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Abstract

Background: Existing tools for multiple-sequence alignment focus on aligning protein sequence
or protein-coding DNA sequence, and are often based on extensions to Needleman-Wunsch-like
pairwise alignment methods. We introduce a new tool, Sigma, with a new algorithm and scoring
scheme designed specifically for non-coding DNA sequence. This problem acquires importance
with the increasing number of published sequences of closely-related species. In particular, studies
of gene regulation seek to take advantage of comparative genomics, and recent algorithms for
finding regulatory sites in phylogenetically-related intergenic sequence require alignment as a
preprocessing step. Much can also be learned about evolution from intergenic DNA, which tends
to evolve faster than coding DNA. Sigma uses a strategy of seeking the best possible gapless local
alignments (a strategy earlier used by DiAlign), at each step making the best possible alignment
consistent with existing alignments, and scores the significance of the alignment based on the
lengths of the aligned fragments and a background model which may be supplied or estimated from
an auxiliary file of intergenic DNA.

Results: Comparative tests of sigma with five earlier algorithms on synthetic data generated to
mimic real data show excellent performance, with Sigma balancing high "sensitivity" (more bases
aligned) with effective filtering of "incorrect” alignments. With real data, while "correctness" can't
be directly quantified for the alignment, running the PhyloGibbs motif finder on pre-aligned
sequence suggests that Sigma's alignments are superior.

Conclusion: By taking into account the peculiarities of non-coding DNA, Sigma fills a gap in the
toolbox of bioinformatics.

Background

Alignment of homologous biological sequence has long
been a central problem in bioinformatics, dating back to
the 1970s with the Needleman-Wunsch algorithm for
pairwise global alignment [1]. The related Smith-Water-
man algorithm [2] dealt with the case of finding pairwise
local homology, and these algorithms form the basis of
most methods in use today. The general approach for

multiple alignment is to build it up up from several pair-
wise alignments. Many tools, like ClustalW [3] and MLa-
gan [4], align entire sequences globally pairwise (and may
require a phylogenetic tree as input to decide in what
order to do the pairwise alignments). An alternative
approach, pioneered by DiAlign [5,6], is to construct a
global multiple alignment from multiple gapless local
alignments. This requires scoring the significance of local
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alignments (to decide in what order to make them), and
also a consistency check for each local alignment after the
first (the assumption being that the sequences being
aligned have not been "shuffled" and aligned pieces are
syntenous). More sophisticated algorithms, such as T-Cof-
fee [7] and Align-m [8], have since been developed.

All these tools are designed for alignment of proteins or
protein-coding DNA. Thus, they use well-established sub-
stitution matrices, and perhaps higher-level structural
information, when dealing with amino acids, but tend to
assume that all nucleotides are alike - or that a substitu-
tion matrix (usually derived from coding DNA) ade-
quately describes the differences - when dealing with
DNA, or at best use codon translations - inappropriate for
non-coding DNA - to search for "anchors". Moreover,
they (with the notable exception of DiAlign) tend to
penalise insertions and deletions rather severely, which
may again be ill-advised for non-coding DNA. Thus, on
the one hand, much of the approach of sophisticated pro-
tein-alignment algorithms is unnecessary or inappropri-
ate for DNA, while on the other hand, some simpler
considerations that apply to non-coding DNA are not
used.

A need for tuning an alignment program to non-coding
DNA has probably not been felt because it mutates much
faster than coding sequence and, often, has diverged too
far for any significant homology to survive. Till recently,
there were not many sequences of closely-related organ-
isms available. That situation has now changed dramati-
cally. For example, the regulatory regions of five fully-
sequenced sensu stricto species of yeast Saccharomyces cere-
visiae, S. paradoxus, S. bayanus, S. mikatae, S. kudriavzveii
[9,10] are substantially conserved; many related species of
fruitfly, starting with Drosophila melanogaster and D. pseu-
doobscura, have been fully or partially sequenced; and
mammalian genomes exhibit much homology with one
another (and often even with non-mammalian verte-
brates) in their non-coding DNA. Accurately aligning
orthologous noncoding DNA is now important. Phylo-
Gibbs, a Gibbs sampler that we recently developed for
phylogenetically related sequence [11,12], uses multiple
alignment of input sequence as a preprocessing step (this
was a major motivation for the present work), as do two
other such recent programs, PhyMe [13] and EMnEM
[14]. (These programs have respectively preferred DiAlign,
Lagan and ClustalW as their alignment tools, but these
tools are interchangeable apart from some minor, easily-
altered details of file format.) Other studies have used
"phylogenetic footprinting” (for example, [9,15,16]), that
is, assuming that functional sites are concentrated in con-
served regions as reported by multiple alignment pro-
grams.

http://www.biomedcentral.com/1471-2105/7/143

Comparative genomics also tells us a lot about evolution,
and non-coding DNA is of peculiar importance here pre-
cisely because it evolves so much faster than genes them-
selves. It is likely that the major differences in mammals,
for example, or in two species of fruitfly or yeast, arise not
so much from different genes as from different regulation
of essentially the same genes. Moreover, there is probably
new and unexpected information buried in the vast quan-
tities of non-coding DNA that mammalian genomes con-
tain. To take into account the peculiarities of this
problem, Sigma ("Simple greedy multiple alignment"),
the tool presented here, uses a correlated "background
model" extracted from actual DNA. Its performance on
synthetic data generated from such models is a significant
improvement over existing programs. Like DiAlign, it
imposes no gap penalty, so sequences that are only partly
conserved may still be aligned. Furthermore, its algorithm
and scoring are such that the significance of later align-
ments is increased by the presence of earlier alignments,
so that adding more related species actually makes align-
ment easier. Philosophically it is rather close to DiAlign,
but it is a new approach whose algorithm and scoring are
unbiased by earlier efforts' focus on proteins.

Implementation

The core idea of Sigma is the same as that of DiAlign: it
builds up a global alignment from significant local (pair-
wise) gapless alignments and doesn't worry about gaps in
the global alignment.

Since sufficiently short local alignments always exist, it is
important to score them correctly. Sigma uses an estimate
of the probability of seeing such an alignment between
random sequences of the same lengths as the given
sequences (which is also done, a bit differently, by version
2 of DiAlign). Moreover, Sigma accounts for correlations
naturally occurring in DNA sequence, so that one is more
likely to align rarely-occurring strings and less likely to
align commonly-occurring strings such as poly-A
stretches. We demonstrate the practical importance of this
in the section on synthetic data.

DiAlign builds a list of possible local alignments ("diago-
nals") in one pass and then performs a recursively-deter-
mined consistent subset of this list in a later pass. In
contrast, Sigma always immediately performs the best
available local alignment consistent with previous align-
ments. This improves the sensitivity of Sigma: the signifi-
cance of later, "smaller" alignments may be increased by
the constraints from previously-performed alignments.

Sigma operates, not on the raw input sequence, but on a
set of "sequence fragments" that are labelled in such a way
that inconsistent alignments can instantly be rejected. Ini-
tially, each input sequence is its own fragment with its
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Alignment of sequence fragments. Two sequences, initially in their own sequence fragments and labelled "0.", are locally
aligned: the aligned piece goes into one fragment with two sequence labels, and the remaining pieces go into their own frag-
ments. The sequence labels increase from left to right on any sequence, and are used to maintain consistency in alignments.

own label, and there are no consistency conditions. When
a local alignment is performed, the aligned regions of two
fragments are merged into one single fragment, while the
remaining regions remain as their own fragments (figure
1). At each iteration, the best available local alignments
are made, and then the fragment labels and consistency
conditions are updated to prevent inconsistent align-
ments. The iteration terminates when there are no possi-
ble local alignments above the specified significance
threshold.

The algorithm: building a global alignment out of local
alignments

Each "sequence fragment" contains sequence belonging
to one input sequence, or locally-aligned sequence
belonging to more than one input sequence. The
sequence fragment is a data structure that contains

e A list of the sequences {S} that it belongs to. (Initially,
each input sequence is an entire sequence fragment and
each fragment belongs to exactly one input sequence.)

e A label L, for each sequence s in {S}, that identifies it on
that sequence. (That is, each sequence fragment always
has a unique value, for each sequence s in {S}, of the pair
(s, Ly)). The labels are strings representing real numbers
between 0 and 0.3, and are in increasing order as one
moves along any particular sequence.

e For each sequence s in {S}, pointers to the previous and
next fragments in s.

e For every sequence s' not in {S}, "limits" L,(s') and L,(s")
for the left-most and right-most fragments in s' with which
it may be aligned.

The algorithm is:

e Initially there is one fragment for each input sequence,
containing the entire sequence, with predecessor and suc-
cessor elements set to NULL, the label set to 0., and with-
out limits on alignment (any fragment may be aligned
with any other).

e Each pairwise alignment operates on two sequence frag-
ments f;and f;, whose sequence sets {S};and {S},are dis-
joint, and which fall within each other's "alignment
limits". A possible alignment is an ungapped local align-
ment between the corresponding sequence stretches.

¢ A list of all possible pairwise alignments is made, and
sorted and performed in order of significance. Alignments
inconsistent with prior alignments are omitted.

e When an alignment is performed, the aligned stretch of
sequence is broken into its own fragment, resulting in five
new fragments (figure 1). These fragments are re-labelled
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seqg 7 ACGAGCTG | TAGACTCGAGCTGAC ACAGCTGCCACGTACACGACCAAAT

seqg 2 TACAGTCA|TAGACTCGAGCTGAC CTAG|CTAGCGATC TTCAATAGAGATTA

seg 7 AACAGTGACCACACTAGCATAAACACTATCAT CTAGCGATC AACAGACGAGCTA

(a)

seq 7z |ACGAGCTG 0.0 ) 0.1|) |ACAGCTGCCACGTACACGACCAAAT 0.2 |
TAGACTCGAGCTGAC

seg 2 \TACAGTCA 0.0 \) 0.1 ) ‘CTACTAGCGATCTTCAATAGAGATTA o.z\

seg 3 |AACAGTGACCACACTAGCATAAACACTATCAT CTAGCGATC AACAGACGAGCTA o. |

(b)

seg z |ACGAGCTG o.0 |} 0.1|) |ACAGCTGCCACGTACACGACCAAAT 0.2
TAGACTCGAGCTGAC
seg > |TACAGTCA 0.0 |) 0.1 () [CTA o.20)) 0.21 ) TTCAATAGAGATTA 0.22 |
CTAGCGATC
seq 3 | AACAGTGACCACACTAGCATAAACACTATCAT 0.0 |) 0.1 )| AACAGACGAGCTA 0.2 |

(c)
Figure 2

Enforcing consistency of multiple alignments. When aligning more than two sequences, care must be taken that new
local alignments are compatible with existing alignments. () If the two alignments in shaded blocks are already made, the
underlined sequence fragments cannot be aligned. (b) The sequence fragments when one local alignment has already been
made, and the next (dotted lines) is about to be made. (c) The sequence fragments after the second local alignment has been
made. At each stage, each sequence fragment has limits on what other fragments it can be aligned with in every other
sequence. For example, in (b), the fragment 0.2 in seq 2 can only be aligned with fragments > 0.1 in seq I, but the fragment 0.
in seq 3 can be aligned with any part of seq |. After the local alignment is made in (c), the frag 0.1 in seq 3 inherits the more
stringent limit from its paired frag in seq 2: it can only be aligned with seq | > 0.1, and this limit is moreover "propagated" right
to seq 3 frag 0.2. Likewise, the "right-hand" limits (none in this case) are propagated to seq 3 frag 0.0 which means, in this case,
that seq 3 frag 0.0 can be aligned to any fragment in seq |.

by appending the single digits 0, 1, and 2 to all labels on, ¢ This is done repeatedly until there are no more possible
respectively, the unaligned pieces on the left, the aligned  alignments within the specified significance limit.
fragment and the unaligned pieces on the right: see figure

1. Then the allowed alignment limits are updated, which e The sequence fragment set is then converted into the
can be done easily in linear time (see below, and figure 2).  desired output format and printed.
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Thus, the sequence labels and limits enforce the consist-
ency conditions continuously: each fragment has a
unique label for each sequence it belongs to, and fragment
A can only be aligned to fragment B if (a) they belong to
no sequences in common and (b) for each sequence S to
which fragment B belongs, the label L(S) is within the lim-
its L)(S), L,(S) for that sequence on fragment A (and vice
versa). The updating of the alignment limits is done by
"sweeps" from the newly-aligned fragment f,.,,. Let {57}
is a part of, and {S'} the
complement of {S}, that is, the set of sequences that f,,,,

be the set of sequences that f,

new

is not a part of. ({S;} is the union of the sequence sets of
the two fragments that were aligned, which were necessar-
ily disjoint.) For its most stringent left limit on sequence
S' € {S'}, fragment f,.,, considers the left limits on its
immediate left neighbour on each sequence S € {S} that
itis a part of, and takes the most stringent of these. Say this

o vie gl :
limiting fragment on sequence S'is fg . For this fragment,
the newly-aligned fragment f, ., is the most stringent right

limit for each sequence S € {S;}, and this applies also to

every fragment to the left of fé (unless a more stringent

limit already exists). This is illustrated in figure 2. So the
new limits on the left can be updated in linear time; like-
wise for the new limits on the right.

When no further local alignments are possible, the result
is a set of aligned fragments that can be "assembled" in
linear time into a gapped alignment of the original
sequences.

The apparent drawback here is that if, say, sequences S, S,
and S, are being aligned, there may be a long match
between S, and S;; but S, may be fragmented due to earlier
alignments with S;. So it may be that the match between
S, and S; will take two or three steps (one fragment at a
time) rather than one step. But this is often a gain: because
we are now comparing fragments and not entire
sequences, the length-dependent significance condition
derived in the next section may be much improved by the
reduced lengths involved. Thus, the fragmented matches
will likely stay as significant as, or even be more signifi-
cant than, the unfragmented match. Indeed, a match
between S, and S; which would not be significant with an
unfragmented sequence S, may now become significant.
We show in the section on synthetic data that when a ran-
dom background model is assumed, Sigma does, in fact,
typically align a much greater quantity of sequence than
DiAlign for similar significance cutoffs, without suffering
in terms of erroneous alignments.

http://www.biomedcentral.com/1471-2105/7/143

Scoring a local alignment

Let a local alignment of two strings S; and S, (respectively
of lengths L, and L,) have a length ¢, and let there be m
mismatches in this substring. The score we use is simply
the probability of seeing such an alignment in two ran-
dom sequences of the given lengths (smaller is better).
DiAlign 2 [6] does this too, but somewhat differently.

Let's say p is the probability of two arbitrary strings of
length € (drawn from the same background model)
matching to the same degree as the alignment we're con-
sidering: that is, having the same number of matching
bases, with the bases having similar background probabil-
ities. The value of p is derived below. What we need is the
probability of such an alignment appearing anywhere in
two sequences of lengths L, and L,. The local alignment is
made only if this probability is smaller than a predefined
threshold x (by default 0.02).

The probability of such an alignment not occurringis 1 - p
for each possible pair of subsequences of length €. There
are L, - € + 1 such subsequences in sequence S;and L, - €
+ 11in S,. Thus, the probability of such a match occurring
nowhere is

P(no random matches) = (1- p)(Ll_“l)(LZ‘“l) (1)

(this is of course not exact since these probabilities are not
really independent, but it is a good assumption). The
probability of at least one random match of this quality
occurring is

P(random match) =1-(1- p)(Ll_“l)(L?_“l)
=p(L —(+1)(Ly =1 +1) (2)
assuming p is small. If p is large, the above will be an over-

estimate and the match will be rejected if the cutoff
threshold x is small, as it is by default.

DiAlign 2 [6] uses a weight function (-log p - K) which is
the negative log of the above expression, but says that "K
is a constant that depends on the sequence length"
whereas for us it depends separately on both lengths L, and
L, and also on the length € of the local alignment. Also,
Liand L, for us are not the lengths of the original
sequences but of the fragments presently being aligned,
which may be much shorter, thus greatly improving the
significance of a match, as noted in the previous section.

To calculate p, we use the product, over each matching
base, of the background probability of that base, which is
preferably a conditional probability reflecting dinucleotide
counts in actual sequence. This is important since dinucle-
otide correlations are known to be significant in DNA,
and vary from one species to another. We denote this by
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Table I: Results on synthetic yeast-like data. Performance of various multiple sequence alignment programs on synthetic data
generated with dinucleotide correlations that mimic actual yeast genomic data. q is the "proximity" of the species to their common
ancestor, ie the probability that a given base is conserved from its common ancestor. This means that q2 is the conservation rate of
bases in any pair of descendants. N, is the number of bases correctly aligned. N_is the number of bases incorrectly aligned. Each data
set consisted of 10 sets each containing N, sequences, each 1000 bases long, so the number of bases is I0000N;. Sen is the sensitivity, ie
the ratio of number of bases correctly aligned to total number of bases, N,/(10000N,). Er is the error rate, N/(N, + N_.). sigma+
indicates sigma with a background model incorporating dinucleotide correlations. sigma— indicates sigma with an uncorrelated

background model.

q=0.35 q =045 q=0.55 q=0.65
No embedded WM's

N, Prog N, N. Sen Er N, N. Sen Er N, N. Sen Er N, N. Sen Er
3 sigma+ 0 0 0.00 N/A 166 0 0.0l 0.00 3210 0 0.1l 0.00 28755 0 0.96 0.00
sigma- 0 0 0.00 N/A 761 0 0.03 0.00 10737 0 036 0.00 29606 0 0.99 0.00
dialign 0 0 0.00 N/A 266 0 0.03 0.00 854 0 0.04 0.00 9lI5 0 0.30 0.00
alignm 320 136 0.0l 030 6009 846 020 0.12 22710 1083 0.76 0.05 28258 434 0.94 0.02
clustalw 15244 14756 0.51 049 25659  434| 086 0.14 28959 1041 097 0.03 29779 221 099 0.0l
mlagan 13691 16309 0.46 054 24766 5234 083 0.17 29596 404 099 0.01 30000 0 1.00 0.00
tcoffee 3781 26219 0.13 087 15253 14747 051 049 26542 3458 0.88 0.12 29759 241 0.99 0.0l
6 sigma+ 74 0 0.00 0.00 334 0 0.0l 0.00 27765 24 046 0.00 57820 0 0.96 0.00
sigma - 74 112 0.00 0.60 590 0 0.0l 0.00 42882 40 0.71 0.00 58948 0 0.98 0.00
dialign 66 158 0.00 0.71 604 176 0.0l 023 7364 114 0.12 0.02 30871l 0 0.51 0.00
alignm 0 0 000 N/A 7192 123 0.12 0.02 53534 978 0.89 002 59326 222 0.99 0.00
clustalw 29878 30122 0.50 0.50 52295 7705 0.87 0.13 57712 2288 096 0.04 59580 420 099 0.0l
mlagan 17411 42589 0.29 071 48105 11895 080 020 58736 1264 098 0.02 60000 0 1.00 0.00
tcoffee 13215 46785 0.22 0.78 41965 18035 0.70 030 58084 1916 097 0.03 59925 75 1.00 0.00
9 sigma+ 0 0 0.00 N/A 597 0 0.0l 0.00 41873 40 047 0.00 87769 0 0.98 0.00
sigma - 160 64 000 029 2577 162 0.03 0.06 63579 228 0.71 0.00 88764 0 0.99 0.00
dialign 78 264 0.00 0.77 1045 228 0.0l 0.18 12162 176 0.14 0.0l 54753 0 0.61 0.00
alignm 44 159 0.00 0.78 29033 460 032 0.02 83545 960 093 0.01 89261 330 0.99 0.00
clustalw 52761 37239 0.59 041 79733 10267 0.89 0.1l 86758 3242 096 0.04 89429 571 099 0.0l
mlagan 16445 73555 0.18 0.82 68421 21579 076 024 88828 1172 0.99 0.0l 90000 0 1.00 0.00
tcoffee 27005 62995 030 0.70 67009 22991 0.74 0.26 88534 1466 098 0.02 89955 45 1.00 0.00

Py For example, for a string "ACgCAcA" where the base
preceding this string was T, we use

Pog(ACSCACA) = p(A|T)p(C[A)p(C|G)p(AIC)p(A[C)

skipping the factors for the lowercase letters; this is the
background probability of this base pattern, with allowed
mismatches at the same positions, occurring in actual
sequence. (Three clarifications are needed here. First, for a
base whose predecessor is a mismatched base, the geo-
metric mean of the two conditional probabilities corre-
sponding to the mismatches is used. Second, strictly
speaking one should perhaps not use conditional proba-
bilities for such bases at all; it is done only for efficiency
reasons (the values are pre-computed and stored). Third,
already-aligned sequence fragments may contain "inter-
nal" mismatches; presently, any subsequent base aligned
with these is automatically treated as a mismatch. There is
scope for improvement here.)

Ideally, the dinucleotide counts are taken from an auxil-
iary file given on the command-line. If none is given,

dinucleotide counts are extracted from the input file itself,
or optionally not used.

Now, the positions of the m mismatches is really arbitrary:
we should multiply the above probability by the number
of ways m mismatches can be chosen from € bases. Thus,
we have an additional factor of the binomial coefficient

[ ] and our final significance expression is
m

P(random match) = [ fn ]pbg(Ll —0+1) (L, = £ +1). (3)
If this is exceeds the threshold x, the alignment is rejected.
(Though one may imagine that x = 1 should cause all local
alignments to be accepted, this does not happen because
the approximation in equation (2) fails. Such high values
of x are not recommended.) DiAlign's significance param-
eter, given by the -thr commandline option, is analogous
to - logx.
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Table 2: More results on synthetic yeast-like data. Same as Table |, except that the sequences have five embedded motifs (drawn from
weight matrices that had 80% "polarisation™); this better mimics real data and also improves the performance of all programs.

q=0.35 q =045 q=0.55 q=0.65
5 embedded WM's
N, Prog N, N. Sen Er N, N. Sen Er N, N. Sen Er N, N. Sen Er

3 sigma+ 0 0 0.00 N/A 0 0 0.00 N/A 13266 0 044 0.00 29352 0 0.98 0.00
sigma- 0 0 0.00 N/A 456 0 0.02 0.00 19028 0 0.63 0.00 29274 0 0.98 0.00
dialign 78 0 0.03 0.00 60 0 0.02 0.00 2639 0 009 0.00 11383 40 038 0.00
alignm 3067 506 0.10 0.14 11389 2153 038 0.16 24496 1217 082 0.05 28687 305 096 0.0l
clustalw 20814 9186 0.69 031 26730 3270 0.89 0.1l 2934| 659 098 002 29878 122 1.00 0.00
mlagan 17160 12840 0.57 043 26930 3070 090 0.10 29716 284 099 0.0l 30000 0 1.00 0.00
tcoffee 10421 19579 035 0.5 20548 9452 068 032 28129 1871 094 006 29887 113 1.00 0.00

6 sigma+ 0 0 0.00 N/A 1625 0 0.03 0.00 36055 28 060 0.00 58596 0 0.98 0.00
sigma- 452 42 0.0l 0.09 5984 0 0.10 0.00 47264 26 0.79 0.00 58876 0 0.98 0.00
dialign 510 144 0.0l 0.22 1719 74 0.03 0.04 10250 0 0.17 0.00 33979 0 0.57 0.00
alignm 3893 181 0.06 0.04 28300 1363 047 0.05 54487 1077 091 0.02 59496 170 0.99 0.00
clustalw 42116 17884 0.70 030 53797 6203 090 0.10 58316 1684 097 0.03 5%I13 387 099 0.0l
mlagan 29458 30542 049 051 53833 6167 090 0.10 59427 573 099 0.0 60000 0 1.00 0.00
tcoffee 25878 34122 043 0.57 47767 12233 0.80 0.20 58708 1292 098 0.02 59975 25 1.00 0.00

9 sigma+ 40 30 0.00 043 2300 0 0.03 0.00 56847 20 0.63 0.00 87436 0 0.97 0.00
sigma- 322 30 0.00 0.09 5805 0 0.06 0.00 69821 120 078 0.00 88775 0 0.99 0.00
dialign 450 80 0.0l 0.15 2844 106 0.03 0.04 20179 0 022 0.00 59400 0 0.66 0.00
alignm 10165 652 0.1l 0.06 60374 2420 0.67 0.04 85011 933 094 00l 89651 201 1.00 0.00
clustalw 62461 27539 0.69 031 83233 6767 092 008 86738 3262 096 0.04 89167 833 099 0.0l
mlagan 33857 56143 038 062 81225 8775 090 0.10 88869 1131 099 0.0l 90000 0 1.00 0.00
tcoffee 43416 46584 048 0.52 76928 13072 0.85 0.15 89240 760 099 0.0l 89990 10 1.00 0.00

Early versions of Sigma experimented with "mismatch
penalties" for mismatched bases (in the spirit of substitu-
tion matrices in Needleman-Wunsch-type algorithms):
otherwise two random sequences can have arbitrarily long
matches measured by matching bases alone. But the
"entropy correction" for mismatches given by the bino-
mial coefficient solves this problem more cleanly.

Unlike DiAlign, Sigma does not give additional weight to
alignments that extend across multiple (more than two)
sequences. This would be easy to implement but seems
unnecessary.

Results and discussion

Speed

The time-complexity of the algorithm is hard to estimate
exactly, but the major limiting factor is the pairwise local
alignment, which is a Smith-Waterman-like dynamic-pro-
gramming algorithm of O(L,L,) where L,, L, are the
lengths of the two sequence fragments being aligned. Each
pass, moreover, aligns every pair of available sequence
fragments. The first pass thus takes O(L2N2) time for N
sequences of length L. Subsequent passes, however, align
a progressively larger number of sequence fragments that
grow shorter in length (decreasing L, increasing N); the
details are quite dependent on the level of conservation in
the sequences being aligned, and the total number of

passes would depend on L and N in some way, but
O(LrN4) with p and ¢ not much larger than 2, seems to
describe the overall time complexity in general for L and
N not too large. The data structure is such that the consist-
ency conditions can be updated at each iteration in linear
time, O(LN). The "gaps" can be "inserted" into the
sequence, prior to output, in linear time too.

An improvement in the pairwise local alignment algo-
rithm may be possible. Related fast algorithms exist: for
example, exact substring matches may be found using suf-
fix trees, which can be constructed in linear time [17]. Suf-
fix trees have also been used successfully for biological
motif-extraction tasks (see for example [18]). Such an
algorithm, if it is possible, would give a major speed
boost. Another future option is parallelising the algorithm
for use on clusters (which has already been done with
DiAlign, as reported in [19]). In particular, the search for
the best pairwise alignment is done separately over every
eligible pair of fragments and would be particularly easy
to parallelise.

The actual running time of Sigma on various datasets,
compared to DiAlign and other programs, is discussed
further below: Sigma's running time is typically close to
DiAlign's, with neither program consistently faster than
the other. With much larger datasets (greater than a few
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Table 3: Results on synthetic plasmodium-like data. Performance of various multiple sequence alignment programs on synthetic data
generated with dinucleotide correlations that mimic the Plasmodium falciparum genome. See the caption of Table | for explanation of

the column and row labels.

q=0.35 q =045 q=0.55 q=0.65
No embedded WM's

N, Prog N, N. Sen Er N, N. Sen Er N, N. Sen Er N, N. Sen Er
3 sigma+ 0 0 0.00 N/A 0 0 0.00 N/A 1036 0 0.03 0.00 24617 0 0.82 0.00
sigma- 66 1070 000 094 9175 372 031 0.04 27959 0 093 0.00 29547 0 0.98 0.00
dialign 292 1471 0.0l 0.83 800 1582 0.03 0.66 4185 929 0.14 0.18 14957 104 0.50 0.0l
alignm 753 1563 0.03 0.67 5889 2085 020 026 20462 1846 0.68 0.08 27433 728 091 0.03
clustalw 12057 17943 040 0.60 23528 6472 0.78 022 27965 2035 093 0.07 29814 18 099 0.0l
mlagan 7974 22026 0.27 073 21709 8291 072 028 29145 855 097 0.03 30000 0 1.00 0.00
tcoffee 6865 23135 0.23 0.77 15398 14602 0.51 049 25261 4739 0.84 0.16 29043 957 097 0.03
6  sigma+t 0 0 0.00 N/A 48 0 0.00 0.00 8033 0 0.13 0.00 54293 0 090 0.00
sigma- 1684 8l6l 0.03 0.83 26675 4113 044 0.13 57619 86 096 0.00 59411 0 0.99 0.00
dialign 294 7229 000 096 3423 5362 0.06 0.6 15806 2521 0.26 0.14 46203 75 0.77 0.00
alignm 0 50 0.00 1.00 3678 237 0.06 0.06 42406 972 071 0.02 57938 610 0.97 0.0l
clustalw 26172 33828 044 0.56 46240 13760 0.77 023 55270 4730 092 008 59234 766 099 0.0l
mlagan 13737 46263 0.23 0.77 40430 19570 067 033 57668 2332 096 0.04 59931 69 1.00 0.00
tcoffee 19149 40851 032 068 40764 19236 0.68 032 56346 3654 094 0.06 59532 468 0.99 0.0l

tens of kilobases), Sigma's speed appears to drop noticea-
bly faster than O(L2N?) this is probably due to excessive
internal fragmentation of the sequence, an issue that will
be addressed in the future.

Sensitivity and accuracy: synthetic data

A good multiple alignment program should maximise the
number of bases correctly aligned (high "sensitivity"), but
also minimise the number of "false positives" (high "spe-
cificity"). It may be reasonably argued that sensitivity —
that is, predicting the maximum number of actually con-
served structural motifs - is the major consideration in
protein-alignment programs and specificity is less impor-
tant. This is emphatically not true for a program aligning
non-coding DNA: for example, running a motif-finder on
a poor alignment could be disastrous.

To have an objective measure of the performance of vari-
ous programs on data with a known evolutionary history,
we focus on synthetic data in this section, but with actual
genomic dinucleotide correlations. The next section dis-
cusses yeast genomic data, where direct measurement of
"correctness" of the alignment is not possible.

Together with Sigma, we examine five other programs:
ClustalW version 1.83 [3], MLagan version 1.21 [4], T-
Coffee version 1.37 [7], Align-m version 2.3 [8], and DiA-
lign version 2.2.1 [6]. (Note: DiAlign has an occasional
bug in its output when four or more sequences are being
aligned, where two unrelated local alignments are some-
times erroneously placed on top of each other. The inter-
nal representation of the "diagonals" is not buggy, so we

use a perl script, written by Michael Mwangi, to correctly
assemble the fragments. Without this script, results with
DiAlign are a little worse than indicated here.)

Both Sigma and DiAlign have just one adjustable param-
eter, the "significance threshold" beyond which local
alignments are rejected. (DiAlign does use substitution
matrices for proteins, while Sigma uses a correlated back-
ground model for noncoding DNA; but these are not so
much "adjustable" as read or inferred from existing data.)
We choose the least stringent threshold that does not erro-
neously align random sequence: this turns out to be about
"-x 0.002" for Sigma (which we have made the default)
and "-thr 6.3" for DiAlign (the default is 0.0). The number
we choose for DiAlign is roughly the negative log of the
number for Sigma, which is appropriate: see the section
on scoring above.

In addition, Sigma was run both with a correlated back-
ground model and with a random background model.

All other programs were run with default parameters,
specifying that the input is DNA sequence. MLagan
requires an input binary tree specifying in what order spe-
cies are to be paired; this was chosen arbitrarily, since the
input data had a "flat" phylogeny (all species equidistant
from ancestor) which is not supported by MLagan.

Generation of synthetic data

The synthetic data were generated as follows: first, an
ancestral sequence was created with dinucleotide correla-
tions drawn from real DNA sequence, possibly also con-
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Table 4: Results on uncorrelated data. Performance of various multiple sequence alighment programs on synthetic data with no

dinucleotide correlations, and each base having probability 0.25. See the caption of Table | for explanation of the column and row

labels.
qg=0.35 q=045 q=0.55 q=0.65
No embedded WM's
N, Prog N, N. Sen Er N, N. Sen Er N, N. Sen Er N, N. Sen Er
3 sigma- 0 0 0.00 N/A 260 0 0.0 0.00 11690 0 039 0.00 29154 0 0.97 0.00
dialign 0 60 0.00 1.00 80 0 0.03 0.00 1000 0 0.06 0.00 7566 0 0.25 0.00
alignm 0 0 000 N/A 6682 605 022 0.08 23338 656 078 0.03 28466 283 095 0.0l
clustalw 16675 13325 0.56 044 26450 3550 0.88 0.12 29340 660 098 0.02 29828 172 099 0.0l
mlagan 11280 18720 0.38 0.62 26874 3126 090 0.10 29767 233 099 0.0l 30000 0 1.00 0.00
tcoffee 3443 26557 0.11 089 12475 17525 042 058 27836 2164 093 0.07 29810 190 0.99 0.0l
6 sigma- 0 0 0.00 N/A 0 0 0.00 N/A 23583 0 039 0.00 58986 0 0.98 0.00
dialign 0 0 0.00 N/A 138 0 0.0 0.00 4588 0 0.08 0.00 28177 0 0.47 0.00
alignm 0 0 0.00 N/A 13090 174 022 0.0l 53252 824 089 002 59529 139 0.99 0.00
clustalw 37040 22960 0.62 038 53438 6562 0.89 0.1l 58432 1568 0.97 0.03 59727 273 1.00 0.00
mlagan 15987 44013 0.27 0.73 50702 9298 085 0.5 58621 1379 098 0.02 59917 83 1.00 0.00
tcoffee 13439 46561 0.22 0.78 35387 24613 059 041 58292 1708 0.97 0.03 5994I 59 1.00 0.00

taining a few embedded "motifs" drawn from "position
weight matrices" meant to indicate binding sites for tran-
scription factors, that tend to be conserved under evolu-
tion. In other words, nucleotides were laid down with
conditional probabilities on the previous nucleotides,
and weight matrices were laid down with a small proba-
bility; the process can be described by a hidden Markov
model. This ancestral sequence was then evolved into N
descendants, and each nucleotide was given a conserva-
tion rate ¢ (that is, mutated with a probability 1 - ). Note
that these conservation rates are from the ancestor to the
descendant; the conservation rates between two descend-
ants would be lower (g2 rather than q). For example, with
our chosen ¢ values of 0.35, 0.45, 0.55 and 0.65, the con-
servation between two descendants would be 0.1225,
0.2025, 0.3025 and 0.4225 respectively.

The binding sites were assumed to be conserved (that is,
the descendants were assumed to be under selection pres-
sure at these sites); thus, if a base inside a "motif"
mutated, the new base was drawn from the weight matrix
representing that motif (assumed unchanged, since pro-
teins evolve much more slowly than non-coding DNA),
while if a background base mutated, the new base was
drawn from the background model with a conditional
(dinucleotide) probability based on the preceding base.
These are precisely the assumptions made by PhyloGibbs
for real data, and are justified in greater detail in [11,12].
The sequences fed to the alignment program were the N
descendants, not the ancestor.

Three possibilities were considered for the background
model: a completely random background (each base hav-
ing probability 0.25), background dinucleotide frequen-

cies drawn from non-coding DNA in yeast (S. cerevisiae),
and background dinucleotide frequencies drawn from the
complete genome of the malaria parasite Plasmodium fal-
ciparum. These genomic data are publicly available. The
Plasmodium genome was picked as an extreme test case:
it has an extraordinary bias to the A and T nucleotides (by
far the most of any sequenced organism to date [20]) and
strong codon biases even in protein coding regions. It thus
provides a challenge to any multiple-alignment program.

Two further possibilities were used: plain featureless back-
ground sequence, and background sequence containing
five different embedded motifs, roughly equally spaced,
each of length 10 with a weight matrix "polarization"
(largest element in each column) of 0.8. The motifs would
act as "anchors" of strongly conserved sequence that, as
we see below, help programs align the remaining
sequence better.

Sequences of length 1000 bases were generated. (Typical
promoters, regulatory modules or enhancer elements are
a few hundred to a couple of thousand bases long, so this
length is typical.) The number of sequences aligned, N,
was taken to be 3,6,9. For each choice of all these param-
eters, ten runs were averaged.

Results

The results on the "typical" case of yeast-like correlations
are laid out in detail in Tables 1 and 2. With the particular
parameter choices we have made, which require Sigma
and DiAlign not to align random sequence, both these
programs align very little sequence erroneously, for either
weakly-conserved or relatively  strongly-conserved
sequence. In contrast, it is immediately apparent that,
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Figure 3

Sensitivity of PhyloGibbs with different alignments. The total number of documented binding sites predicted by Phylo-
gibbs run on various alignments: a measure of the sensitivity of PhyloGibbs on those alignments.

with weakly conserved sequence (g = 0.35 or 0.45), Clus-
talW, MLagan and T-Coffee - which are all based on
Needleman-Wunsch-type approaches, with gap penalties
and gap-extension penalties - align far too much
sequence erroneously. Changing the gap penalties either
had no significant effect, or had other problems such as
excessively-fragmented alignments. Perhaps a non-default
substitution matrix would improve things, but in our
opinion, Needleman-Wunsch-type approaches are not
well suited for the problem of non-coding DNA, where
large regions may be well conserved but equally large
regions may show no conservation at all.

Align-m, on the other hand, aligns remarkably little
sequence erroneously; for weakly conserved sequence it
shows improved sensitivity over Sigma and DiAlign (but
has a somewhat higher error rate than Sigma), and does

vastly better than ClustalW, MLagan and T-Coffee in terms
of error rate. Its main drawbacks are its running time and
its memory consumption, which are an order of magni-
tude more than other programs and rise sharply with the
number of sequences being aligned.

At g = 0.55 Sigma and DiAlign continue to have a lower
sensitivity than the other programs, but Sigma also has a
much lower error rate. At ¢ = 0.65, all programs show high
sensitivity (DiAlign's is noticeably lower than the rest)
and low error rates (Sigma makes no errors at all).

This is seen even more sharply with the highly-correlated
plasmodium-like numbers, presented in brief in table 3.
With completely uncorrelated sequence where each nucle-
otide has a probability 0.25, the gaps between the various
algorithms narrow but the trends remain visible (table 4).
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Specificity of PhyloGibbs with different alignments. The ratio of predictions that are documented binding sites, to total
predictions, by Phylogibbs run on various alignments: a measure of the specificity of PhyloGibbs on those alignments, and indi-

rectly a measure of the quality of those alignments.

Embedding a few highly-conserved weight matrices (as in
table 2) improves the performance of all the programs,
compared to table 1, but does not greatly change their rel-
ative performances.

In addition to the Sigma and DiAlign results shown, we
tried the parameters "-x 0.02" and "-x 0.2" for Sigma, "-thr
3.9" and "-thr 1.6" for DiAlign. While a less stringent
threshold improves sensitivity only slightly, it decreases
specificity significantly (particularly with weakly-con-
served sequence), which is an important criterion for us.

In summary, on synthetic data, with strong conservation
(g9 = 0.65 or more) the difference between various algo-
rithms is marginal, but with weak or intermediate conser-
vation Sigma, DiAlign and Align-m all make significantly
fewer erroneous alignments than other algorithms; and of
these, Sigma generally shows better sensitivity than DiA-

lign, and a lower error rate than either DiAlign or Align-m
(it is also far faster and less memory-intensive than Align-
m).

The poor sensitivity of Sigma on weakly-conserved
sequence (and the high error rates of programs that do
align significant amounts of such sequence) suggests that
it is a very hard problem to accurately align uniformly-
diverged non-coding DNA. In real life, however, regions
of well-conserved DNA may be interspersed with regions
of poorly-conserved DNA. Here, we would be helped by
Sigma's approach of using only the length of the frag-
ments being aligned to judge the significance of an align-
ment. Table 2, for ¢ = 0.45, shows a nearly 5-fold better
performance of sigma+ (ie, with correlations accounted
for) when some highly-conserved "motifs" are embedded
in a poorly-conserved background. Other programs, too,
improve in performance, but not as sharply.
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Running time of different alignment programes. Six alignment programs are run on the plasmodium-like synthetic
sequence with g = 0.55 (see caption of tables | and 2), on N sequences of length 1000 bp each; for N = 2—10. (The AlignM pro-

gram requires at least 3 input sequences.)

Benchmarks of any kind must always be viewed with
some skepticism. The most realistic head-to-head compar-
ison here is with DiAlign, and this comparison most
clearly shows the improvements from Sigma's algorithm
and scoring in specificity and error rate. It is possible that,
with fine-tuning of parameters, other programs may per-
form much better than shown here.

Yeast genomic data

It is of great interest to measure the performance of differ-
ent alignment programs on real genomic data, but the
problem is that we don't know the "correct” answer. In
protein sequence, structural information may give clues to
what sequence is likely to have been phylogenetically con-
served. Non-coding sequence evolves much faster, and
binding sites are known not always to be conserved-
instead, they tend to come and go, at least in yeast and
drosophila [21,22]. However, we get some suggestions by

examining the performance of our recently developed
motif finder, PhyloGibbs [12] on these alignments. Since
a primary goal of Sigma is to aid motif-finding and similar
tasks, this is a relevant, if indirect, benchmark.

We use a database, the Saccharomyces cerevisiae promoter
database (SCPD) [23], that documents experimentally
verified binding sites for yeast transcription factors. Since
this database is not computationally derived, it serves as
an unbiased real-world benchmark, and we also used it to
measure the performance of PhyloGibbs itself [12]. After
some elimination of excessively long or redundant sites,
we were left with 466 annotated binding sites upstream of
200 different genes.

Regulatory regions for these genes from S. cerevisiae and,
where available, orthologues from (in order of closeness
to S. cerevisiae) S. paradoxus [10], S. mikatae, S. kudriavzveii
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and S. bayanus [9] were used. All data is publicly available
from SGD [24]. The binary tree input for MLagan used the
same order of closeness above. Only Sigma alignments
incorporating yeast-like correlated background model
were used. Other than this, all alignments were generated
with the same parameters as in the previous section. For
the purposes of PhyloGibbs, it was assumed that the yeast
species are equidistant from their last common ancestor,
with a "proximity" (probability that a base not under
selection is unchanged from the ancestor) of 0.5. The
complete PhyloGibbs commandline was: -D 1 -G 0.5 -f
inputfile -o outputfile -t trackingfile -m 10 -N 1 -F back-
groundfile -1 3,3,3, which means that it assumes phyloge-
netic alignment of the input sequences with uniform
proximity 0.5, a dinucleotide background model
extracted from the file backgroundfile, and an initial guess
of three different transcription factors each having three
(possibly multi-species) binding sites, each site 10 bases
long. These are the same parameters used and explained
further in [12].

PhyloGibbs uses a two-stage process of motif-finding, a
simulated anneal to find the "best answer" followed by
Markov-chain Monte-Carlo sampling of the entire config-
uration space and statistical "tracking" to find the "signif-
icance" of the answer (and possibly, also, of other sites
not reported in the simulated anneal). It thus assigns to
each reported binding site a "tracking score" t (between 0
and 1) indicating its probability of being a genuine motif.
As a function of t, there are two quantities of interest to us:
the number of predictions of PhyloGibbs that are docu-
mented binding sites in S. cerevisiae (predictions in other
species are ignored for this purpose), and the ratio of these
to the total number of predictions. These may be taken as
a measure of the sensitivity and specificity, respectively, of
PhyloGibbs. Since the SCPD data is far from exhaustive,
these numbers must be taken only as indicative trends: the
"false positive" rate cannot really be measured. Further
discussion is in the PhyloGibbs paper [12].

Of these, the specificity is more relevant: by increasing the
total number of predictions, the sensitivity can always be
increased, to a point where predictions are meaningless.
Moreover, the sensitivity here is of PhyloGibbs's predic-
tions and not of the input alignments; this is hard to inter-
pret, whereas one may reasonably argue that high
specificity in PhyloGibbs predictions indicates more gen-
erally correct alignments.

The results are plotted in figures 3 and 4. As in the syn-
thetic data, the best results are obtained with the options
-x 0.002 for Sigma and -thr 6.3 for DiAlign. For most
threshold cutoffs, PhyloGibbs on Sigma alignments is
inferior on sensitivity but clearly outperforms all the other
programs on specificity: in other words, with Sigma there

http://www.biomedcentral.com/1471-2105/7/143

are fewer predictions overall but these are made with
higher confidence. This is especially true at the high-
threshold end, where sensitivities of all programs are
somewhat comparable but the specificity of Sigma runs is
considerably higher. Surprisingly, AlignM, which was gen-
erally a good performer on the synthetic data, performs
comparatively poorly here on both sensitivity and specif-
icity. As in the previous section, this data should be taken
as suggestive but not conclusive. Programs other than
Sigma and DiAlign are run with default parameters that
are certainly unsuitable for non-coding DNA. Moreover,
the total fraction of sequence aligned by these programs is
different (as was shown in the previous section), and this
too somewhat affects the predictions of PhyloGibbs, for
reasons too complex to go into here.

Running times

Figure 5 shows the running times for the six programs
studied here as a function of number of input sequences
being simultaneously aligned, each of length 1000 bp.
(The DiAlign numbers here are for the program binary
which outputs erroneous alignments, as mentioned in the
section on synthetic data. The correction script in perl that
we use in practice increases the running time by a factor of
5 or 10.) The fastest programs are ClustalW and MLagan,
followed with some gap by Sigma and DiAlign. AlignM
and T-Coffee are an order of magnitude slower. (AlignM
also consumes a lot of memory—well over 100 MB when
aligning more than 7 sequences.) It appears that T-Coffee
scales the most poorly of these six programs to large num-
bers of sequences.

The results on the yeast data are similar except that DiA-
lign is slightly faster than Sigma, while AlignM is almost
twice as slow as T-Coffee. The total running times for the
alignment programs in seconds, for aligning 184 gene
promoters for which at least three orthologous sequences
existed (a requirement for AlignM), were - AlignM:
1850.2; ClustalW: 168.21; DiAlign: 255.52; MLagan:
430.7; Sigma: 266.5; T-Coffee: 646.45.

Thus, on data sets of this size, Sigma's speed is competitive
with three of the other five programs studied, and signifi-
cantly better than the remaining two, without compro-
mising on accuracy and sensitivity.

Conclusion

The present implementation of Sigma focuses on pro-
gramming simplicity rather than speed—the complete
source code, excluding comments, totals under 1000 lines
in Objective Caml (a functional language of the ML fam-
ily, available from http://caml.inria.fr). Nevertheless, it is
already a fully-functional tool competitive with or supe-
rior to other programs in speed and accuracy, and sub-
stantial improvements in both respects may be possible.
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However, the present version is intended to be a starting
point for more challenging tasks, some of which are in
progress.

Pairwise alignment programs, like other tools in bioinfor-
matics, are not error-free and Sigma is no exception. As
remarked above, the output of such programs is used as
the input for other tasks such as regulatory site prediction;
it would be interesting to build an integrated tool that not
only predicts regulatory sites (or modules or enhancers)
based on a multiple alignment, but uses the information
thus obtained to in turn improve the multiple alignment.
Such an approach may have far more success both in
aligning weakly-conserved sequence and in predicting
functional sites in that sequence, but would also be far
more complex than either a stand-alone sequence-align-
ment program or a stand-alone motif-finder.

A general assumption in multiple-alignment algorithms is
that synteny is preserved among the aligned pieces. This
assumption, quite reasonable for most proteins, grows
progressively more dubious for longer stretches of non-
coding DNA and it may be desirable to relax it in a con-
trolled manner (the problem would be the hugely
increased "search space” of possible matches).

Thus, the hope is that Sigma can be significantly improved
and extended in the future, and interfaced with other tools
such as motif-finders and module-prediction programs.

Availability and requirements
Project name: Sigma

Project home page: http://www.imsc.res.in/~rsidd/
sigma

Operating systems: Binaries for Linux and Windows
available; source may be compiled on any system sup-
ported by Objective Caml

Programming language: Objective Caml (version 3 x)
Other requirements: None

Licence: GNU GPL

Any restrictions to use by non-academics: None
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