cleavable linker. After self-assembly
based on different hydrophilicity and hydrophobicity, PSNAs were able to encapsulate
photosensitizers (PS) to form nanoparticles. Under near-infrared light irradiation, the
singlet oxygen produced by the photosensitizer was able to cleave the linker and release
siRNA with pASO to target the gene. In Hela cell and mouse tumor models, HIF-1α mRNA
was reduced by 79% and Bcl-2 mRNA was reduced by 67% in the light irradiated group
of PSNA. This design combined nucleic acid therapy with photodynamic therapy and
effectively enhance the efficacy of anti-tumor treatment [83].

Antibodies are biomolecules with high specificity, high stability and long in vivo
half-life. Combination with antibodies can significantly improve the pharmacokinetics of
drugs and reduce off-target rates. Antibody-drug conjugates (ADCs) have been rapidly
developed in recent years. Antibody-siRNA conjugates (ARCs) have been successfully used
to deliver siRNA to target cells expressing specific antigens, which is an effective strategy
for RNA delivery [84]. Zhang’s team reported a novel photoresponsive antibody-siRNA
conjugates (PARCs). It consisted of an anti-programmed death ligand 1 (αPD-L1) antibody,
a photoreactive bond-breaking linker and a PD-L1 targeting siRNA (siPD-L1). Following
systemic administration, PARC was able to bind specifically to PD-L1 on the surface of
cancer cells, causing a revival of immune cell activity. After antibody-mediated endocytosis,
light irradiation of the tumor was able to break the cleavable linker in PARC and release
siPD-L1 to inhibit intracellular PD-L1 mRNA expression, preventing the continued produc-
tion of PD-L1 [85]. Later, this team proceeded to report a ROS-responsive antibody-siRNA
coupling, TCARROS. It consisted of an anti-programmed death receptor 1 (PD-1) antibody,
a ROS-sensitive linker and siRNA targeting the CD38 gene. In contrast to PARCs, TCAR-
ROS primarily targets T cells and restores their immunological function. After systemic
administration, TCARROS was able to bind to PD-1 on T cells and undergo bond breaking
in the presence of large amounts of ROS in activated T cells, releasing functional siRNA
and inhibiting CD38 mRNA expression. This therapy showed good synergistic therapeutic
effects in mice transplanted with B16 melanoma and held potential for the development of
combination of protein-targeted and nucleic acid therapy [86].

6. Small-Molecule Regulators of Noncoding RNAs

Small molecules that are capable of targeting or regulating RNAs are important
intracellular molecular tools, for the understanding of underlying principles of specific
RNA-involved interactions, also for demonstrating clinical efficacy [87,88]. For noncoding
RNAs, especially small noncoding RNA such as miRNA, varieties of small molecules have
been found to regulate the expression or activities of the disease-related miRNAs [64,89,90].
Reporter systems with readily read-out signals such as luciferase expression have been
engineered in live cells for the screening of small molecules with regulatory effects on
various miRNAs [91]. In these screening models, small molecules from different sources
were incubated with cells transfected with the reporter systems. The effect of specific
molecule on the expression or activity of the miRNA with sequence complementary to the
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epitope engineered at the 3’-UTR of luciferase reporter gene was then evaluated on live
cells. Active molecules that showed specific regulatory activity on one type of miRNAs,
such as myogenic miRNAs, were used as small-molecule probe to elucidate unknown
miRNA-involved regulatory network in live cells [92,93].

Small molecule compounds targeting oncogenic miRNAs were considered to hold
potentials for cancer therapy [94]. Using lentiviral reporter constructs in which the com-
plementary sequences to those of oncogenic miR-21 down-stream of a luciferase reporter
gene, Deiters et.al. screened compounds from a library containing more than 1000 com-
pounds and obtained one specific and efficient inhibitor of miR-21 expression [95]. They
then revealed that small molecule inhibition of miR-21 expression reduced cell viability
and microtumor formation [96], or rescued chemosensitivity of renal-cell carcinoma to
topotecan [97]. The biogenesis or maturation of miRNAs were found to be able to regulated
by molecules such as Enoxacin [98], Tetracyclines [99] or cyclic peptidomimetics [100].
Small-molecule inhibitor that modulates miRNA biogenesis was reported to disrupt TRBP-
Dicer interaction against hepatocellular carcinoma [101]. Bifunctional small molecules were
also designed to regulate miR-21 biogenesis [102], in which a pre-miRNA binding unit
was connected by a linker to a Dicer inhibiting unit. Discovery of more small molecules
with regulatory effect on miRNAs might be aided by newly-developed methods, such as
mirror image phage display [103]. Methods to predict the potentials of small molecules to
associate miRNAs have also been developed using graphlet interaction [104].

7. Ribonuclease Targeting Chimeras (RIBOTAC) as Emerging Molecules to Degrade
Noncoding RNAs

Among various small molecule targeting strategies, RIBOTAC is entering the limelight
as a novel intracellular regulatory tool. Similar to proteolysis-targeting chimera (PROTAC),
RIBOTAC is a bifunctional small molecule, with one part specifically targeting RNAs
secondary or tertiary structures, and the other part recruiting and activating RNaseL
enzymes to induce degradation of noncoding RNAs (Figure 4). By using different RNA
ligands, various RIBOTACs small molecules can be used to degrade different noncoding
RNAs, enabling precise regulation of RNAs at the small molecule level [105,106].
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Studies have shown that approximately 50% of the nucleotides in RNA targets are
structured or non-classically paired, and therefore approximately half of the sequences
cannot be targeted by sequence recognition methods [107]. In addition, many structured re-
gions have been demonstrated to regulate the biological function of RNA, and studies have
shown that many sites are associated with the development of diseases [108]. RIBOTAC is
a novel therapeutic technology that targets structured regions of RNA, effectively solving
the problem that traditional nucleic acid drugs failed to target non-classical paired regions
and providing a new strategy for the design of RNA-targeted drugs [109].
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Dr. Matthew D. Disney and his team first developed a strategy to design structure-
specific ligands based on RNA sequences, and named it Inforna. Inforna integrated a
selection-based strategy (two-dimensional combinatorial screening), a statistical approach,
and the structural information about RNA targets of interest to allow computational and
high-throughput screening of small molecules with the strongest affinity for structural sites.
Compared to traditional methods, Inforna-based screening is more systematic and reliable,
and is now being used for the development of new targets in RNA structural regions [110].

Based on the Inforna platform, Disney developed the earliest RIBOTACs small molecules
in 2018. The initial RIBOTACs consisted of two parts, one of which was Targaprimir-96
(TGP-96) small molecule that specifically targets the primary transcript of miR-96 (pri-
miR-96), and the other was a short 2′-5′ poly(A) oligonucleotide (2′-5′ A4) that recruits
RNaseL enzyme. The results showed that after targeted degradation of Pri-miR-96 by
RIBOTACs, downstream miR-96 expression was downregulated, which in turn inhibited
the expression of the pro-apoptotic FOXO1 transcription factor and induced apoptosis
in breast cancer cells [111]. In 2019, another RIBOTAC molecule specifically targeting
and degrading Pre-microRNA-210 (pre-miR-210) was designed. The molecule consists
of a Targaprimir-210 (TGP-210) molecule targeting the pre-miR-210 at the Dicer enzyme
processing site with a 2′-5′A4. Using small molecule-targeted inhibition of TGP-210 alone or
molecularly targeted degradation of RIBOTAC, they blocked the synthesis of downstream
mature miR-210-3p [112]. In 2020, a new set of RIBOTAC molecules for SARS-CoV-2 viral
RNA was developed. The frameshifting element (FSE) in the SARS-CoV-2 RNA fragment
controls the translation of pp1a and pp1ab polyproteins, both of which are essential for
viral replication. Enhancing the thermodynamic stability of the FSE region can reduce
the efficiency of frameshifting and inhibit rapid viral translation. Disney’s team used
Inforna to screen for small molecules C5 that specifically target the FSE attenuator hairpin
structure, and covalently bind to small molecules that recruit the RNaseL enzyme to form
the RIBOTAC molecule C5-RIBOTAC. The results of the study indicated that C5-RIBOTAC
could directly recruit RNaseL enzyme to induce the degradation of SARS-CoV-2 viral RNA
fragments, paving a new path for development of new coronavirus therapeutic agents [113].

Compared with traditional nucleic acid drugs, RIBOTAC is a small molecule with
smaller molecular weight, higher stability and better membrane penetration effects. At
the same time, RIBOTAC uses structural regions as its own targeting sites, which greatly
broadens the RNA drug-forming targets and provides more possibilities for the develop-
ment of novel RNA-targeted drugs. RIBOTAC molecules are capable of degrading the
target RNA by recruiting RNaseL enzymes after targeting. Therefore, RIBOTAC molecules
theoretically only require a catalytic number of drugs to initiate target degradation with less
chance of acquiring drug resistance and better safety [107,108]. Despite these distinguishing
advantages, RIBOTAC requires more complex design compared with traditional nucleic
acid drugs, where only the functional sequences of target RNA needed to be considered.
The screening of small molecules for targeting in RIBOTAC technology is difficult, and so
far only a few small molecules with targeting functions have been screened by Disney’s
team using the Inforna platform system, posing a serious challenge for the development
of RIBOTAC [105].

8. Perspectives

Noncoding RNA-based nucleic acid drugs as next-generation drugs serve as an al-
ternative approach for therapy. In particular, RNA-based drugs can theoretically target
any gene of interest, which is “undruggable” for most small molecules and antibodies.
Another feature is that the development of new nucleic acid drugs is simple and fast. It
is straightforward to design new drugs towards target sequences based on Watson-Crick
base pairing. In addition, nucleic acid-based therapies are more precise and efficient due to
the sequence-target mechanism, but less susceptible to drug resistance [114,115].

Despite the outstanding properties, nucleic drugs also have some challenges. For
example, the inherent instability of nucleic acid drugs makes it sensitive to either nucleic
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acid endonucleases or exonucleases and thus they are highly susceptible to degradation.
In addition, how to effectively deliver oligonucleotides to target sites is another challenge.
The instability, negative charge and hydrophilic nature of oligonucleotide hinder the
diffusion through cell membranes [56–58]. In addition to chemical modification and RNA-
X conjugates, using appropriate vehicles is another common strategy to increase the stability
and cell-penetrating ability of RNA, and many delivery systems including viral vectors
and non-viral vectors have been developed [116–118].

Lipid nanoparticles (LNP) are one of the most established vectors for nucleic acid
drug delivery and have gained much attention as a delivery platform for COVID-19 mRNA
vaccines [119,120]. In addition, exosomes are extracellular vesicles actively secreted by
human cells and are capable of delivering various types of molecular signals to recipient
cells and regulating their functions. With their natural affinity for recipient cells and their
inherent ability to deliver nucleic acids, lipids and proteins between cells, exosomes serve
as a class of promising RNA delivery vehicles. Zhang et al. facilitated in vivo delivery
of siRNAs through circulating exosomes by reprogramming the host liver using gene
circuits to direct the synthesis and self-assembly of siRNAs into secretory exosomes. This
strategy took full advantage of the inherent characteristics of exosomes to protect and
precisely deliver RNAs. Meanwhile, the in vivo synthesis of exosomes also circumvented
the difficulties of large-scaled in vitro extraction of exosomes [121–123]. Moreover, cationic
cell-penetrating peptides have become another efficient carrier for RNA drug delivery, with
the advantages of high biocompatibility, good membrane penetration and easy synthesis.
Nonaarginine (R9) is a common positively charged cell-penetrating peptide (CPP), which
is able to self-assemble with negatively charged RNA by electrostatic force to form stable
nanoparticles, guided by the targeting moiety to bring therapeutic RNA drugs into target
cells. Zhang et al. modified R9 with targeting moiety FA and a hydrophobic peptide nucleic
acid (PNA anti-miR-21). This vector can form nanoparticles with miR-34a and assist miR-
34a and PNA anit-miR-21 to enter the Hela cell for dual gene therapy [124–127]. Hydrogels
formed by the self-assembly of small molecules such as peptides have shown potentials
in delivering the noncoding RNAs mixed in the hydrogel matrix into live cells. Cationic
polymer- and lipid-independent siRNA nanogel and intercalation-driven formation of
siRNA nanogels with good stability have been reported to deliver siRNAs into cells through
different endocytic pathways to silence target genes [128–132].

With the continuous development of RNA modification and regulation technology,
noncoding RNA-based nucleic acid drugs will have a wide scope for development. A
variety of diseases caused by non-druggable proteins will have new treatments, and we
expect more nucleic acid drugs to be approved and marketed in the future to bring benefits
to patients.
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