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Abstract
Tic related disorders affect 4–20% of the population, mostly idiopathic, can be grouped in a wide spectrum of severity, where 
the most severe end is Tourette Syndrome (TS). Tics are arrhythmic hyperkinesias to whom execution the subject is forced 
by a “premonitory urge” that can be classified as sensory tic, just-right experience or urge without obsession. If an intact 
volitional inhibition allows patients to temporarily suppress tics, a lack or deficit in automatic inhibition is involved in the 
genesis of the disorder. Studies have assessed the presence of intrinsic microscopic and macroscopic anomalies in striatal 
circuits and relative cortical areas in association with a hyperdopaminergic state in the basal forebrain. Prepulse inhibition 
(PPI) of the startle reflex is a measure of inhibitory functions by which a weak sensory stimulus inhibits the elicitation of a 
startle response determined by a sudden intense stimulus. It is considered an operation measure of sensorimotor gating, a 
neural process by which unnecessary stimuli are eliminated from awareness. Evidence points out that the limbic domain of the 
CSTC loops, dopamine and GABA receptors within the striatum play an important role in PPI modulation. It is conceivable 
that a sensorimotor gating deficit may be involved in the genesis of premonitory urge and symptoms. Therefore, correcting 
the sensorimotor gating deficit may be considered a target for tic-related disorders therapies; in such case PPI (as well as 
other indirect estimators of sensorimotor gating) could represent therapeutic impact predictors.
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TIC‑related disorders and Tourette 
Syndrome

Tic disorders affect 4–20% of the population [1]. Most cases 
are classified as idiopathic; they can be grouped in a wide 
spectrum of severity, where the most severe end is represented 
by Tourette Syndrome (TS) that has a lifetime prevalence of 
0.5–0.7% [2]. Tics are arrhythmic hyperkinesias, described 
as sudden, rapid movements or vocalizations, characterized 
by a different grade of complexity (in terms of number of 
muscular groups involved), and enhanced by emotive factors 
and fatigue [3]. They are typically stereotyped, fluctuating, 
distractible and suggestible [4].

The onset of TS is typically in childhood (the majority 
between the ages of 4–6  years). Tic severity typically 
peaks in adolescence (the majority between the ages of 
10–12 years). In most cases, symptoms are fluctuating, 
following a waxing and waning course. Even if they have a 
fluctuating course, from the onset to the peak of the disease 
the symptoms tend to aggravate. The most common tics at 
onset are simple motor tics [5]. The appearance of additional 
tics typically progresses in a rostral-caudal pattern, involving 
trunk and limbs, with a simultaneous increase of the number 
of muscular groups involved. Vocal tics tend to manifest 
only in advanced states of the disease [6].

Most cases will show an improvement of symptoms by 
late adolescence or early adulthood [7]. If in less than 1/3 of 
individuals there will be a complete remission of symptoms, 
the remainder will have mild, often barely noticeable 
symptoms, except for a 10–20% of cases that will continue 
to have significant symptoms [8].

All idiopathic tic-related disorders show an association 
with psychiatric disorders. This is particularly true for TS. 
Only approximately 20% of TS cases occur in absence of a 
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significant comorbid diagnosis [9]. The most represented 
comorbidities are obsessive–compulsive disorder (OCD), 
and attention deficit-hyperactivity disorder (ADHD), which 
occur in 60% of individuals [10]. Less common, but still 
more frequent than in the general population are autism 
spectrum disorders, depression, anxiety and behavioural 
disorders [10].

Tics are generally considered movements to whom execu-
tion the subject is forced by a “premonitory urge” [6]: sen-
sation of discomfort that tic emission helps to alleviate or 
discharge. Premonitory urges can be classified as sensory 
tic, just-right experiences or urges (without obsessions) [11].

Sensor y  t ic  i s  a  bodi ly  sensa t ion ,  main ly 
musculoskeletal, perceived as uncomfortable. A just-
right experience is an inner discomfort produced by 
perception that elements of the surrounding environment 
(sounds, objects, people, movements, actions) are not 
harmonized in a certain “right way.” This experience 
has been compared to a compulsion [12], even if is more 
closely related, by a biological point of view, to tic-
related disorders than to OCDs [13]. An urge without 

obsession is a drive to do a certain action associated with 
neither sensory phenomena nor a sense of disharmony of 
the surrounding environment.

CSTC loops abnormalities in tic‑related 
disorders

The limbic, associative and sensorimotor domain of cortico-
striatal-thalamo-cortical (CSTC) loops are composed of 
multiple largely parallel (but partially overlapping) circuits 
that direct information from cerebral cortex to basal ganglia 
and thalamus, and then back again to specific region of the 
cortex (Fig. 1). Dopamine is a crucial regulator of striatal 
microcircuitries. Dopaminergic neurons in the ventral 
tegmental area (VTA) preferentially innervate the nucleus 
accumbens, while dopaminergic neurons in the substantia 
nigra mainly project to the dorsal striatum [14].

Double-blind clinical trials in which neuroleptics, that 
preferentially block dopaminergic D2 receptors (such as 
haloperidol and pimozide), have been found to be effective in 

Fig. 1  A common partition of 
the cortico-striato-thalamo-
cortical (CSTC) loops is into 
three major domains: sensori-
motor + oculomotor, associative 
and limbic. Each domain relates 
with approximate cortical and 
striatal areas. The sensorimo-
tor domain is made by loops 
mainly involving the prefrontal 
motor cortex (PMFC), and 
the putamen. The associative 
domain is made by loops mainly 
involving the dorsolateral 
prefrontal cortex (DLPPC), 
the lateral orbitofrontal cortex 
(LOFC), and the dorsal portion 
of the caudate nucleus. Finally, 
the limbic domain is formed 
by loops mainly involving the 
medial orbitofrontal cortex 
(MOFC), the anterior cingu-
late cortex (ACA), and the 
ventral portion of the striatum, 
but also subcortical elements 
of the limbic system, such as 
accumbens nucleus and baso-
lateral amygdala (not shown). 
Tic-related disorders have been 
associated with a dysregulation 
primarily of the sensorimotor 
and oculomotor loops
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the temporary suppression of tics [15], as well as data from 
animal models, in which the administration of tetrabenazine 
(inhibitor of the uptake of DA into synaptic vesicles) resulted 
effective in tic suppression [16], have posed the basis for 
a “dopamine hypothesis”: tic disorders can be related 
with an excess of nigrostriatal dopaminergic activity. This 
hypothesis is supported by in vivo neuroimaging studies 
that documented increase of dopamine transporter (DAT) 
binding in the neostriatum and increase of DA storage and 
DA release in the ventral striatum [17].

Most neurons (> 90%) in the striatum are γ-aminobutyric 
acid-ergic (GABAergic) medium spiny neurons (MSNs). 
They are activated by motor behaviours elicited by mem-
ory-encoded or environmental cues, exhibiting a context-
dependant firing pattern [18]. Whitin the striatum MSNs 
form a weak lateral inhibitory network (feedback inhibition), 
important in regulating striatal output, while GABAergic 
interneurons, despite in much smaller numbers, exert a pow-
erful control over striatal excitability (feedforward inhibi-
tion), modulating MSNs excitability. Feedforward inhibi-
tion is mediated by fast-spiking GABAergic interneurons 
(FSINs) [19]. FSINs receive direct cortical inputs predomi-
nantly from lateral cortical regions, including the primary 
motor and somatosensory cortex. These interneurons inter-
act with adjacent MSNs. It does appear that FSINs are acti-
vated in a coordinated fashion just prior to a decision being 
made in a striatal-dependent task [20]; once activated, they 
determine a synchronous inhibition of many adjacent MSNs 
via synapses on cell bodies and proximal dendrites. A sec-
ond class of GABAergic interneurons comprises the neuro-
peptide Y (NPY), nitric oxide synthetase and somatostatin 
expressing interneurons. These cells present a least dense 
axonal arborization and electrophysiologically characterized 
by low threshold calcium spikes [21].

Dopaminergic afferences exert an influence also on 
GABAergic interneurons activity via presynaptic and post-
synaptic actions. Dopamine release induced by drugs (such 
as methamphetamine) increases the activity, while dopamine 
D2 receptor antagonist depresses the firing frequency of 
FSINs. FSINs activity is enhanced directly by postsynaptic 
D5 receptors and indirectly by reducing GABAergic inputs 
to FSINs via presynaptic D2 receptors [22, 23]. Inhibition 
of the nigrostriatal circuit causes impaired and poorly timed 
synchronization of FSINs activity [24]. On the other hand, 
repeated administration of methamphetamine enhances 
preproNPY mRNA expression in a D1-dependent manner. 
Low threshold interneurons are depolarized by dopamine 
throughout D1 receptors [25]. While dopamine depletion 
promotes an oscillatory activity in FSINs, a dopaminergic 
excess promotes a tonic activity, both conditions may impair 
MSN activity and consequentially corticostriatal encoding 
[26]. Furthermore, it has been showed that endogenous 
dopamine influences striatal microcircuitries by negative 

regulating the number of tyrosine-hydroxylase (TH) express-
ing MSNs, whom TH immunoreactive axons interact with 
proximal dendrites and soma of NPY expressing interneu-
rons [27].

FSINs have been widely implicated in studies regarding 
reward-seeking since activation of FSINs have been showed 
to result in behavioural changes to reward. One study, manip-
ulating neuronal firing of FSINs and assessing throughout 
microdialysis the changes in GABA and glutamate levels, 
showed that FSINs activity influences the initial expression 
of reward conditioned responses, and that their influence on 
MSNs declines with training. Moreover, FSINs activity can 
mediate learning by enhancing performance during associa-
tive learning [28].

The striatum also presents cholinergic tonically active 
neurons (TANs). Both TANs and dopaminergic neurons 
emit robust signals following reward-related events, sig-
nals involved in the calculation of perceived salience of 
numerous perceptual cues arriving to the striatum. It has 
been postulated that dopamine (DA) and acetylcholine 
(ACh) act antagonistically in the striatum, having opposing 
effects on the excitability of MSNs [29]. Both striatal DA 
and ACh affect plasticity of cortico-striatal transmission, 
therefore they are both crucial in learning processes [30].

In monkeys performing probabilistic instrumental con-
ditioning tasks, although different events yielded responses 
with different latencies, the response of the two populations 
coincided, indicating integration at the target level, yet while 
the DA neurons’ response reflects mismatch between expec-
tation and outcome, TANs activity is invariant to reward pre-
dictability. Therefore, is likely that striatal cholinergic and 
dopaminergic systems carry distinct messages by different 
means, which can be integrated differently to shape the basal 
ganglia response to reward-related events [31].

Not only dopaminergic and cholinergic afferences act 
antagonistically on MSNs, but also dopamine modulates 
the activity of TANs: stimulation of dopaminergic axons 
in dorsal striatum modifies ionic conductance in TANs, 
suggesting that dopamine dynamically controls cholinergic 
tone. Reciprocally, TANs interneurons modulate dopamine 
output thought activation of both muscarinic and nicotinic 
cholinergic receptors on dopamine terminals [32].

Neuropathology studies of post-mortem TS brains docu-
mented a greater than 50% reduction in the FSINs population 
in the caudate nucleus and a 30–40% reduction of these same 
cells in the putamen [33]. A more recent post-mortem study 
confirmed a 50–60% decrease of both FSINs as well as a loss 
of TANs in the caudate nucleus and putamen; in addition, 
TANs were decreased in TS patients in the associative and 
sensorimotor regions, but not in the limbic regions of the 
striatum, such that the normal gradient in density of choliner-
gic cells (highest in associative regions, intermediate in sen-
sorimotor and lowest in limbic regions) was abolished [34].
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The complex interaction of motor and psychiatric symp-
toms and evidence from neuroimaging indicate that tic-
related disorder pathophysiology involves CSTC networks 
that span different functions, including sensorimotor, limbic 
and associative networks.

Volumetric magnetic resonance imaging (MRI) studies 
showed an approximate 5% reduction in caudate volume 
in TS patients [33], data that fits the microscopical loss 
of interneurons. It was also found an inverse correlation 
between caudate volume in childhood and tic severity in 
adulthood [35]. Cortical thickness has also been measured 
comparing TS-affected children/adolescents with age- and 
sex-matched healthy controls, showing a cortical thinning 
most evident in the regions of the sensory and motor cortex. 
Thinning in these regions directly correlated with tic sever-
ity [36]. Cortical thinning was also found in other regions, 
including lateral orbitofrontal and dorsolateral cortex. This 
data could correlate with an increased vulnerability to psy-
chiatric comorbidities, such as OCD.

In one study, using functional magnetic resonance (fMRI), 
the spatiotemporal pattern of coactivation of areas within 
the motor cortex during tics was contrasted with that seen in 
healthy control subjects during matched, intentional move-
ments. The supplementary motor area (SMA) showed a sig-
nificant broader profile of cross-correlation to the motor cortex 
during tic rather than intentional movements, highlighting a 
potential importance of the SMA hyperactivity in tic genera-
tion [37]. In another study, tic behaviour was highly correlated 
with an increased activity in a set of areas, including not only 
SMA but also premotor, anterior cingulate, dorsolateral-rostral 
prefrontal, primary motor cortices, Broca’s area, insula, claus-
trum. Additionally, a fluorodeoxyglucose (FDG)-PET study 
reported differences within the connectivity within these areas 
and the basal ganglia (especially the ventral striatum) [38]. 
By distinguishing a frontoparietal network (likely involved in 
rapid and adaptative control of movements) and a cingulo-
opercular network (apparently significant for set maintenance), 
it was found that adolescents with TS had immature patterns 
of connectivity, particularly within the frontoparietal network; 
additionally, aberrant connections were also documented in 
brain regions of the frontoparietal network [39].

Deep brain stimulation (DBS) of centromedial thalamus 
and globus pallidus pars interna (GPi) have been tested in 
some randomized controlled trials (RCTs) of small cohorts 
of TS patients. Some of these RCTs reported a significant 
and long-term reduction of tic during active DBS compared 
to shame [40–42]. However, DBS outcomes vary substan-
tially across patients and reliable predictors of therapeutic 
responses have not been identified yet [43]. Studies reported 
that a structural connectivity of the site of stimulation in cen-
tromedial thalamus and GPi to the specific components of 
the frontostriatal, limbic and motor networks were correlated 
with tic improvement, thus suggesting that the connectivity 

profile of the stimulation site may be related to clinical out-
comes of DBS in tic-related disorders [44–46]. According 
to these previous studies, Johnson et al. [47], using tractog-
raphy maps, showed that DBS of the GPi may be associated 
with tic improvement following modulation of limbic, asso-
ciative networks and the efficiency was also correlated with 
a higher connectivity to caudate, thalamus and cerebellum, 
while modulation of sensorimotor and parieto-temporal-
occipital networks and a higher connectivity to putamen 
and cerebellum may be responsible of tic improvement fol-
lowing DBS of the centromedial thalamus. According to the 
authors, the stimulation of GPi may improve tics by decreas-
ing activity in downstream limbic and associative tic-related 
networks, while stimulation of centromedial thalamus may 
improve tics by directly disrupting local tic-related patho-
logical activity.

McCairn et al. [48], after obtaining a pharmacologic 
motor tic animal model by microinjecting a GABA-antag-
onist within the sensorimotor striatum: putamen, proposed 
the hypothesis that tics are generated by a dynamical process 
that involves an abnormal reciprocal interaction between 
cortex and basal ganglia, in which an abnormal dopamine 
burst represents a necessary condition for motor tic produc-
tion. It is conceivable that an abnormal dopamine efflux 
alters the typical selection processes implemented by the 
CSTCs loops of selecting intrinsic noise and inputs received 
by the system from cortical regions, making it overly sensi-
tive to the received signals so that spurious primary cortex 
activations result to be disinhibited.

In patients treated with DBS, both GPi and centromedial 
thalamus stimulation capacity to reduce tics were correlated 
with a higher connectivity of the stimulated areas to cerebel-
lum, suggesting the presence of an aberrant cerebellar cortex 
activity during tic production through dysinaptic link con-
necting the basal ganglia to the cerebellum [49]. These links 
are dysinaptic since it has been described the interposition of 
pontine nuclei between the subthalamic nucleus and the cer-
ebellar nuclei, and excitatory since most of the pontine neu-
rons projecting to the cerebellum are glutamatergic. Once 
activated, the cerebellum might feedback the basal ganglia 
and directly affect the descending motor pathways [50]. The 
augmented activity of the cerebellum may determine a fur-
ther increase of the sensitivity of the selection process within 
the basal ganglia-thalamo-cortical system and spurious acti-
vations of primary motor cortex may be selected more easily 
and develop into motor tics. Further studies are needed to 
prove this hypothesis and to prove an effective role of an 
abnormal cerebellar activity in tic production.

In the genesis of the abovedescribed anomalies within the 
CSTCs loops may be involved neuroinflammatory processes. 
Lennington et al. [51] compared basal ganglia transcriptome 
by RNA sequencing in the caudate and putamen of 9 TS with 
9 matched normal confronts, finding 309 down-regulated 
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and 822 upregulated genes in TS individuals. The 9 TS 
patients did not meet criteria for Pediatric Autoimmune 
Neuropsychiatric Disorder Associated with Streptococcal 
infection (PANDAS) or Pediatric Acute onset Neuropsychi-
atric Syndrome (PANS). However, in addition to expected 
evidence of metabolic alterations of striatal interneurons 
(FSINs and TANs) that may be linked to their death and 
dysfunction, they found a significant increase in immune 
and inflammatory transcripts that appear to be endogenous 
to the CNS. It remains unclear whether the interneurons 
death is secondary to neuroinflammation or neuroinflamma-
tion is caused by the interneuron’s death. An association of 
symptoms onset or exacerbation of tic disorders with acute 
infections has been documented [52]. Further studies are 
necessary to redeem the exact role of neuroinflammation in 
tic-related disorders.

Prepulse inhibition

Prepulse inhibition (PPI) of the startle reflex is a measure 
of inhibitory functions by which a weak sensory stimu-
lus (prepulse) inhibits the elicitation of a startle response 
caused by a sudden intense stimulus (pulse). It is viewed as 
an operational measure of a neural process called “sensori-
motor gating” by which unnecessary stimuli are eliminated 
(or “gated out”) from awareness, so that an individual can 
focus attention on the most salient aspects of the surround-
ing environment [53].

The startle reflex consists of a contraction of skeletal 
and facial muscles in response to a sudden intense stimulus 
that may be presented by across multiple modalities (visual, 
auditory or tactile). PPI is the normal suppression of the 
startle reflex that occurs when the intense startling stimulus 
is preceded by a relatively weak stimulus. In order to inhibit 
startle, the prepulse must precede the pulse by 30–500 ms 
[54]. The major advantage of the PPI of the startle reflex is 
that it can be studied across species, leading to translational 
research opportunities [53, 55, 56]. In humans, it is possible 
to evaluate the eyeblink component of the startle by using 
electromyography (EMG) of the orbicularis oculi muscle; in 
rats and mice, Stabilimeter Chamber measures the whole-
body flinch elicited by stimuli that are similar (or identical) 
to those used in humans [54] (Fig. 2).

Different theories about how information is processed 
have been formulated. One first theory affirmed that incident 
stimuli are processed in a sequential manner through a series 
of “stages” that occur at progressively higher sites in the 
central nervous system. Abnormalities of this process were 
conceptualized as potentially occurring at various stages 
resulting in a heterogenous spectrum of cognitive deficien-
cies and associated behaviours. For example, according to 
this theory, psychotic symptoms were viewed as a result of a 

deficit in early stages of information processing. Such deficit 
was thought to cause a cascade of unnecessary information 
at downstream stages that ultimately resulted in an abnormal 
cognitive integration [53].

The “stages” model has been increasingly challenged 
by an “integrationist” model that relies on neural networks 
theory: the processing of incident stimuli is operated not 
only by a filter action within the progressively higher sensi-
tive sites but also by the integration of a time-coordinated 
activity of neurons in multiple sites at different levels of the 
nervous system [57].

This integrated, multisite activity is thought to be fun-
damental for the “sensorimotor gating,” a neural process 
intended to help the organism regulating environmental 
inputs in order to allocate attentional resources to salient 
stimuli [58]. The specific characteristic of an individual’s 
gating process is thought as being plastic and influenced by a 
combination of genetic traits [59] and environmental factors 
such as neonatal insult [60] and social isolation [61] as well 
as toxic influences of neurochemical and hormonal milieu 
of the nervous system [62].

Studies have proved a PPI disruption in several psychiat-
ric disorders. PPI has been particularly valuable for studying 
the neurobiology of schizophrenia and related spectrum dis-
orders since gating deficit is an important feature of patho-
physiology of the disease and deficits in gating of cognitive 
and sensory information are particularly relevant clinical 
features of the disorder [59].

Different data suggest that CTSC loops are involved in 
the modulation of PPI: a loss of healthy neural communi-
cation between limbic and basal ganglia structures results 
in PPI deficits, underlining the existence of cortico-striato-
pallido-pontine (CSPP) circuits [63]. Manipulations of the 
hippocampus and basolateral amygdala, as well as dysfunc-
tions in the medial prefrontal cortex and the orbitofrontal 
cortex, can lead to changes in PPI. While it was originally 
thought that the hippocampus acts on PPI modulation via 
the nucleus accumbens, recent anatomical and functional 
data suggest that the efferent connections responsible for 
PPI disruption are directed from hippocampus to medial 
prefrontal cortex [64].

There is also evidence pointing out that dopamine recep-
tors within the striatum nucleus plays out an important 
role in PPI modulation: in preclinical studies, the activa-
tion of dopamine receptors by either direct agonist (such as 
apomorphine) and indirect agonist (such as amphetamine) 
leads to robust deficit of PPI [55]. In human, volunteers were 
tested PPI after administration of the D2 receptor antago-
nist (and probable D1 receptor partial agonist) bromocrip-
tine (1.25 mg), the receptor antagonist haloperidol (3 mg), 
and a combined treatment with the cited doses of the two 
drugs in a balanced double-blind protocol. In all cases, the 
tested prepulse-to-pulse interval was 120 ms. The baseline 
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startle response was not altered by any of the pharmaco-
logical treatments and PPI was observed to be appropriately 
dependent upon the prepulse intensity. In all conditions, bro-
mocriptine robustly reduced PPI. However, somewhat para-
doxically, the dopamine antagonist haloperidol also elicited 
a much smaller, albeit statistically significant, decrement in 
PPI [65]. A second study by the same group confirmed simi-
lar findings about bromocriptine effect on PPI but failed to 

replicate the effect of haloperidol [66]. Therefore, the halo-
peridol effect on PPI seems not to be reliable in humans. 
However, the most significant data that emerged in these 
two studies was that haloperidol is effective in antagonizing 
the PPI-disruptive effect of bromocriptine. The same result 
was also found in animals in another study [55]. Moreo-
ver, evidence suggests that GABAergic system participate 
in determining PPI. Using magnetoencephalography, Inui 

Fig. 2  Prepulse inhibition (PPI) 
is considered an operational 
measure of “sensorimotor gat-
ing” a neural process aimed to 
eliminate unnecessary stimuli 
from awareness. PPI can be 
measured through the inhibitory 
effect exercised on the startle 
reflex by a prepulse (admin-
istrated 30-500 ms before an 
intense stimulus). The intense 
stimulus and relative pre-
pulse may be presented across 
multiple modalities (visual, 
auditory or tactile). In humans, 
it is possible to evaluate the 
startle reflex by studying the 
eyeblink component of the 
startle throughout electro-
myography (EMG). The startle 
reflex can also be evaluated in 
rats and mice using stabilimeter 
chambers capable to measure 
the whole-body flinch elicited 
by intense stimulation

5844 Neurological Sciences (2022) 43:5839–5850



1 3

et al. [67] evaluated the inhibition on acoustic startle deter-
mined by weak stimuli presented at 10–800 ms before the 
startle, showing the existence of two distinct inhibition peak-
ing at approximately 20–60 ms and 600 ms that appear to 
reflect inhibitory post-synaptic potentials (IPSPs) of FSINs 
and cortical somatostatin-positive interneurons (Martinotti 
cells). In another study [68], the inhibition occurring at 
20–60 ms has been furtherly divided in two components, 
since the administration of diazepam enhances the inhibition 
at 10–20 ms, while the administration of baclofen enhances 
the inhibition at 40–50 ms. The fact that the short-latency 
component is elicited by diazepam suggests the involvement 
of  GABAA receptors, while the effect of the baclofen on 
the further component suggests the involvement of  GABAB 
receptors.

Prepulse inhibition in tic‑related disorders

Tics can be transiently suppressed by volitional effort or 
will. This concept has led to the hypothesis that tics result 
from a failure of motor systems’ tonic inhibition mecha-
nisms. It has also been hypothesized a deficit in mechanism 
of automatic inhibition [69]. The brain is subjected to a 
continuous flow from the external environment of potential 
triggers to specifical movements. These potential movements 
are automatically suppressed by a process non subjected to 
voluntary control [70].

In one study [71], volitional inhibition was evaluated by 
conditional stop signal task (CSST) and automatic inhibi-
tion by using the masked priming task (how the reaction 
time to imperative stimulus is affected by the presence of 
an unperceived priming cue), excluding deficits in the voli-
tional inhibition and outlining an altered automatic inhibi-
tion. This study suggests that intact volitional inhibition 
allows patients to voluntarily suppress their tics, while a 
lack or deficit in automatic inhibition is involved in the 
genesis of the tic disorder. PPI is an operational measure 
of sensorimotor gating, a process of central inhibition of 
unnecessary incident stimuli. It can be considered an auto-
matic process, apart from a volitional component corre-
lated with sensitive attention. At the same time, a lack or 
deficit in automatic inhibition is involved in the genesis of 
tic-related disorders. Thus, it is conceivable that the patho-
logical process responsible for the loss of sensorimotor 
gating in tic disorders may determine the genesis of the 
premonitory urge and symptoms.

Studies showed that TS patients exhibit a blunted PPI. In 
a first study, utilizing supraorbital electrical nerve stimula-
tion to produce adequate blink responses and measuring the 
decrease in amplitude resulting from electric prestimuli just 
above sensory threshold, 7 boys comorbid for ADHD and 
tic disorder had significantly reduced PPI compared to 14 

screened controls and seven boys with ADHD alone [72]. A 
second study applied a “fMRI friendly” protocol to detect 
PPI in TS children: bilateral eyeblink PPI was tested using 
chin air puffs to elicit startle and prepuffs to the dorsal hand 
surface as inhibiting stimuli; compared to control subjects, 
TS children exhibited comparable startle magnitude and 
habituation, but significantly reduced PPI after prepuffs [56]. 
Following a similar protocol to evaluate PPI inhibition, in 
another study, whole-brain fMRI was taken in 17 TS adults 
and 16 healthy controls in order to evaluate the neural cor-
relates of PPI in adult TS subjects. A normal level of PPI 
in healthy controls and a considerably lower in TS patients 
were observed, even if the difference did not reach statis-
tical significance. In healthy subjects, PPI was associated 
with increased activity in multiple brain regions and group 
comparison identified 9 regions where brain activity during 
PPI differed significantly between TS and healthy controls; 
among these 9 regions, regression analysis demonstrated a 
significant positive linear relationship between the current 
tic severity (measured by Yale Global Tic Severity Scale) 
and the activation of left caudate (while the right caudate 
only approached statistical significance) [73]. This study 
supports the abovementioned role of an abnormal caudate 
nucleus functioning in the development of tic disorders and 
suggests that such functioning could alter sensorimotor gat-
ing mechanisms.

PPI is not the only means of investigating sensorimotor 
gating. Another mean is assessing sensorimotor gating by 
event-related potentials (ERPs) paradigms utilizing paired 
stimuli to test habituation, strategy that grants a remarkable 
temporal precision. Such type of studies has consistently 
identified a diminished amplitude of the contingent nega-
tive variation (CNV) component, which can be considered 
as a marker of cognitive anticipation for a forthcoming sen-
sory event, in both adults and children affected by TS [74]. 
Additionally, patients with more severe tics have lower CNV 
amplitudes, indicating a reduced pre-conscious capacity to 
anticipate environmental stimuli [75].

There is also a report affirming that TS patients endorse 
difficulties in sensory gating processes, specifically the 
ability to modulate stimulus intensity preventing perceptual 
inundation and the ability to focus attention or prevent dis-
tractibility. It was also assessed a low threshold of percep-
tion causing over-inclusion and distractibility, a vulnerability 
to perceptual and attentional anomalies during periods of 
fatigue and stress [76]. Another work reported complemen-
tary findings but also reported a heightened sensitivity to 
sensory stimulation in 80% of the tested TS patients that 
was not accompanied by significant differences of tactile 
and olfactory thresholds compared to control subjects. The 
authors concluded that subjective sensitivity differences in 
TS patients reflected altered central information processing 
rather than enhanced peripheral sensory detection [77].
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Turning to internal stimuli, it remains uncertain whether 
TS sensory gating dysfunction affects interoceptive stimuli. 
In one study among 12 adult TS subjects (without psychi-
atric comorbidities) and 12 healthy controls, magnetoen-
cephalography was used to study volitional finger move-
ment in two task conditions: a self-paced and an externally 
triggered task. If motor field amplitudes did not differ 
between the two groups, in both tasks, motor field peak 
amplitudes were increased in TS patients. Moreover, larger 
motor evoked field amplitudes during self-paced move-
ments were inversely correlated with motor tic frequency 
and severity, suggesting the presence of an overflow of 
interoceptive stimuli determined by an altered subcortical 
gating [78]. Further experiments are needed to confirm this 
interpretation.

Tic therapies and prepulse inhibition

As mentioned, effective sites for DBS in TS patients are 
GPi and centromedial thalamus. One study demonstrated 
that high frequency DBS of the thalamic centromedian 
parafascicular nucleus and of the entopeduncular nucleus 
(EPN) in mice (EPN can be considered a rodent analog 
of the human GPi) prevented the PPI disruptive effects of 
apomorphine, a dopaminergic agonist [79]. However, the 
effect of DBS on PPI in humans has not been proved yet. 
In a recent study, PPI acoustic startle reflex was measured 
in TS patients, treated with DBS of the centromedian and 
ventro-oral internal thalamic nucleus and the anterior limb 
of internal capsule-nucleus accumbens area respectively, 
and aged-/gender-matched healthy controls. PPI of the 
DBS groups was measured in randomized order in ON 
and OFF stimulation condition. No significant differences 
were found in PPI (%) of patients with TS between ON and 
OFF condition. However, if PPI levels were significantly 
reduced in TS patients in the ON condition compared to 
heathy controls, no significant difference was found in PPI 
between TS in the OFF condition compared to healthy 
controls [80].

Among all of TS therapeutics to date, Habit Rever-
sal Therapy, also termed as Comprehensive Behavioural 
Interventions for Tics (CBIT), has been proved to have a 
comparable, if not better, efficacy to other known tic medi-
cations in both TS patients [81]. CBIT relates heavily on 
the ability to initiate an appropriate preventative response 
after detecting the premonitory urge. This process is very 
similar to that used in cognitive and behavioural therapy 
(CBT) where individuals identify an event (such as a delu-
sion, obsession) and initiate a cognitive and behavioural 
process in order to interrupt the consequences of the event 
(such as avoidance, compulsion). The purpose is to ren-
der over time the volitional components of this inhibitory 

process more automatic, in other words to shift the regula-
tion of this process from cortical to subcortical circuitries. 
CBT is used in schizophrenia, where PPI disruption has 
been assessed as a predictor of the therapeutic impact of 
CBT [82]. Therefore, it is possible to assert that PPI could 
represent a therapeutic impact predictor also in CBIT in 
tic-related disorders.

Finally, the sensorimotor gating intrinsic to tic-
related disorders suggests the possibility of an enhance-
ment of the CBIT approach by administration of “pro-
cognitive therapies” [83] for augmenting sensorimotor 
gating processes that would potentiate the ability to 
assert volitional control over semiautomatic motor 
response. It has been proved that, especially in individu-
als with low levels of PPI, different drugs can enhance 
PPI, such as atypical antipsychotics, the cathechol-
O-methyl-transferase inhibitors, tolcapone, the low 
potency NMDA antagonist, memantine.

After a study showed that 5alpha-reductase inhibitor 
finasteride could reduce tic severity in 10 adult TS male 
patients [84], PPI was utilized to explicate such result: in 
rats finasteride could reduce the PPI disruptive effect of 
dopaminergic agonists after systemic, intraventricular and 
intracerebral administration. However, the administration 
of the same drug in other brain regions failed to replicate 
the same result, thus suggesting that the finasteride effect 
on PPI reflects the action on the cells of the ventral stria-
tum [85]. This study suggested that PPI may be considered 
as an effective marker to test the effectiveness of treatment 
in tic-related disorders.

Using a D1CT-7 mice, a well-characterised animal 
model of TS, it has been proven that acute environmental 
stress is capable to exacerbate tic-like responses and 
cause sensorimotor gating deficits (measured by PPI). 
These phenomena were associated with an increase in 
plasma corticosterone as well as cortical neurosteroids, 
such as allopregnanolone. The effects of allopregnanolone 
on the GABA-A receptors are antagonized by its 3beta-
epimer, isoallopregnanolone [86]. In a recent study the 
administration of isoallopregnanolone in D1CT-7 mice not 
only produced a significant reduction in tic-like behaviours 
but also significantly reversed the PPI disruptive effect 
produced by stress [87]. Given recent evidence that 
positive allosteric modulators of GABA-A receptors 
containing alpha6 subunities oppose the behavioural 
effects of dopamine, in D1CT-7 mice was also tested of 
DK-I-56–1, a highly selective positive allosteric modulator 
of GABA-A receptors containing alpha6-subunities. DK-I-
56–1 significantly reduced tic-like behaviours and PPI 
deficit in the transgenic mice; DK-I-56–1 also prevented 
the exacerbation of spontaneous eyeblink reflex induced 
by potent dopamine D1 receptor antagonist SKF 82,958, 
a proxy for tic-like responses [88].
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Conclusions

The precise pathophysiologic mechanism of tic-related 
disorders remains unclear, but a CSTCs circuit dysfunction 
is likely to be involved. It has been documented a 
significant reduction in interneuronal population in the 
striatum associated with an aberrant neurotransmitter 
functioning, including dopamine and GABA. Such features 
on a microscopic scale coexist on a macroscopic scale with 
network abnormalities within CSTCs loops documented 
by volumetric and functional MRI studies, PET studies 
and studies that associated DBS with tractography maps. 
The dysfunction of striatal interneurons and the network 
abnormalities observed within the CSTCs loops may be 
considered candidate mechanistic link in tic-related disorder 
pathophysiology.

Tic-related disorders may be also characterized by a 
sensorimotor gating deficit, which may be determined by the 
described anomalies within the CSTC loops. Sensorimotor 
gating is the suppression of irrelevant information to ensure 
the ability to focus on relevant stimuli; it can be measured 
using prepulse inhibition (PPI) of the startle reflex. If 
sensorimotor gating is truly impaired in tic-related disorders, 
PPI and others indirect indicators of sensorimotor gating may 
become a marker to test the effectiveness of actual and future 
treatments.

Notably, a GABAergic interneurons dysfunction is 
postulated to underlie several neurodevelopmental disorders, 
including OCD, autism and schizophrenia, all of which exhibit 
impaired sensorimotor gating [89]. Further research is needed 
to (1) assess the effective presence of a sensorimotor gating 
deficit in tic-related disorders, preferentially in studies made in 
human subjects, (2) elucidate the effective pathophysiological 
role of GABAergic interneurons and altered network 
connectivity in determining a deficit in sensorimotor gating 
processes and (3) evaluate the effectiveness of indirect markers 
of sensorimotor gating process, such as PPI, as indicators to 
test treatment effectiveness in tic-related disorders.
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