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Abstract

Background

To overcome the current problems in leishmaniasis chemotherapy, natural products have

become an interesting alternative over the past few decades. Flavonoids have been studied

as promising family of compounds for leishmaniasis treatment. 2’-Hydroxyflavanone (2HF)

is a flavanone, a class of flavonoid that has shown promising results in cancer studies. In

this study, we demonstrated the effects of 2HF in vitro and in vivo against wild-type and anti-

mony-resistant Leishmania amazonensis promastigotes.

Methodology/Principal findings

2HF was effective against promastigotes and the intracellular amastigote form, decreasing

the infection index in macrophages infected with wild-type and antimony-resistant promasti-

gotes, but it was not toxic to macrophages. In silico analysis indicated 2HF as a good oral

candidate for leishmaniasis treatment. In vivo, 2HF was able to reduce the lesion size and

parasite load in a murine model of cutaneous leishmaniasis using wild-type and antimony-

resistant promastigotes, demonstrating no cross-resistance with antimonials.

Conclusions/Significance

Taken together, these results suggest 2HF as a potential candidate for leishmaniasis che-

motherapy for cutaneous leishmaniasis caused by both wild-type and antimony-resistant

Leishmania species by oral administration. Furthermore, studies should be conducted to

determine the ideal dose and therapeutic regimen.

Author summary

Leishmaniasis is a parasitic disease endemic to 98 countries, affecting more than 12 mil-

lion people globally, and there are more than 350 million people in risk areas. Although

there are many drugs available as alternatives for leishmaniasis treatment, they remain
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mostly ineffective, expensive and longstanding, in addition to generating side effects and

resistance. Antimonial resistance is currently one of the biggest obstacles in leishmaniasis

chemotherapy. Due to the poor chemotherapy scenario and the need for a drug able to

overcome resistance problems and therapeutic failures, natural products have become an

important alternative for leishmaniasis treatment. Here, we evaluated the antileishmanici-

dal activity of 2HF in vitro and in vivo against wild-type and antimony-resistant L. amazo-
nensis cells. 2HF inhibited the cellular proliferation of promastigotes and the intracellular

amastigote form in a dose-dependent manner in both wild-type and antimony-resistant

cells. Furthermore, 2HF reduced the lesion size and parasitic load in a murine model of

cutaneous leishmaniasis using wild-type and antimony-resistant promastigotes without

altering hematological parameters and serological toxicology markers. This is the first

time that the activity of a flavonoid on the antimony-resistant L. amazonensis has been

demonstrated in vitro and in vivo by the oral route.

Introduction

Known as neglected tropical disease globally, leishmaniasis is endemic to 98 countries, and

there are more than 350 million people in risk areas. It deserves attention due to the wide vari-

ety of clinical manifestations and its high annual incidence [1]. This disease, which is caused

by over 20 species of pathogenic parasites of the genus Leishmania, is divided into two major

clinical manifestations: the visceral form (VL), which causes death by affecting internal organs

such as the spleen and liver, and the cutaneous form (CL), which is subdivided into many

forms that affect the skin and mucous membranes [2]. Even though it does not lead to death,

the cutaneous form causes many social problems for patients. Among all the species that cause

CL, Leishmania amazonensis is known to induce a wide spectrum of clinical manifestations,

including the most aggressive mucosal form [3].

Leishmaniasis treatment has been mostly based on pentavalent antimonials as the first

choice for over 70 years. Amphotericin B is the second choice, but in cases of therapeutic fail-

ure, it becomes the first treatment choice [4]. Miltefosine, the first oral drug for leishmaniasis,

has become an important alternative; however, its use is not licensed all over the world.

Although there are many drugs available as alternatives for leishmaniasis treatment, they

remain mostly ineffective, expensive and longstanding, in addition to generating side effects

and resistance [5].

Antimonial resistance is currently one of the biggest obstacles in leishmaniasis chemother-

apy. It has been described since antimonials began to be used in clinic, and it is one of the

major causes of therapeutic failure [6,7]. Over the decades, antimonial resistance became an

emerging worldwide problem, embracing visceral and cutaneous leishmaniasis, being reported

not only in India and South Africa, as the first cases, but in African continent recently [8].

These reports combined with antimonial extensive use as first line treatment in several coun-

tries yet, suggest a resistance progression leading a warning to the world. The mechanism of

resistance has been exhaustively studied and is strongly associated with the overexpression of

ABC-family drug transporters and MDR genes, indicating the possibility of cross-resistance

[9,10]. Other reference drugs have also demonstrated resistance generation, such as miltefo-

sine [11,12] and pentamidine [13].

With the current lack of a vaccine, the poor chemotherapy scenario and the need for a drug

able to overcome resistance problems and therapeutic failures, natural products, mostly plant

secondary metabolites, have become important alternatives for leishmaniasis over the past few
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decades [14–16]. Flavonoids are a group of secondary metabolites present in fruits, vegetables,

wine and coffee and are classified into flavones, flavanones, flavonoids, flavonols, anthocya-

nins, isoflavonoids and chalcones [17].

Activity of different flavonoids against Leishmania has been demonstrated. Quercetin, api-

genin and epigallocatechin O-3 gallate have been reported as promising oral candidates to

leishmaniasis chemotherapy in different species of cutaneous leishmaniasis[18–23]. 2’-Hydro-

xyflavanone (2HF, Fig 1) is a flavanone, a class of flavonoids present in fruits, especially in cit-

ric fruits such as oranges. It has been studied as a possible alternative for many types of cancer

treatment, such as renal, colon, and lung cancer and osteosarcomas. In cancer cells, the mecha-

nism of action of 2HF remains unknown, appearing to follow different pathways according to

cell type. It was able to induce apoptosis, inhibit the differentiation of tumor markers and pre-

vent the vascularization, proliferation and migration of cancer cells [24–26]. In the present

study, we evaluated the leishmanicidal activity of 2HF in vitro and in vivo against wild-type

and antimony-resistant L. amazonensis cells.

Materials and methods

Compounds

2HF (�98% purity; lot SLBT8413), Schneider’s Drosophila medium, RPMI-1640 medium,

potassium antimony (III) tartrate hydrate, penicillin and streptomycin were obtained from

Sigma-Aldrich (St. Louis, MO, USA). Fetal calf serum was obtained from Cultilab (Campinas,

SP, Brazil). All other reagents were purchased from Merck (São Paulo, Brazil). Deionized dis-

tilled water was obtained using a Milli-Q system (Millipore Corp., Bedford, MA, USA) and

was used to prepare all solutions. Endotoxin-free sterile disposable supplies were used in all

Fig 1. Chemical structure of 2HF used in this study.

https://doi.org/10.1371/journal.pntd.0006930.g001
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experiments. 2HF was prepared in dimethyl sulfoxide (DMSO) and diluted in culture medium

such that the solvent concentration did not exceed 0.2% (v/v) in the final solution. In the con-

trol samples (absence of 2HF), a similar volume of vehicle (DMSO 0.2% v/v) was added to the

cells. Meglumine antimoniate (Glucantime, Sanofi, São Paulo, Brazil) was provided by Evan-

dro Chagas National Infectology Institute, FIOCRUZ, Brazil.

Ethics statement

The MHOM/BR/75/LTB0016 strain of L. amazonensis was used throughout this study. This

strain was isolated from a human case of cutaneous leishmaniasis in Brazil. This study was per-

formed in strict accordance with the recommendations of the Guide for the Care and Use of

Laboratory Animals of the Brazilian National Council of Animal Experimentation (CON-

CEA). The protocol was approved by the Committee on the Ethics of Animal Experiments of

the Instituto Oswaldo Cruz (CEUA-IOC, License Number: L-11/2017). All data were analyzed

anonymously.

Parasites and mice

Promastigotes were cultivated at 26˚C in Schneider’s Drosophila medium (pH 6.9) supple-

mented with 10% fetal calf serum (v/v), 100 μg/mL streptomycin and 100 U/mL penicillin.

Parasite maintenance was promoted by passages every 3 days of culture. Female BALB/c mice

(8–10 weeks; provided by the Instituto Ciências e Tecnologia em Biomodelos, ICTB/FIO-

CRUZ) were used in this study. All animals were bred and maintained at the Fundação

Oswaldo Cruz according to Guide for the Care and Use of Laboratory Animals of the Brazilian

National Council of Animal Experimentation (CONCEA).

Antimony-resistant induction in L. amazonensis promastigotes and

resistance confirmation

L. amazonensis promastigotes (MHOM/BR/77/LTB0016) were cultivated following the proce-

dure above with or without addition of potassium antimony tartrate (SbIII) progressively for

each passage [27] up to 10 times the previously determined antimony IC50 (16 μM). A wild-

type control was cultivated in parallel without antimony addition, and both cells reached 32

passages. The resistance was confirmed by incubating antimony-resistant and wild-type pro-

mastigotes with increasing concentrations of potassium antimony tartrate (0.3 μM—5000 μM)

(S1 Fig). The 50% inhibitory concentration (IC50) was determined by logarithmic regression

analysis using GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA). The experiments

were performed thrice.

Promastigote proliferation assay

L. amazonensis (5x106 /mL) promastigotes (wild type or antimony resistant) were incubated

with different concentrations of 2HF (3 μM—96 μM) or vehicle (DMSO 0.2% v/v) for 24

hours. The cell density was estimated using a Neubauer chamber. The growth curve was initi-

ated with 5.0 x 106 cells/ml. The 50% inhibitory concentration (IC50) was determined by loga-

rithmic regression analysis using GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA).

The experiments were performed thrice.

Leishmania-macrophage interaction assay

Peritoneal macrophages were collected from BALB/c mice (8–10 weeks old) and placed into

RPMI-1640 medium supplemented with 10% fetal calf serum and plated (2x106 cells/mL) onto

2HF is effective against CL caused by L. amazonensis wild-type and antimony-resistant
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Lab-Tek eight-chamber slides with 400 μL in each well for one hour for adhesion (37˚C/5% of

CO2). L. amazonensis promastigotes (wild type or antimony resistant) were counted, added to

the peritoneal macrophages with an MOI (multiplicity of infection) of 5 promastigotes per

macrophage, and incubated for 3 hours. The Lab-Tek wells were washed with RPMI-1640

medium after 3 hours of infection to remove non-adherent macrophages as well as promasti-

gotes. After eighteen hours, infected macrophages were incubated with different concentra-

tions of 2HF (0 μM—48 μM) or meglumine antimoniate (0 μM—200 μM) for 72 hours. Lab-

Teks were stained with Instat Prov (Newprov, Curitiba/Brazil). The percentage of infected

macrophages was determined by light microscopy by counting a minimum of 200 cells. The

result was expressed as the infection index (% of infected macrophages × number of amasti-

gotes/total number of macrophages). The IC50 value was determined by logarithmic regression

analysis using GraphPad Prism 6. In the control samples (absence of 2HF), a similar volume of

vehicle (DMSO 0.2% v/v) was added to the cells. The experiments were performed thrice.

Cytotoxicity assay

Peritoneal macrophages were collected as described above. After 1 hour of adhesion, macro-

phages were incubated with different concentrations of 2HF (0 μM- 96 μM) without infection

for 72 hours (37˚C and 5% of CO2). The macrophage viability was accessed using resazurin

(20% v/v), which was reduced to resorufin after contacting viable cells, and the fluorescence

(ex/em: 560/590 nm) was measured by a SpectraMax M2—Molecular Devices, Silicon Valley,

USA. The cytotoxicity concentration (CC50) was determined by logarithmic regression analy-

sis using GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA). The experiments were

performed thrice.

2HF in silico evaluation

To predict the pharmacokinetic properties (ADMET—absorption, distribution, metabolism,

excretion and toxicity) of 2HF, the ADMETSar tool [28] was used. The SMILES (simplified

molecular-input line-entry system) used for in silico analysis was as follows: OC1 = CC =

CC = C1C1CC (= O)C2 = C(O1)C = CC = C2

In vivo infection in the murine model

To evaluate the in vivo effects of 2HF, female BALB/c mice (n = 5 per group, 8–10 weeks old)

were infected with wild-type (2x106/10 μL of PBS) or antimony-resistant (4x106/10 μL of PBS)

L. amazonensis promastigotes in the right ear. The treatment started seven days post-infection,

with 50 mg/kg/day of 2HF (diluted in DMSO (0.2% v/v), incorporated in an oral suspension)

administered orally through an orogastric tube once daily seven times per week until the end

of the experiment (day 42), when the animals were euthanized. The control group was treated

orally with an oral suspension in DMSO (0.2% v/v) in the absence of 2HF (vehicle of 2HF

only). The positive control was treated with intraperitoneal injections of meglumine antimoni-

ate (pentavalent antimonial; 100 mg/kg/day) once daily seven times per week until the end of

the experiment (day 42). The lesion sizes were measured twice per week using a dial caliper.

Parasite load quantification

The parasite load was determined 42 days post-infection using a quantitative limiting dilution

assay as described previously [18]. The infected ears were excised, weighed and minced in

Schneider’s medium with 20% fetal calf serum. The resulting cell suspension was serially
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diluted. The number of viable parasites in each ear was estimated from the highest dilution

that promoted promastigote growth after seven days of incubation at 26˚C.

Toxicology

Before euthanized, BALB/c mice were anesthetized with Ketamin (200 mg/kg) and Xylazine

(16 mg/kg) in solution, administered intraperitoneally. Blood was collected (1mL) via cardiac

puncture and distributed in EDTA-containing microtubes for hematological analysis or cen-

trifuged for serum obtainment. Both serum (toxicology markers) and total blood (hematologi-

cal parameters) from the infected BALB/c mice treated as described above were measured by

the Program of Technological Development in Tools for Health-PDTIS-FIOCRUZ.

Statistical analysis

All experiments were performed in three independent triplicates. The data were analyzed

using Student’s t-test or analysis of variance (ANOVA), followed by Bonferroni’s post-test in

GraphPad Prism 6 (GraphPad Software, La Jolla, CA, USA). The results were considered sig-

nificant when p� 0.05. The data are expressed as the mean ± standard error.

Results

2HF effects against L. amazonensis wild-type and antimony-resistant

promastigotes

2HF demonstrated a dose-dependent inhibition against wild-type L. amazonensis promasti-

gotes. Over 24 hours of treatment, 2HF was able to inhibit promastigote growth, in addition to

killing the parasites in a concentration-dependent manner (0 to 96 μM) with an IC50 of

20.96 ± 2.87 μM and achieving 79% inhibition at the highest concentration (96 μM) (Fig 2A).

After antimony-resistant L. amazonensis promastigotes were obtained (S1 Fig), the effect of

2HF was tested in these cells. Over 24 hours of incubation, the flavanone was able to inhibit

the cellular proliferation of the antimony-resistant L. amazonensis promastigotes (Fig 2B) in a

dose-dependent manner similar to that observed with wild-type L. amazonensis promastigotes,

presenting an IC50 of 24.34 ± 0.33 μM.

As explained in the Methods section, the antimony-resistant promastigotes were cultivated

over several passages, and a wild-type control was cultivated in parallel. To rule out the possi-

bility that the effect observed in the antimony-resistant L. amazonensis promastigotes was

caused by the number of the passages used to induce the resistance, 2HF was also tested against

wild-type L. amazonensis promastigotes with the same number of passages used for the anti-

mony-resistant cells (32 passages). 2HF was capable of inhibiting the cellular proliferation of

the wild-type L. amazonensis promastigotes cultivated with 32 passages with an IC50 value of

20.41 ± 0.28 μM, demonstrating no difference in IC50 values compared to the IC50 values in

wild-type L. amazonensis promastigotes cultivated with 5 passages or antimony-resistant L.

amazonensis promastigotes (32 passages) (Fig 2C). Comparative IC50 values are shown in

Table 1.

2HF is able to reduce wild-type and antimony-resistant L. amazonensis in
vitro infection

Using a peritoneal BALB/c mice macrophage infection model, both pentavalent antimonial

(meglumine antimoniate)—a reference drug in leishmaniasis chemotherapy—and 2HF were

tested against L. amazonensis-infected macrophages using wild-type and antimony-resistant L.

amazonensis promastigotes.
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First, to demonstrate that the antimony resistance was not lost in the amastigote transfor-

mation process inside the macrophage vacuoles, the effect of meglumine antimoniate was

tested. The IC50 values for meglumine antimoniate in the wild-type L. amazonensis and anti-

mony-resistant L. amazonensis were 9.3 ± 1.38 μM and 35.7 ± 6.57 μM, respectively, demon-

strating an almost 4 times resistance (Fig 3A and 3B).

2HF was able to reduce the infection index in both wild-type Leishmania-infected macro-

phages and antimony-resistant Leishmania-infected macrophages in a dose-dependent man-

ner (Fig 3C and 3D). The 2HF IC50 was 3.09 ± 0.4 μM for wild-type cells and 3.36 ± 0.29 μM

for antimony-resistant cells, reaching 99.7% and 99.6% inhibition, respectively, at the highest

dose tested (48 μM).

Fig 2. 2HF effects against wild-type or antimony-resistant promastigotes. Wild-type or antimony-resistant L.

amazonensis promastigotes were incubated in Schneider’s Drosophila medium in the absence or presence of increasing

concentrations of 2HF (3–96 μM) for 24 hours. The number of parasites was determined by direct counting using a

Neubauer chamber. In the control (absence of 2HF), the same volume of DMSO (0.2% v/v; solvent of 2HF) was added to the

growth medium. The values are presented as the mean ± standard error of three different experiments. a) Wild-type (5

passages), b) Antimony-resistant (32 passages), c) Wild-type comparative (32 passages). The IC50 was calculated via

nonlinear regression using GraphPad Prism 6.0. � indicates significant difference relative to control (p< 0.05).

https://doi.org/10.1371/journal.pntd.0006930.g002

Table 1. Comparative IC50 for 2HF against wild-type and antimony-resistant L. amazonensis promastigote.

WT

(5 passages)

WT

(32 passages)

R

(32 passages)

20.96 ± 2.87 μM 20.41 ± 0.28 μM 24.34 ± 0.33 μM

WT: wild-type; R: antimony-resistant

https://doi.org/10.1371/journal.pntd.0006930.t001
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The compound was able to reduce the number of infected cells by over 90% at a concentra-

tion of 48 μM. Comparative IC50 values are shown in Table 2. The 2HF activity can also be

observed in representative photos, showing no macrophage morphology alterations and

highlighting the reduced infection index, with almost 100% inhibition at the concentration of

48 μM (Fig 4).

In the evaluation of its possible cytotoxic effects, 2HF demonstrated a CC50 of 88.15 ± μM

over 72 hours (S2 Fig), and a selectivity index of 28.5 and 26.2 for wild type and antimony-

resistant, respectively. The biological efficacy of a drug is not attributed to cytotoxicity when

the selectivity index is greater than or equal to 10 [29], indicating that it was not toxic to mac-

rophages at the concentrations used in the infection protocol.

Fig 3. Effect of 2HF and meglumine antimoniate on L. amazonensis-infected macrophages. Macrophages were

infected with wild-type or antimony-resistant L. amazonensis promastigotes at 37˚C and 5% CO2. After 3 hours of

infection, the remaining promastigotes were removed. After 18 hours, the infected macrophages were incubated in the

absence or presence of increasing concentrations of 2HF (3–48 μM) or meglumine antimoniate (3.125–200 μM) for 72

hours. The infection index was determined using light microscopy. At least 200 macrophages were counted on each

coverslip in duplicate. The values shown represent the mean ± standard error of three independent experiments. In the

control samples (absence of 2HF), a similar volume of vehicle (0.2% DMSO) was added to the cells. Panel A and B:

Wild-type and antimony-resistant cells, respectively, treated with meglumine antimoniate; Panel C and D: Wild-type

and antimony-resistant, respectively, treated with 2HF. The values are presented as the mean ± standard error of three

different experiments. 2HF: 2’-hydroxyflavanone; WT: Wild-type; R: Antimony-resistant; Vehicle: RPMI-1640

medium with 0.2% DMSO. � indicates significant difference relative to control (p < 0.05).

https://doi.org/10.1371/journal.pntd.0006930.g003

Table 2. Comparative IC50 of meglumine antimoniate and 2HF against L. amazonensis-infected macrophages using wild-type and antimony-resistant L. amazonen-
sis promastigotes.

Antimonial 2HF

WT R WT R

IC50 value 9.37 ± 1.38 μM 35.73 ± 6.57 μM 3.09 ± 0.40 μM 3.36 ± 0.29 μM

WT: wild-type; R: antimony-resistant

https://doi.org/10.1371/journal.pntd.0006930.t002
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2HF demonstrates favorable in silico predicted properties

To perform the in silico analysis and evaluate the potential of 2HF as a future drug for the treat-

ment of leishmaniasis by the oral route, we used the ADMETSar platform [28] to assess the pre-

dicted pharmacokinetic properties (ADMET—absorption, distribution, metabolism, excretion

and toxicity) of the compound. We also evaluated its chemical characteristics according to the

"Rule of Five" (Ro5) of Lipinski [30,31]. The compound was able to fully satisfy Lipinski’s rule of

five, not violating any rule. Upon interpreting the results obtained from the ADMETSar data-

base, 2HF was found to exhibits a high probability of human intestinal absorption, appearing to

be permeable to Caco-2 cells and not to be a P-glycoprotein substrate. Regarding metabolism,

2HF is not a CYP substrate but is an inhibitor of CYP2C9, CYP2C19 and CYP1A2. In the toxic-

ity analysis, 2HF demonstrated good probabilities for no Ames toxicity or carcinogenicity

(Table 3). Taken together, these data suggest that 2HF is safe and orally absorbed.

2HF inhibits lesion growth and reduces the parasitic load in experimental

wild-type and antimony-resistant cutaneous leishmaniasis

Taking into consideration the in vitro results and favorable in silico analysis, 2HF activity was

evaluated in vivo in a murine model of cutaneous leishmaniasis. In BALB/c mice infected with

Fig 4. Illustrative photos of 2HF and meglumine antimoniate against L. amazonensis-infected macrophages. Macrophages

infected with wild-type L. amazonensis promastigotes (Panel A) or antimony-resistant L. amazonensis promastigotes (Panel B). Scale

bars correspond to 10 μm. Black arrows indicate the presence of amastigotes. 2HF: 2’-hydroxyflavanone.

https://doi.org/10.1371/journal.pntd.0006930.g004
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L. amazonensis wild-type promastigotes, as shown in Fig 5, the oral administration of 2HF

(50 mg/kg/day) reduced the lesion size (p < 0.01) from day 21 post-infection (panel A)

and the parasite load (p < 0.001) (panel B), demonstrating 98.8% inhibition by 2HF.

Reduction in the lesion size and parasite load, together with illustrative photos of infected

ears (Fig 5C), demonstrates the ability of 2HF to control L. amazonensis infection in

BALB/c mice.

Additionally, significant differences between the infected mice treated with 2HF (50 mg/kg/

day) and meglumine antimoniate (100 mg/kg/day) were observed in terms of lesion size

(p< 0.05) (Fig 5A). However, no statistically significant difference (p = 0.0655) was observed

between 2HF (50 mg/kg/day) and meglumine antimoniate (100 mg/kg/day) in terms of para-

site load.

Serological toxicology markers such as alanine aminotransferase, aspartate aminotransfer-

ase and creatinine were evaluated, and no significant changes were observed, suggesting the

absence of liver and kidney toxicity. Additionally, hematological parameters were evaluated

and indicated that 2HF did not promote any changes (S1 Table).

Furthermore, 2HF was tested against BALB/c mice infected with antimony-resistant L.

amazonensis promastigotes. 2HF treatment significantly reduced both the lesion size starting

Table 3. 2HF in silico ADMET predictions.

Model Result Probability

Absorption

BBB + 90.44%

HIA + 100%

Caco-2 + 79.59%

P-glycoprotein substrate NS 57.38%

P-glycoprotein inhibitor NI 81.82%

Metabolism

CYP450 2C9 Substrate NS 73.86%

CYP450 2D6 Substrate NS 88.10%

CYP450 3A4 Substrate NS 64.87%

CYP450 1A2 Inhibitor I 79.45%

CYP450 2C9 Inhibitor I 90.58%

CYP450 2D6 Inhibitor NI 85.61%

CYP450 2C19 Inhibitor I 90.03%

CYP450 3A4 Inhibitor NI 80.55%

Toxicity

AMES Toxicity N 83.11%

Carcinogens N 92.06%

Lipinski’s rule of 5

HBA (�10) 3 0 violations

HBD (�5) 1

miLogP (�5) 3.123

n-ROTB (�10) 1

MW (�500) 240.25

BBB—blood-brain barrier; HIA—human intestinal absorption; + positive;—negative; I—inhibitor; NI—

noninhibitor; NS—non-substrate; n-ROTB—number of rotatable bonds; HBA—number of hydrogen bond

acceptors; HBD—number of hydrogen bond donors; milogP—logarithm of compound partition coefficient between

n-octanol and water; MW—molecular weight.

https://doi.org/10.1371/journal.pntd.0006930.t003
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from day 25 (p< 0.05) and the parasite load by 99% (p< 0.05) compared the control treat-

ment (Fig 6A and 6C). Moreover, BALB/c mice infected with antimony-resistant promasti-

gotes were also treated with pentavalent antimonial (meglumine antimoniate) (a reference

drug used in the treatment of leishmaniasis and a drug used to induce resistance). As observed

in Fig 6, meglumine antimoniate was not capable of reducing the lesion size (panel B) and par-

asite load (panel C), corroborating the parasite resistance.

Hematological and toxicological parameters were analyzed, showing no significant alter-

ations (S2 Table).

To confirm the maintenance of resistance, promastigotes were recovered from the infected

ears of mice from each treated group (vehicle, 2HF and meglumine antimoniate). These pro-

mastigotes were tested for antimony resistance and compared to wild-type L. amazonensis pro-

mastigotes. Wild-type promastigotes presented an IC50 of 25.33 μM (Fig 7A). However,

promastigotes recovered from the vehicle treatment group demonstrated an IC50 of 157.9 ±
μM, a 6.2-times antimony resistance compared to wild-type promastigotes (Fig 7B). The 2HF-

treated promastigotes demonstrated an IC50 of 212 ± μM, an 8.4-times antimony resistance

Fig 5. In vivo effects of 2HF and meglumine antimoniate using wild-type L. amazonensis. BALB/c mice were infected in the right ear with 2 × 106 wild-

type L. amazonensis promastigotes. Panel A: Lesion development on the animals treated orally with 2HF (50 mg/kg/day), intraperitoneally with meglumine

antimoniate (100 mg/kg/day) and with an oral suspension added to DMSO (0.2% v/v) (2HF vehicle). The treatment started seven days post-infection and was

given once daily seven times per week until the end of the experiment (day 42). Panel B: Parasite burden of the L. amazonensis-infected BALB/c mice

untreated or treated with 2HF (50 mg/kg/day) or meglumine antimoniate (100 mg/kg/day). Ear parasite loads were determined via a limiting dilution assay.

Data are expressed as the means ± standard errors. These data represent two independent experiments with five mice per group each (n = 5). �, �� and ���

indicate significant differences relative to the control group and #, ##, ### indicate significant differences relative to 2HF (p< 0.05; p< 0.01 and p< 0.001,

respectively); Panel C: Illustrative lesion photos of a representative infected ear treated with the vehicle (left photo), 2HF (center photo) and meglumine

antimoniate (right photo). 2HF = 2’-Hydroxyflavanone.

https://doi.org/10.1371/journal.pntd.0006930.g005
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Fig 6. Leishmanicidal effect of 2HF and meglumine antimoniate in antimony-resistant L. amazonensis -infected

BALB/c mice. BALB/c mice were infected in the right ear with 4 × 106 antimony-resistant L. amazonensis
promastigotes. Panel A: Lesion development on the animals treated orally with 2HF (50 mg/kg/day). Panel B: Lesion

development on the animals treated intraperitoneally with meglumine antimoniate (100 mg/kg/day). The untreated

2HF is effective against CL caused by L. amazonensis wild-type and antimony-resistant

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006930 December 6, 2018 12 / 18

https://doi.org/10.1371/journal.pntd.0006930


compared to wild-type promastigotes (Fig 7C). Finally, meglumine antimoniate-treated cells

showed an IC50 of 122 ± μM, a 5-times resistance to antimony compared to wild-type promas-

tigotes (Fig 7D). Taken together, these results confirmed the maintenance of resistance in pen-

tavalent antimony-resistant L. amazonensis promastigotes after in vivo infection. Comparative

IC50 values are shown in Table 4.

Discussion

The current chemotherapy scenario for leishmaniasis suffers from side effects, resistance and

high costs [32,33]. Pentavalent antimonial is the first choice for the treatment of leishmaniasis,

however antimonial resistance has become a serious problem. Nevertheless, it is still being

used in other regions of the world, including Latin America and East Africa [34]. Therefore,

the search for new drugs and targets with more efficacies, less toxicity and affordability has

recently been increasing.

In an attempt to reduce side effects and resistance, the search for natural products has

grown [5] and has highlighted secondary metabolites, especially flavonoids. Flavonoids are

polyphenols that are synthesized by plants [14,17]. They have been well known due to their

pharmacological properties, including antiviral, anti-inflammatory, antineoplastic, trypanoso-

micidal and leishmanicidal activities [18–20,22,23,35–38]. Many studies of these metabolites,

however, have not advanced beyond in vitro assays due to negative results obtained in initial

screenings or to in vitro toxicity problems. Additionally, many have shown promising results

but are still waiting to be tested [5,14].

In accordance with the natural products research trend of drug repurposing, 2HF is a flava-

none that has demonstrated promising results against tumor cells. In the present study, we

demonstrated that 2HF was effective against L. amazonensis in vitro and in vivo by the oral

route, in addition to demonstrating no cross-resistance with antimonials.

2HF demonstrated good activity against the promastigote and intracellular amastigote

forms of both wild-type L. amazonensis (IC50 of 20.96 μM and 3.09 μM for promastigotes and

intracellular amastigotes, respectively) and antimony-resistant L. amazonensis (IC50 of

24.34 μM and 3.36 μM for promastigotes and intracellular amastigotes, respectively). 2HF was

able to cause a decrease in the infection index in a dose-dependent manner, reaching almost

100% for both promastigotes at the highest dose tested (48 μM) without showing toxicity

toward the host cell (Fig 2A and Fig 3C).

In previous studies using other flavonoids such as apigenin (flavone), quercetin (flavonol),

and epigallocatechin-3-gallate (catechin), similar dose-dependent activities compared to 2HF

effects were observed in the promastigote and intracellular amastigote forms of L. amazonensis
and L. braziliensis [18,19,22,23].

Two hypotheses can be postulated to explained the distinct action of 2HF between promas-

tigotes and intracellular amastigotes: 1) Efficacy of compounds may depend on the develop-

mental stage of the parasite; 2) Macrophages could accumulate higher levels of 2HF.

Accordingly, it has been demonstrated that several molecules require lower concentrations to

mice (control group) were treated with an oral suspension added to DMSO (0.2% v/v) (2HF vehicle). The treatment

started seven days post-infection and was given once daily seven times per week until the end of the experiment (day

42). Panel C: Parasite burden of the L. amazonensis-infected BALB/c mice untreated or treated with 2HF (50 mg/kg/

day) or meglumine antimoniate (100 mg/kg/day). Ear parasite loads were determined via a limiting dilution assay.

Data are expressed as the means ± standard errors. These data represent one independent experiment with five mice

per group each (n = 5). �, �� and ��� indicate significant differences relative to the control group (p< 0.05; p< 0.01

and p< 0.001, respectively) and ## indicate significant differences relative to 2HF (p < 0.01); 2HF = 2’-

Hydroxyflavanone; ns = No statistical significance.

https://doi.org/10.1371/journal.pntd.0006930.g006
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exert a pronounced effect against intracellular amastigotes compared to promastigotes [39–

41].

The absence of suitable therapy necessitates the development of novel antileishmanial ther-

apies. In this study, we demonstrated that oral 2HF treatment decreases the lesion size and par-

asite load in vivo using both wild-type Leishmania and antimony-resistant Leishmania. In

addition, 2HF did not alter hematological parameters or serological toxicology markers in the

infected mice. However, additional specific toxicity studies, such as genotoxicity, should be

done.

It is well known that resistance is a major problem for leishmaniasis chemotherapy, particu-

larly antimony resistance, since antimony is the first line of treatment in several countries. The

purpose of this work was to show 2HF not only as a good candidate for leishmaniasis treat-

ment but also as an alternative treatment to address therapeutic failure and resistance. Our

Fig 7. Resistance confirmation in in vivo recovered promastigotes. L. amazonensis promastigotes were recovered

from the in vivo limiting dilution experiment from each treated group and cultivated with Schneider’s Drosophila

medium. Promastigotes were incubated in the presence or absence of the potassium antimony tartrate (SbIII) (0.3–

5000 μM) for 72 hours. The viability was measured by resazurin. The IC50 for resistance confirmation was calculated

via nonlinear regression using GraphPad Prism 6.0. The values are presented as the mean ± standard error of two

different experiments. Panel A: Wild-type promastigotes; Panel B: Promastigotes recovered from the vehicle treatment

group; Panel C: Promastigotes recovered from the 2HF-treated group; Panel D: Promastigotes recovered from the

meglumine antimoniate-treated group.

https://doi.org/10.1371/journal.pntd.0006930.g007

Table 4. Comparative IC50 for antimonial against in vivo recovered promastigotes.

WT R + vehicle R + 2HF R + A

IC50 25.33 μM 157.9 μM 212 μM 122 μM

Resistance fold - 6.2 8.4 5

WT: wild-type; R: antimony-resistant; 2HF: 2’-Hydroxyflavanone; A: meglumine antimonial

https://doi.org/10.1371/journal.pntd.0006930.t004
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data demonstrates that 2HF was able to inhibit antimony-resistant promastigotes (Fig 2) simi-

larly to wild-type cells, in addition to its effect against intracellular amastigotes, reducing the

infection index in a dose-dependent manner (Fig 3). The most important result was the obser-

vation of its ability to control antimony-resistant Leishmania infection in the murine model

(Fig 5). This is the first time that the activity of a flavonoid on antimony-resistant L. amazonen-
sis has been demonstrated.

Considering that 2HF reduced the lesion size and parasite load without compromising the

overall health of the infected mice, we suggest this compound as a potential candidate for leish-

maniasis chemotherapy for cutaneous leishmaniasis caused by both wild-type and antimony-

resistant Leishmania. Furthermore, studies should be conducted to determine the ideal dose

and therapeutic regimen.

Supporting information

S1 Fig. L. amazonensis promastigotes resistance confirmation. Antimony-resistant L. ama-
zonensis promastigotes were cultivated in the absence or presence of potassium antimony tar-

trate (SbIII) (0.3–2500 μM) for 72 hours. Cell viability was measured using resazurin. The

values are presented as the mean ± standard error of three different experiments. The IC50 for

resistance confirmation was calculated via nonlinear regression using GraphPad Prism 6.0.

The IC50 value was 34.21 μM and 300.5 μM for wild-type and antimony-resistant L. amazo-
nensis promastigotes, respectively, demonstrating an almost 9 times resistance. The values are

presented as the mean ± standard error of two different experiments. Panel A: Wild-type L.

amazonensis promastigotes; Panel B: Antimony-resistant L. amazonensis promastigotes. �

indicates significant difference relative to control (p< 0.05).

(TIF)

S2 Fig. Cytotoxicity of 2HF in murine macrophages. Peritoneal BALB/c mice were incubated

in the absence or presence of 2HF (0–96 μM) for 72 hours. Cell viability was measured by resa-

zurin. The values are presented as the mean ± standard error of two different experiments.

The IC50 was calculated via nonlinear regression using GraphPad Prism 6.0. The values are

presented as the mean ± standard error of three different experiments. � indicates significant

difference relative to control (p< 0.05).

(TIF)

S1 Table. Hematological and Biochemical parameters of 2HF effects in wild-type infection

model. RBC: red blood cells; MCV: mean corpuscular volume; MCH: mean corpuscular

hemoglobin; MCHC: mean corpuscular hemoglobin concentration; ALT: alanine aminotran-

saminase; AST: aspartate aminotransaminase. The values are presented as the mean ± standard

error of two different experiments, five mice per group each (n = 5). Hematological parameters

and serological toxicology markers in the infected BALB/c mice treated as described above

were measured by the Program of Technological Development in Tools for Health-PDTIS--

FIOCRUZ.

(DOCX)

S2 Table. Hematological and Biochemical parameters of 2HF effects in antimony-resistant

infection model. RBC: red blood cells; MCV: mean corpuscular volume; MCH: mean corpus-

cular hemoglobin; MCHC: mean corpuscular hemoglobin concentration; ALT: alanine ami-

notransaminase; AST: aspartate aminotransaminase. The values are presented as the

mean ± standard error of one experiment, five mice per group each (n = 5). Hematological

parameters and serological toxicology markers in the infected BALB/c mice treated as

described above were measured by the Program of Technological Development in Tools for
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Amaral.

Funding acquisition: Elmo E. Almeida-Amaral.

Investigation: Luiza F. O. Gervazoni, Gabriella Gonçalves-Ozório, Elmo E. Almeida-Amaral.
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