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Abstract
Background: We investigated the effects of mutations K65R and K65R plus M184V on enzymatic
function and mechanisms of drug resistance in subtype C reverse transcriptase (RT).

Methods: Recombinant subtype C HIV-1 RTs containing K65R or K65R+M184V were purified
from Escherichia coli. Enzyme activities and tenofovir (TFV) incorporation efficiency by wild-type
(WT) and mutant RTs of both subtypes were determined in cell-free assays. Efficiency of (-) ssDNA
synthesis and initiation by subtype C RTs was measured using gel-based assays with HIV-1 PBS RNA
template and tRNA3Lys as primer. Single-cycle processivity was assayed under variable dNTP
concentrations. Steady-state analysis was performed to measure the relative inhibitory capacity (ki/
km) of TFV-disphosphate (TFV-DP). ATP-dependent excision and rescue of TFV-or ZDV-
terminated DNA synthesis was monitored in time-course experiments.

Results: The efficiency of tRNA-primed (-)ssDNA synthesis by subtype C RTs was: WT > K65R
> K65R+M184V RT. At low dNTP concentration, K65R RT exhibited lower activity in single-cycle
processivity assays while the K65R+M184V mutant showed diminished processivity independent of
dNTP concentration. ATP-mediated excision of TFV-or ZDV-terminated primer was decreased
for K65R and for K65R+M184V RT compared to WT RT. K65R and K65R+M184V displayed 9.8-
and 5-fold increases in IC50 for TFV-DP compared to WT RT. The Ki/Km of TFV was increased
by 4.1-and 7.2-fold, respectively, for K65R and K65R+M184V compared to WT RT.

Conclusion: The diminished initiation efficiency of K65R-containing RTs at low dNTP
concentrations have been confirmed for subtype C as well as subtype B. Despite decreased
excision, this decreased binding/incorporation results in diminished susceptibility of K65R and
K65R+M184 RT to TFV-DP.
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Background
The human immunodeficiency virus type 1 (HIV-1) epi-
demic has rapidly evolved to include 6 major circulating
subtypes (A, B, C, D, G, F) and numerous recombinant
forms, showing 25–35% overall genetic variation, includ-
ing 10–15% in reverse transcriptase (RT) [1-3]. The RT
enzyme naturally exists as a p66/p51 heterodimer that can
undergo post-translational modification in terms of its
presence in both virions and cells [4]. Subtype C variants
of HIV-1 are responsible for ~50% of the worldwide pan-
demic, representing the dominant epidemics in Sub-Saha-
ran Africa and India [5]. In spite of this, no work has yet
been reported on the differential biochemistry of subtype
C reverse transcriptase (RT). Most data are inferred from
enzymatic studies on prototypic subtype B viruses circu-
lating in the Western world that represent < 12% of the
global pandemic [5].

Genetic divergence in the RT enzyme may also be linked
to differential acquisition of resistance to nucleoside or
nucleotide RT inhibitors (N(t)RTIs) that are core constitu-
ents of antiretroviral (ARV) regimens for treatment of
HIV-1 infection. These drugs include the eight N(t)RTIs
approved for clinical treatment of HIV-1 infection: zido-
vudine (ZDV), stavudine (d4T), didanosine (ddI), lami-
vudine (3TC), zalcitabine (ddC), abacavir (ABC),
emtricitabine (FTC) and tenofovir disoproxil fumarate
(TDF) [6].

The RT mutation K65R can be selected by each of tenofo-
vir (TFV), ddI, ddC, ABC and d4T and yields decreased
susceptibility to all clinically used NRTIs except ZDV [7-
9]. Our laboratory has described the facilitated selection
of K65R in subtype C in cell culture [10]. Recent clinical
studies show the preferential emergence of K65R in sub-
type C-infected patients failing d4T/ddI based regimens in
Botswana (30%), and d4T/3TC-based regimens in South
Africa and Malawi (7–20%) [11-13]. In contrast, K65R is
present in only 1.8% of subtype B HIV-1 infected patients
failing d4T based regimens in the Stanford HIV Resistance
Database (accessed Dec 11, 2008) and is only common in
patients failing TFV-containing regimens (up to15%) [14-
17].

Although subtype C viruses harbour a unique KKK nucle-
otide motif, amino acid polymorphisms and codon bias
at position 65 cannot explain the differential acquisition
of K65R in subtype C variants. In subtype B the mutation
required in codon 65 is AAA → AGA while it is AAG →
AGG in subtype C. The present study was designed to
determine if variations in enzymatic function might be
responsible for the higher propensity of K65R to occur in
subtype C. In this work, we have characterized the enzy-
matic properties of recombinant B and wild-type RTs as

well as RTs harboring the K65R and K65R/M184V muta-
tions.

Results
Purification of recombinant HIV-1 RT and specific activity 
analysis
Recombinant heterodimer (p66/p51) RTs from both sub-
type C and B were purified to > 95% homogeneity; all RT
subunits p66 and p51 were processed to similar molar
ratio (Fig. 1A). To determine the specific activity of the
recombinant enzyme preparations, DNA polymerase
activity was measured using synthetic poly(rA)/(dT)12–
18 template/primer over a 15-min initial rate reaction.
The calculated initial velocities were then divided by the
concentration of enzyme used in the assay to determine
the specific activity of the recombinant RT preparations
(Fig. 1B). Wild-type RTs from both subtypes shared simi-
lar activities. All mutant enzymes were significantly
impaired in specific activity compared with wild-type
enzyme, with K65R exhibiting only 46%–50% of wild-
type activity and K65R+M184V RT exhibiting only ≈ 30%
of wild-type activity. The observation of diminished activ-
ity associated with K65R mutant RTs of both subtypes is
in agreement with results obtained previously with sub-
type B K65R RT [18].

Tenofovir susceptibility in cell-free assays
Previous cell culture assays showed that viruses of sub-
types A/E, B, C harboring K65R exhibited similar 6.5 to
10-fold resistance to TFV [10]. In this study, we deter-
mined the efficiencies of incorporation of TFV-DP using
subtype C WT and mutant K65R and K65R+M184V RTs in
gel-based assays using the 19D/57D primer/template sys-
tem (FIG. 1C, left). Calculations of IC50s for TFV-DP
showed that subtype C K65R RT displayed a 9.8-fold
decreased susceptibility to TFV-DP compared with WT RT.
The simultaneous presence of K65R and M184V resensi-
tized these enzymes for TFV-DP by 5-fold compared to WT
RT (FIG. 1C, right). As a result, the order of susceptibility
of subtype C RTs to TFV-DP was WT > K65R+M184V >
K65R. These results are in good agreements with those
obtained with subtype B HIV-1 recombinant RTs [19].

Efficiency of (-)ssDNA synthesis
The reduced efficiency of initiation of (-)ssDNA synthesis
and tRNA primer usage, associated with subtype B RTs
harboring K65R and K65R+M184V is a mechanism
responsible for the diminished replicative fitness of
viruses containing these substitutions (Fig 2A) [18]. In cell
culture assays, subtype C K65R viruses, like subtype B
K65R viruses, exhibited lower replication capacity and
addition of M184V enhanced this effect [10]. In our cell-
free assay with subtype C RTs harbouring K65R and K65R/
M184V, we also observed impaired efficiency of (-)ssDNA
synthesis; the decrease in product formation was most
Page 2 of 11
(page number not for citation purposes)



Retrovirology 2009, 6:14 http://www.retrovirology.com/content/6/1/14

Page 3 of 11
(page number not for citation purposes)

Purification, determination of specific activity and TFV susceptibility of recombinant subtype C and B HIV-1 RTsFigure 1
Purification, determination of specific activity and TFV susceptibility of recombinant subtype C and B HIV-1 
RTs. (A) Coomassie-Brilliant Blue staining of purified heterodimer RTs after 8% SDS-PAGE. MW (molecular mass standards in 
kilo daltons are shown on the left); b/cWT, (subtype B/C HIV-1 RT wild-type); b/cK65R, (subtype B/C HIV-1 RT harboring 
K65R); b/cK65R+M184V, (subtype B/C HIV-1 RT harboring K65R+M184V). The positions of purified recombinant RT het-
erodimers are indicated on the right. (B) Specific activity of recombinant RT enzymes as assessed using poly(rA)/oligo(dT) tem-
plate/primer as described in Materials and Methods. All specific activities are expressed as a percentage of subtype B wild-type 
RT specific activity. (C) Incorporation efficiency of TFV-DP by subtype C WT and mutant RTs was monitored by gel-based 
assay and a representative image is shown in the panel on the left. Primer 19D was 5'-end labeled and annealed to template 
57D. Reactions were performed with increasing concentrations of TFV-DP. P indicates the position of 5'-end labeled primer. 
Fifty percent inhibitory concentration (IC50) and fold resistance are shown on the right. Values are means of at least three inde-
pendent experiments ± standard deviation. *P ≤ 0.05 compared to the IC50 of wild-type, by two-tailed Student's t-test.
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Efficiency of (-)ssDNA synthesis in cell-free assayFigure 2
Efficiency of (-)ssDNA synthesis in cell-free assay. The efficiencies of the reactions with WT and mutant RTs were com-
pared in time course experiments. (A) Graphic representation of the cell-free system (HIV-1 PBS RNA/tRNA3Lys) used to 
monitor the synthesis of (-)ssDNA. (B) Synthesis of full-length DNA by WT and mutant enzymes. Reactions were initiated with 
10 μM dNTPs and monitored by incorporation of [α-32P]-dCTP. Full-length DNA product and pausing sites are shown on the 
left. (C) Graphic representation of the cell-free system (HIV-1 PBS RNA/tRNA3Lys) used to monitor the efficiency of initiation 
of (-)ssDNA synthesis in the presence of the chain-terminator ddATP. (D) Initiation of (-) ssDNA synthesis by WT and mutant 
enzymes. Reactions were performed using 1 μM dNTPs, and ddATP was employed in place of dATP to give rise to a six-nucle-
otide initiation product. ddATP-terminated +6 product and +3 and +5 pausing position are shown on the left side. (E) Graphic 
representation of the gel-based assays shown in D.
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pronounced at earlier time points (Fig. 2B). Mutant K65R/
M184V RT displayed maximal decrease in product forma-
tion and accumulation at the +3 and +5 pausing sites. The
order of efficiency of (-)ssDNA synthesis was WT > K65R
>> K65R+M184V. In pilot time-course experiments, we
also performed reactions at high dNTP concentration
(100 μM-200 μM), and observed that the double mutant
enzyme showed reduced efficiency in ssDNA synthesis; in
contrast K65R RT showed similar efficiency as WT (data
not shown). To further analyze changes in pausing pat-
terns, we modified the assay described above and
restricted DNA synthesis to the initiation stage by limiting
dNTPs to 1 μM and addition of ddATP at position +6 (Fig.
2C). The results in Fig. 2D and Fig. 2E show that release
from the pausing site at position +5 was compromised
with K65R RT, while the K65R+M184V RT was severely
impaired in release from the +3 pausing site. These obser-
vations are similar to those reported with subtype B RTs
[19].

Single-cycle processivity of subtype C RTs
Analyses of single-cycle processivity were performed with
HIV PBS RNA and 5'-end labeled dPR primer under varia-
ble dNTP concentrations with heparin as a trap. The prod-
ucts of this primer extension assay were separated on a 6%
PAGE-7M urea sequencing gels and subjected to phos-
phorimager analysis (FIG. 3). At high dNTP concentration
(200 μM), K65R RT showed similar activity as WT, while
the double mutant K65R+M184V RT was impaired in
primer extension. As dNTP concentration decreased,
K65R RT showed less extension than WT enzyme; the dif-
ference was more pronounced in reactions with the lowest
dNTP concentration. Similar results were obtained with
subtype B RT WT and K65R and K65R+M184V mutant
RTs (data not shown).

Relative binding/incorporation of dATP and TFV-DP by 
subtype C RT enzymes
One mechanism of resistance to NRTI is decreased bind-
ing or incorporation of inhibitor relative to natural sub-
strate. To determine the effects of mutations K65R and
K65R+M184V in subtype C RTs on TFV-binding and
incorporation, we measured the steady-state kinetic con-
stant Km for dATP and inhibition constant Ki for TFV-DP
(Table 1). The steady state Km value of K65R RT for dATP
was slightly elevated (0.51 μM to 0.64 μM) compared to
WT RT, suggesting that subtype C K65R RT binds to and
incorporates the natural dATP substrate with an efficiency
similar to or slightly reduced to that of WT RT. However,
the Ki value of K65R RT for TFV-DP was significantly
increased compared to that of WT (P ≤ 0.01). Thus, the rel-
ative inhibitory capacity (Ki/Km) for TFV-DP was
increased by 7.2-fold compared to WT. For the double
mutant K65R/M184V, the Km value for dATP was signifi-
cantly increased compared to that of WT (P ≤ 0.01) and

the Ki value for TFV-DP was also increased compared to
WT (P ≤ 0.01). Ki/Km was elevated by 4.1-fold compared
to WT. These results are in agreement with published data
obtained with subtype B RTs [9].

Efficiency of ATP-dependent excision of NRTIs and rescue 
of DNA synthesis
Excision of incorporated NRTIs is a second mechanism of
NRTI resistance by mutant RTs. Using the subtype C RT
enzymes, we determined the excision efficiency of TFV
and ZDV-MP using gel-based ATP-dependent excision
experiments in the presence of fixed concentrations (10
μM) of the next complementary nucleotide as described
[19,20]. For both the TFV-(Fig. 4A) and ZDV-(Fig. 4B) ter-
minated primers, the subtype C WT RT mutants K65R and
K65R+M184V RT showed impaired excision efficiency
compared with WT. ATP-mediated excision of TFV-or
ZDV-terminated primer was decreased by 2.6-and 3.1-
fold for K65R and K65R+M184V RTs, respectively (TFV
23%, ZDV 15% at 30 min) compared to WT RT (TFV 60%,

dNTP concentration dependence of single-cycle processivity of WT and mutant RTsFigure 3
dNTP concentration dependence of single-cycle 
processivity of WT and mutant RTs. The DNA primer 
dPR was 5'-end labeled with [γ-32P]ATP and annealed to HIV 
PBS RNA. Extension was performed using a heparin trap and 
equivalent amounts of recombinant RTs at three different 
dNTP concentrations: 200 μM, 5 μM, and 2 μM. The sizes of 
some fragments of the 32P-labeled 10 bp DNA ladder (Invit-
rogen) in nucleotide bases are shown on the left. Positions of 
32P-labeled dPR primer (32P-dPR) and full-length extension 
product (FL DNA) are indicated on the right.
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ZDV 47% at 30 min). Initial excision rate constants
showed that TFV and ZDV-MP were more stable when
incubated with the mutant enzymes.

Discussion
Our experiments have revealed that subtype C HIV-1 RT
has similar enzymatic activity to subtype B RT, and that
the K65R and K65R+M184V mutations, affect subtype C
RT function in a manner similar to that seen with subtype
B RT. Specific effects include: 1) The efficiency of ssDNA
synthesis and initiation is reduced; 2) At low dNTP con-
centration, K65R RT exhibited lower activity in single-
cycle processivity assays while the K65R+M184V mutant
showed diminished processivity independent of dNTP
concentration. 3) the discrimination of nucleotides is
equivalently reduced in subtype C RT as in subtype B RT;
and 4) the excision of incorporated nucleotides is also
decreased in a similar fashion in both RTs, in agreement
with previous results [9,19,21-23]. We also confirm that
the biochemical basis for the HIV-1 fitness loss that results
from the acquisition of the K65R and K65R/M184V muta-
tions are also valid in HIV-1 subtype C RT. The same TFV
resistance mechanisms exist in both subtypes B and C,
and both impaired discrimination and excision determine
TFV susceptibility.

The K65R mutation is located in the fingers domain of RT
and its effect on reduction of NRTI incorporation and
reduced excision is probably due to an increased rigidity
of the active site and effective trapping of the dinucleoside
tetraphosphate excision product [24]. Natural polymor-
phisms within subtype C RT did not alter either the direc-
tion or the magnitude of the effect of the resistance
mutations K65R and M184V. The subtype C RT used in
our experiments contains 33 amino acid polymorphisms
that are different from the subtype B consensus sequence.
Only the polymorphisms at positions 35, 36, 48 (in the
fingers), 211, 214 (in the palm), and 245, 286 and 291 (in
the thumb) are located close enough to the RT active site
to have significant functional interactions with the fin-
gers. However, such effects do not appear to be discernible
by the methods used in our study. Hence, the overall
effect of K65R in subtype C is to reduce susceptibility to
TFV.

In the absence of biochemical evidence of an enzyme-
dependent mechanism for the preferential emergence of
K65R in HIV-1 subtype C, the possibility of a template-
dependent mechanism is favoured as described by our
laboratory elsewhere [25]. Briefly, it seems that increased
pausing is involved when RT copies a HIV-1 subtype C
nucleic acid template at RT positions 64 through 66, due
to the combined effect of low fidelity and NRTI pressure.
This was shown to be true for reactions involving RT of
either subtype B or C origin but only with template C
sequences [25]. Further virological tests, including com-
petition assays, are warranted in order to detect more sub-
tle effects of the K65R mutation in subtype C.

Based on standard genetic sequencing of HIV-1 RNA from
plasma of treated patients, K65R and M184V can emerge
in subtype C as in B viruses after therapeutic failure with
ABC, ddI, TFV and d4T when combined with 3TC. The
finding that both K65R and K65R/M184V decrease the
enzymatic fitness of RT in subtype C HIV and that both
restore susceptibility to ZDV in an additive manner is
important in view of the ongoing switch in use of NRTI
backbones away from thymidine analogs and the higher
frequency of K65R in subtype C isolates from African
patients [11-13]. Newer backbones (TFV/FTC and ABC/
3TC) typically select for the K65R and M184V mutations
in HIV-1 subtype B, but these mutations have also fre-
quently emerged in subtype C viruses treated with d4T/
3TC. As described here, these mutations cause loss of
enzymatic fitness and might reduce the virulence of HIV-
1.

Studies with both SIV and a RT SHIV in macaques treated
with TFV monotherapy showed selection of the K70E and
K65R mutations [26,27]. The viral load of the animals
with virologic failure were about 10-fold below the pre-
therapy set point, which might be related to loss of viral
fitness [26]. Interestingly, the presence of TFV resistance
mutations did not preclude virological suppression in sev-
eral of the treated animals [26]. A CD8-mediated immu-
nologic response seemed to contribute to virologic
suppression in animals harboring TFV-resistant viruses,
but this only occurred if TFV was continuously adminis-
tered.

Table 1: Steady state kinetic analysis for dATP and TFV-DP: measurement of relative inhibitory capacity (Ki/Km ratio)

HIV-1 RT Enzyme Km(dATP), μMa Ki(TFV), μMb Ki/Km(fold)c

Subtype C WT 0.51 ± 0.04 0.24 ± 0.04 0.47(1.0)
Subtype C K65R 0.64 ± 0.05 2.2 ± 0.07* 3.43(7.2)

Subtype C K65RM184V 0.83 ± 0.04* 1.2 ± 0.05* 1.93(4.1)

a Km and b Ki values are mean values from at least three experiments ± SD.
c Fold change in Ki/Km from wild-type.
* P ≤ 0.01 compared to the wild-type by two-tailed Student's t-test.
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ATP-dependent excision of chain-terminating nucleotides with WT and mutant RTsFigure 4
ATP-dependent excision of chain-terminating nucleotides with WT and mutant RTs. The primers were initially 
chain terminated with TFV-DP (A) or ZDV-MP (B). Combined excision/rescue reactions were compared in time course exper-
iments. Reactions were stopped at the indicated time points and samples were analyzed in denaturing 6% polyacrylamide gels. 
Graphic representations of efficiency of rescued DNA synthesis from gel-based assays are shown on the left below the gel 
graph. Calculated excision rate constants (k) (×10-3 s-1) ± SD (P ≤ 0.01, compared to WT; two-tailed Student's t-test) are 
shown on the right.
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We did not test whether thymidine analog resistance
mutations (TAMs) affect subtype C RT enzymatic func-
tion. Therefore, we cannot comment on the extent to
which TAMs might affect TFV incorporation or excision.
However, research on this matter is warranted because
TAMs also occur in NRTI-resistant subtype C viruses iso-
lated from patients who have failed first line regimens in
resource-limited settings [28-30].

Conclusion
Our results show that an enzyme-based mechanism is not
the basis for the higher propensity of HIV-1 subtype C to
acquire the K65R mutation in response to NRTI exposure
and that subtype B and C RTs behave similarly in regard
to most enzymatic properties. In particular, both
enzymes, when containing K65R, share a diminished ini-
tiation efficiency at low dNTP concentrations as well as
diminished rates of excision if K65R is present. Both sub-
type B and subtype C RTs containing K65R are less able to
bind to TFV-DP and are less susceptible than WT RTs to
the chain-terminating effects of this compound.

Methods
Chemicals and Nucleic Acids
Tenofovir diphosphate (TFV-DP) was kindly provided by
Gilead Sciences (Foster City, California, USA). Zidovu-
dine triphosphate (ZDV-TP) was purchased from Trilink
Biotechnologies (San Diego, California, USA). Poly(rA)/
oligo(dT)12–18 ultrapure dNTPs, NTPs and ddATP were
purchased from GE Healthcare. [3H] dTTP (70–80 Ci/
mmol) was from Perkin Elmer Life Sciences. [α-
32P]dNTPs and [γ-32P]ATP were obtained from MP Bio-
medicals.

Natural human tRNA3Lyspurified from placenta by high-
pressure liquid chromatography (HPLC) was purchased
from BIO S&T (Montreal, Quebec, Canada). The DNA
primer/template (P/T) substrates used for measuring effi-
ciency of chain-termination of TFV-DP and ATP-mediated
primer unblocking were derived from the polypurine tract
(PPT) of the HIV-1 genome [30] and were: 57D(5'-
GTTGGGAGTGAATTAGCCCTTCCAGTCCCCCCTTT-
TCTTTTAAAAAGTGGCTAAGA-3' 17D 5'-TTAAAAGAAAA
GGGGGG-3' 19D 5'-TTAAAAGAAAAGGGGGGAC-3'

An HIV-1 RNA template spanning the 5' UTR to the
primer binding site (PBS), was in vitro transcribed from
BSSH II-linearized pHIV-PBS DNA by using T7-
Megashortscript kit (Ambion, Austin, TX) as described
[31]. For preparation of subtype C HIV-1 PBS RNA tem-
plate, plasmid pHIV-c-PBS was first constructed by Pst I-
Bgl II digestion of the 1.4 kb PCR amplification product
with primers CLTRF 5'-GGAAGGGTTAATTTACTCTAA-
GAAAAGGC-3' and CLTRPstIR 5'CTATCCCATTCT-
GCAGCCTCCTCA-3' and MJ4 DNA template; the

resulting 0.9 kb fragment was subcloned into the pSP72
vector DNA fragment linearized with the same enzymes;
transcription was performed as above after Pvu II lineari-
zation.

Recombinant Reverse Transcriptase Expression and 
Purification
The subtype B HIV-1 RT expression plasmid pRT6H-PROT
[24] was kindly provided by Dr. S. F. J. Le Grice. Subtype
B RTs containing mutations K65R and K65R+M184V were
generated as described previously [19]. For construction
of subtype C HIV-1 RT from the heterodimer expression
plasmid pcRT6H-PROT, the RT coding region of subtype
C HIV-1 isolate BG05 (GenBank accession number
AF492609) was subcloned into pRT6H-PROT by standard
PCR cloning procedure to replace the subtype B RT coding
region [32]. Mutant DNA constructs K65R and
K65R+M184V were generated by Quick-change Mutagen-
esis Kit (Strategene). The presence of mutations and accu-
racy of the RT coding sequence was verified by DNA
sequencing. Polymorphisms within subtype C RT differ
from subtype B as follows: V35T, T39E, S48T, K166R,
K173T, D177E, T200A, Q207E, R211K, L214F, V245K,
T286A, E291D, I293V, R356K, G359T, T376A, T377Q,
K390R, T403A, E404D, V435P, A437V, N460D, V466I,
T468S, D471E, Y483Q, L491S, Q512K, K527Q, K530R,
A534S. Recombinant wild-type (WT) and mutated RTs
were expressed and purified as described [33,34]. In brief,
RT expression in bacteria Escherichia coli M15 (pREP4)
(Qiagen) was induced with 1 mM isopropyl-b-D-thioga-
lactopyranoside (IPTG) at room temperature. The pel-
leted bacteria were lysed under native conditions with
BugBuster Protein Extraction Reagent (Novagen), clarified
by high speed centrifugation, and the supernatant was
subjected to the batch method of Ni-NTA metal-affinity
chromatography using QIA expressionist (Qiagen) accord-
ing to the manufacturer's specifications. All buffers con-
tained complete protease inhibitor cocktail (Roche).
Histidine-tagged RT was eluted with an imidazole gradi-
ent. RT-containing fractions were pooled, passed through
DEAE-Sepharose (GE Healthcare), and further purified
using SP-Sepharose (GE Healthcare). Fractions containing
purified RT were pooled, dialyzed against storage buffer
(50 mM Tris [pH 7.8], 25 mM NaCl and 50% glycerol),
and concentrated to 2 mg 4 mg/ml with Centricon Plus-
20 MWCO 30 kDa (Millipore). Protein concentration was
measured by Bradford Protein Assay kit (Bio-Rad Labora-
tories) and the purity of the recombinant RT preparations
was verified by SDS-PAGE.

Specific activity determination
The RNA-dependent DNA polymerase activity of each
recombinant RT preparation was assayed in duplicate
using poly(rA)/p(dT)12–18 template/primer (GE Health-
care) as described [17,33]. Each 50-μl reaction contained
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25 μg/ml poly(rA)/p(dT)12–18, 50 mM Tris (pH 7.8), 5
mM MgCl2, 60 mM KC1, 10 mM dithiothreitol (DTT), 5
μM dTTP with 2.5 μCi of [3H]dTTP and variable amounts
of wild-type or mutated RT. Reactions were performed at
37 w and aliquots of 15 ul were removed at 3 min, 9 min,
15 min and quenched with 0.2 ml of 10% cold trichlorac-
tic acid (TCA) and 20 mM sodium pyrophosphate. After
30 min on ice, the precipitated products were filtered onto
96-well plates using glass fiber filters (Millipore) and
sequentially washed with 10% TCA and 95% ethanol. The
radioactivity of incorporated products was analyzed by
liquid scintillation spectrometry. The incorporated [3H]
dTTP was plotted as cpm versus time and initial velocities
were determined from the slopes of the linear regression
analyses using GraphPad Prism 4.0 software. Specific
activities were calculated as described previously [18]. All
values are presented as a percentage of specific activity of
subtype B WT RT with the percentage standard deviation
of the duplicate samples also indicated.

Incorporation efficiency of TFV-DP in cell-free assay
Incorporation of TFV-DP was monitored using 19D/57D
primer/template system as described for measurement of
ddATP incorporation [31,35]. Inhibition efficiency was
expressed as the concentration of TFV producing a 50%
inhibition (IC50) of full-length DNA synthesis.

Determination of steady-state kinetic parameters
The Km for dATP and the Ki for TFV-DP were determined
by filter binding assays as described previously [36]. In
brief, 200 nM dPR were heat-annealed to 300 nM subtype
C HIV-1 PBS RNA in a buffer containing 50 mM Tris-HCl
pH 7.8 and 50 mM NaCl. The pre-hybridized primer-tem-
plate complex was mixed with variable amounts of WT or
mutated RT in the presence of 5 mM MgCl2, 5 mM dithi-
othreitol, 50 μM dCTP/dGTP/dTTP, 200–500 nCi of
[3H]dATP (> 70–80 Ci/mmol), 5 U of RNase inhibitor
and variable concentrations of dATP in the absence or
presence of TFV-DP. Reactions were incubated at 37°C.
Aliquots were removed at 3 min, 7 min, 15 min and
quenched with 10% trichloroacetic acid (TCA) and 20
mM sodium pyrophosphate. After 30 minutes on ice, the
precipitated products were filtered onto 96-well glass fibre
filter plates (Millipore), washed twice with 10% TCA and
once with 95% ethanol. Incorporated radioactivity was
measured by liquid scintillation counting. Kinetic con-
stants were determined using Graphpad Prism 4.0 soft-
ware as described [36].

Efficiency of synthesis of minus-strand strong stop DNA [(-
)ssDNA]
The efficiency of (-)ssDNA synthesis was determined by
cell-free assay as described [19,31,37]. Briefly, 20 nmol/l
tRNALys3 were heat annealed to 40 nmol/l PBS RNA.
Then, 100 nmol/l WT or mutated RTs and 6 mmol/l

MgCl2 were added. Reactions were initiated with 10 μM
dNTPs and monitored by incorporation of [α-32P]-dCTP.

Aliquots were removed at various time points and
quenched with 95% formamide-40 mM EDTA. Samples
were resolved in 6% polyacrylamide-7M urea gel and ana-
lyzed by using the Molecular Dynamics Typhoon Phos-
phorimager system (GE Healthcare). To study the effect of
mutated RTs on the initiation of synthesis of (-)ssDNA,
the above reactions were initiated with 1 μM dNTPs,
except ddATP was employed as a termination nucleotide
instead of dATP to give rise to a six-nucleotide initiation
product. Products were separated as described above and
analyzed by ImageQuant software.

Using the same gel-based system as described [19,37], we
evaluated the efficiency of initiation of (-)ssDNA synthe-
sis by subtype C WT RT and mutant RTs harboring muta-
tions K65R and K65R/M184V. The preannealed human
tRNA3Lys – HIV PBS RNA complexes were incubated with
either WT or mutant RT enzymes to initiate the RT reac-
tion in the presence of 10 μM dNTPs. Time-course experi-
ments were performed, and products were separated and
analyzed by ImageQuant software as described above.

Single-cycle processivity assays
The 18-nt DNA primer dPR complementary to the viral
PBS was 5'end labeled using [γ-2P]ATP. The dPR primer
(500 nM) containing labeled dPR as tracer was annealed
to PBS RNA transcript. RT (50 nM) was then preincubated
with the T/P for 5 min at 37°C before initiation of the
reaction by the addition of dNTPs using a heparin trap (1
mg/ml). Three concentrations of dNTPs were assayed: 200
μM, 5 μM and 2 μM. After 30 min of incubation at 37°C,
aliquots of the reaction mixtures were removed and
quenched with 95% formamide-40 mM EDTA. The sam-
ples were heated at 100°C for 5 min, then analyzed by 6%
polyacrylamide-7M urea gel. Resolved products were ana-
lyzed by phosphorimager.

Excision and rescue of chain-terminated DNA synthesis in 
the presence of ATP
To generate TFV- or ZDV-terminated primers, primers
17D and 19D were first radiolabeled at the 5' end and sub-
sequently extended with TFV-DP and ZDV-TP respectively
using cWT RT and annealed to template oligonucleotide
57D as described [38]. Excision and the ensuing rescue of
chain-terminated DNA synthesis were monitored as
described [19,21]. Time course experiments were per-
formed after the addition of 3.5 mM ATP (pretreated with
inorganic pyrophosphatase) and a dNTP cocktail consist-
ing of 100 μM dATP, 10 μM dCTP, and 100 μM ddTTP for
TFV and 100 μM dTTP, 10 μM dCTP, and 100 μM ddGTP
for ZDV. Samples were resolved in an 6%
polyacrylamide7M urea gel followed by phosphorimag-
Page 9 of 11
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ing. Band intensities were analyzed by ImageQuant softa-
ware. Initial excision rate constants (k) were determined
as described previously using SigmaPlot 9.0 [39].
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