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Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumors
originating from chromaffin cells in the adrenal medulla (PCCs) or extra-adrenal
sympathetic or parasympathetic paraganglia (PGLs). About 40% of PPGLs result from
germline mutations and therefore they are highly inheritable. Although dysfunction of any
one of a panel of more than 20 genes can lead to PPGLs, mutations in genes involved in
the VHL/HIF axis including PHD, VHL, HIF-2A (EPAS1), and SDHx are more frequently
found in PPGLs. Multiple lines of evidence indicate that pseudohypoxia plays a crucial role
in the tumorigenesis of PPGLs, and therefore PPGLs are also known as metabolic
diseases. However, the interplay between VHL/HIF-mediated pseudohypoxia and
metabolic disorder in PPGLs cells is not well-defined. In this review, we will first discuss
the VHL/HIF axis and genetic alterations in this axis. Then, we will dissect the underlying
mechanisms in VHL/HIF axis-driven PPGL pathogenesis, with special attention paid to the
interplay between the VHL/HIF axis and cancer cell metabolism. Finally, we will summarize
the currently available compounds/drugs targeting this axis which could be potentially
used as PPGLs treatment, as well as their underlying pharmacological mechanisms. The
overall goal of this review is to better understand the role of VHL/HIF axis in PPGLs
development, to establish more accurate tools in PPGLs diagnosis, and to pave the road
toward efficacious therapeutics against metastatic PPGLs.
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INTRODUCTION

Pheochromocytomas (PCCs) are catecholamine-secreting tumors that originated from the
chromaffin cells in the adrenal medulla. Paragangliomas (PGLs) are neural crest-derived
neuroendocrine neoplasms originating from extra-adrenal sympathetic or parasympathetic
ganglia (1). Both PCCs and PGLs are collectively known as PPGLs. PPGLs are rare tumors with
the incidence rate between 0.2 and 0.8 per 100,000 (2–4) with great clinical manifestations (5). Due
to elevated levels of catecholamines in the circulation, the common clinical presentations of PPGLs
include episodes of headache, sweating, palpitation, and hypertension. In addition, about 10% of
PCCs are metastatic (6) and 40% of PGLs are considered as metastatic disease (7, 8).
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Etiologically, about 70%–80% of PPGLs are caused by genetic
abnormalities which affect different signaling pathways (9).
Approximately, 40% of PPGLs result from germline mutations,
and therefore they are highly inheritable (10). Although
dysfunction of any of these related susceptible gene products
can lead to PPGLs, mutations in the genes encoding the VHL/
HIF axis such as VHL, HIF, and PHD are more commonly found
in PPGLs (11). Moreover, multiple lines of evidence suggest that
pseudohypoxia plays a crucial role in the tumorigenesis of
PPGLs. In this review, we will discuss the genetic alterations
affecting the VHL/HIF axis and dissect the underlying molecular
mechanisms in pseudohypoxia signaling and PPGLs. We will
also summarize the currently available compounds or drugs
targeting VHL/HIF axis, their specific targets , and
pharmacological mechanisms.
THE VHL/HIF AXIS

The Von Hippel-Lindau (VHL) gene located on 3p25.5 encodes
an ancient tumor suppressor, pVHL. Although pVHL functions
in both physiology and pathology, as a component of an E3
ubiquitin-ligase complex, pVHL plays a determinant role in the
degradation of hypoxia-induced factors (HIFs) including HIF-
1a, HIF-2a, and HIF-3a. The roles of HIF-1a and HIF-2a in
sensing and facilitating cellular adaptation to hypoxic conditions
as well as their underlying molecular mechanisms are well-
established (12). However, much less is known about HIF-3a.
Functionally, HIF-1a and HIF-2a heterodimerize with HIF-b by
HLH domain, which is also known as ARNT, to transcriptionally
regulate a wide spectrum of HIF target genes. Both HIF-a and
Frontiers in Endocrinology | www.frontiersin.org 2
HIF-b belong to the basic helix-loop-helix-Per-ARNT-Sim
(bHLH-PAS) family. They contain a basic DNA binding
domain, a conserved NH2-terminal domain (N-TAD), and two
specialized transactivation domains located in their variable
COOH-terminal domains (C-TAD) (13) (Figure 1). The
asparagine residue (N803) in the C-TAD of HIF-a can be
hydroxylated by factor-inhibiting HIF (FIH) to interrupt its
interaction with CREB-binding protein (CBP)/p300, an
essential coactivator of HIF (14–16). The N-TAD also contains
an oxygen-dependent domain (ODDD), in which a few prolyl
residues (Pro-402 and Pro-564 in HIF-1a; Pro-405 and Pro-531
in HIF-2a) are selectively hydroxylated under normoxic
condition and hydroxylated HIFs are subsequently degraded
(17–20). The enzymes responsible for HIF-a hydroxylation
belong to the egg-laying-defective nine (EGLN) family known
as PHD1, PHD2, and PHD3 because they all contain a prolyl-4-
hydroxylase domain. These enzymes are dioxygenases and use
both molecular oxygen and Fe2+ as their co-substrates to catalyze
HIF-a hydroxylation.

The VHL/HIF axis responses to reduced oxygen
concentration or hypoxia. Although HIF-1a and HIF-2a have
about 48% sequence similarity, they regulate two different groups
of target genes with limited overlap mainly due to their dissimilar
transactivation domains (21, 22). In addition, HIF-1a is widely
expressed, while HIF-2a is only expressed in certain cell types
(23, 24). For example, the genes involved in glucose metabolism
are mainly regulated by HIF-1a. HIF-2a plays a more important
role in the adjustment to high altitudes and the regulation of
EPO expression (25, 26). As mentioned above that compared to
HIF-1a and HIF-2a, much less is known about HIF-3a. Since it
lacks the transactivation domain (27), HIF-3a likely does not
FIGURE 1 | The common mutation sites of VHL and EPAS1 genes in PPGLs.
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transcriptionally regulate its target genes. Overall, the levels and
functions of both HIF-1a and HIF-2a are oxygen-concentration
dependent. Specific proline residues of HIF-1a and HIF-2a are
hydroxylated by PHD under normoxic conditions. With the
involvement of the molecules such as elongin B, elongin C, cul2,
the hydroxylated HIFs are recognized by the pVHL (28–30),
subsequently ubiquitinated and ultimately degraded (31, 32).
Under hypoxic conditions, the non-hydroxylated HIFs are
dissociated from pVHL, accumulated in the cells, and
subsequently upregulate their target genes transcriptionally.
However, failure in the degradation of HIFs due to either
deletion or mutation of either VHL, HIFs, or PHDs can lead to
dysregulation of HIFs-regulated genes in a variety of diseases
including PPGLs (Figure 2).
DYSREGULATION OF THE VHL/HIF AXIS
AND PPGLs

As mentioned above that mutation in either the three genes
encoding pVHL, HIFs and PHDs can lead to abnormal
accumulation of HIFs. Minor alteration of this axis usually
causes erythrocytosis; whereas major dysregulation of the axis
is associated with tumorigenesis (33). Although a wide spectrum
of tumors including hemangioblastomas, renal cell carcinoma
(RCC), pancreatic neuroendocrine tumor, and PPGLs can result
from dysregulation of the VHL/HIF axis (34–37), this review will
only focus on the relationship between aberrations of these genes
and PPGLs.
Frontiers in Endocrinology | www.frontiersin.org 3
VHL Mutations
After the VHL mutations were first described in an ophthalmic
disease (34), multiple studies subsequently confirmed that VHL
mutations can cause a variety of diseases including cancers (35–
37). To honor the contributions of the German ophthalmologist
Eugen von Hippel and the Swedish pathologist Arvid Lindau, the
gene responsible for these diseases is, therefore, named as VHL.
Of note, VHL disease caused by heterozygous germline
mutations is autosomal dominant and almost completely
penetrant (97%) (38). VHL diseases are generally classified into
two types, type 1 (without PCCs) and type 2 (with PCCs). The
type 2 disease is manifested as RCCs, PCCs, central nervous
system, retinal hemangioblastomas, pancreatic neuroendocrine
tumors and pancreatic and renal cysts and can be further divided
into three subtypes (34), PCCs with all types of VHL disease
manifestations without RCC (Type 2A), PCC with all types of
VHL disease including RCC (Type 2B), and isolated PCCs
(Type 2C).

To date, more than 1,000 mutations in VHL gene have been
identified. These mutations can be categorized as missense
mutation (52%), frameshift mutation (13%), nonsense
mutation (11%), in-frame deletion/insertion mutation (6%),
large/complete deletion mutation (11%), and splicing mutation
(7%) (39). The common germline mutations in VHL are
delPhe76, Asn78Ser, Argl61Stop, Arg167Gln, Argl67Trp, and
Leu178Pro (40) (Figure 1). Recently, we reported four missense
mutations in five Chinese unrelated families c.239G>T
(p . S e r 80 I l e ) , c . 2 32A>T (p .A sn78Ty r ) , c . 5 00G>A
(p.Arg167Gln), c.293A>G (p.Try98Cys), and all four mutations
FIGURE 2 | The VHL/HIF axis and compounds targeting the axis.
November 2020 | Volume 11 | Article 586857

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Peng et al. VHL/HIF Axis in PPGLs
predispose the patients to VHL disease (41). Notably, type 2 VHL
disease mainly resulted from missense mutations (85%–92%)
(40, 42), especially mutations in codons 167 and 238, are mainly
associated with PPGLs (43, 44). In contrast, homozygous
germline mutations are rare or barely cause tumors. Sonny
et al. found a c.598C>T (p.Arg200Trp) homozygous missense
germline mutation of VHL caused Chuvash polycythemia (45).
In addition, somatic VHL mutations were found in majority
(50%–70%) of clear-cell RCC cases (38).

It has been reported that different mutations in VHL lead to
diverse clinical symptoms (41, 46–49), and sometimes even the
same mutation can lead to different phenotypes (50–53). Since
pVHL has multiple functional domains, one of the potential
explanations for this phenomenon is that a specific mutation
causes particular dysfunction. It appears that missense mutations
are more likely linked with type 2 disease and truncating
mutations are responsible for type 1 disease (54). However, Liu
et al. further stratified the missense mutations as HIF-a binding
site missense mutations (HM) group and non-HIF-a binding
site missense mutations (nHM) group, and found that the
missense mutations in HM group had similar risks of most
tumors with truncating mutations with the exception that the
HM group had a lower risk of RCC. Moreover, compared to
nHM, missense mutations in HM had a higher risk of pancreatic
cyst or tumor and a lower risk of PCCs (55). Secondly, some
functions of pVHL are O2-independent (56, 57) or unrelated to
HIF regulation, these functions may also be involved in PPGLs
pathogenesis. Michael et al. found that RCCs with deficient
pVHL exhibited deficiency in fibronectin matrix assembly (58).
Intriguingly, Clifford et al. reported that mutations associated
with type 2C phenotype could even promote, rather than inhibit,
HIF-a ubiquitylation and degradation (39). These findings
altogether supported the notion that disturbing the functions
of pVHL contributes to the development of PPGLs. Additionally,
based on Knudson’s Two-Hit model (59), it is understandable
that the diverse phenotypes of VHL diseases could be the result
of two different “hits”.

The VHL/HIF axis also can be affected by dysregulated
epigenetic modifications such as gene silencing by methylation
of the CpG islands in the promoter of related genes. Indeed,
promoter hypermethylation occurs in about 3%–42% of clear-
cell RCC (60). Adam Andreasson found that the promoter
methylation of the VHL gene is not only elevated in PPGLs
compared with normal tissue (57% vs. 27%) but also significantly
higher in malignancies than that in tumors (63% vs. 55%) (61).
However, the precise molecular mechanisms in the pathogenesis
of PPGLs related to loss-of-function of pVHL are still largely
unknown and therefore need further investigation.

HIF-A Mutations
As mentioned above that HIF-a family composed three
members, HIF-1a, HIF-2a, and HIF-3a. But little is known
about HIF-3a. Compared with HIF-2A, HIF-1A has relatively
few mutations, ClinVar database (https://www.ncbi.nlm.nih.gov/
clinvar/) only collects 30 records. Morris et al. reported a somatic
mutation (p.Val116Glu) and a germline missense mutation
(p.Ala475Ser) of HIF-1A in a clear-cell RCC with VHL
Frontiers in Endocrinology | www.frontiersin.org 4
inactivation. Of note, the germline mutation (p.Ala475Ser) was
likely to be a benign variant (62). Furthermore, Gladek et al.
found thatHIF-1A Single-Nucleotide Polymorphisms (SNPs) are
association with the phenotypes of many tumors (63). In PPGLs
patients, only copy number aberration (TCGA-QT-A5XP,
https://portal.gdc.cancer.gov/), not HIF-1A mutation, have
been found. On the other hand, both germline and somatic
mutation in HIF-2A have been identified in patients with
polycythemia and/or PPGLs. However, it appears that germline
mutations of HIF-2A including p.Met535Val, p.Gly537Arg,
p.Gly537Trp only leads to polycythemias, not tumors (64, 65).
A gain-of-function germline mutation in HIF-2A alone is not
sufficient for tumorigenesis presumably that simultaneous loss-
of-function in some tumor suppressors is needed. In fact, we
recently reported that germline mutations in HIF-2A
(c.1609G>A, p.Gly537Arg) are responsible for polycythemia
formation and additional somatic VHL mutations are needed
for the development of clear-cell RCC (66). Similarly, a germline
mutation in HIF-2A exon 9 (c.1121T>A, p.F374Y) leads to
polycythemia and predisposes the patients for PPGLs
development (67). In addition, somatic mutations in HIF-2A
appear to be more frequent genetic events in PPGLs (68). For
example, Zhang et al. reported two gain-of-function somatic
mutations (c.1588G>A, p.Ala530Thr and c.1589C>T,
p.Ala530Val) in exon 12 of HIF-2A resulting in paraganglioma
and polycythemia, respectively. Further analyses suggest that
mutations in the vicinity of the hydroxylation site Pro-531 affect
the catalytic activity of PHD and then lead to the interrupted
interaction between HIF-2a and pVHL (69). Moreover, Karel
Pacak et al. reported two somatic mutations of HIF-2A
(c.1595A>G p.Y532C and c.1586T>C p.L529P) in patients with
either congenital polycythemia, multiple recurrent PPGLs, or
somatostatinoma (70). We recently found that a gain-of-function
mutation of HIF-2A (c.1589C>T) leads to PPGLs with
polycythemia simultaneously (26) and a mutation in HIF-2A
immediately distal to its DNA binding domain (p.Ser71Tyr) has
been identified in sporadic PPGLs (71) (Figure 1). Germline or
somatic mutations of HIF-2A can be mosaic. Buffet et al.
reported two cases of HIF-2A-related Polycythemia-
Paraganglioma Syndrome resulted from mosaicism mutations.
They found that these patients could present with young age and
multiplicity; and also the mutations could be transmitted to the
offspring (72). In addition, HIF-2A mosaic mutation might be
involved in high secretion of catecholamines and cyanotic
congenital heart disease (73).

Mutation in PHD and Other
Related Factors
Heterozygous germline mutations in PHD2 gene were first
reported in familial erythrocytosis (74, 75). Later, Ladroue
et al. reported a heterozygous loss-of-function mutation of
PHD2 (c.1121A>G, p.His374Arg) with the development of
both erythrocytosis and recurrent paraganglioma. Functional
analysis indicates that His374 is important in the binding of
cofactor Fe2+, and mutation of this residue is expected to impair
the catalytic function of PHDs (76). Yang et al. reported
heterozygous germline mutations in PHD1 (c.188T>A,
November 2020 | Volume 11 | Article 586857
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p.Ser61Arg and c.682G>T, p.Ala228Ser) in patients with
polycythemia and PPGLs, respectively. Further research found
that the half-lives of both PHD1 and PHD2 are reduced with
these PHD1 mutants (77). These findings collectively
demonstrated that mutant PHDs are indeed associated with
susceptibility to PPGLs. However, compared to VHL and
HIF-A, mutations in PHDs are relatively rare in patients with
PPGLs (78). Additionally, mutations of enzymes in the TCA
cycle can affect VHL/HIF axis indirectly. For example, elevated
levels of HIFs can be caused by the mutations in SDHx, FH,
MDH, and IDH with subsequent accumulation of specific
metabolites and reactive oxygen species (31, 79–89). In
addition, multiple lines of evidence indicated that mutations in
cluster 2 (Kinase Signaling Cluster) genes, including NF1, RET,
TMEM127, ERK, MAX, and H-RAS could affect the VHL/HIF
axis indirectly (90–94), although these mutations were initially
thought to drive PPGLs through the oxygen-independent kinase
signaling pathway, such as mTOR axis.
THE MECHANISMS IN DYSREGULATED
VHL/HIF AXIS AND PPGLs

Under normal physiological conditions, HIFs are degraded
during normoxic condition and HIFs accumulation only occur
during hypoxia. The undegraded HIF-a translocates to the
nucleus and dimerizes with HIF-b (95). Together with p300/
CBP, the HIF-a/HIF-b heterodimer is recruited to the hypoxia-
responsive elements (HREs) located on the promoter regions of
HIF-regulated targets to transcriptionally upregulate the
expression of the genes including vascular endothelial growth
factor (VEGF), platelet-derived growth factor (PDGF), and
glucose transporter (GLUT) (93, 96–98) (Figure 2). The
combined effects of these upregulated gene products result in
an increased supply of blood and nutrients to the hypoxic tissues
and switch glucose metabolism from aerobic to anaerobic
glycolysis. Due to the fast growth of tumor tissues, this process
occurs in all solid tumors (99, 100), and dysregulated VHL/HIF
axis further exacerbate the development of certain tumors such
as PPGLs.

Aerobic glycolysis, also known as Warburg Effect (9, 101,
102), occurs in all solid tumor cells. However, dysregulated VHL/
HIF axis plays a more important role in certain cancer types such
as clear-cell RCC and PPGLs. Pseudohypoxia, mimicking the
hypoxic condition, can affect different cancer processes including
tumorigenesis and malignant transformation by promoting
epithelial-mesenchymal transition and enhancing stem cell-like
property. Of note, metabolic reprogramming can affect each of
these processes and the role of VHL/HIF axis in cancer metabolic
reprogramming has been well defined. HIF-1 aberrant activation
due to either VHL or PHD mutations increases glucose uptake
and glycolysis with a concomitant decrease in mitochondrial
mass (103). HIF-a, especially HIF-1a, controls a wide spectrum
of enzymes including GLUT1, GLUT3, hexokinase 1/2, lactate
dehydrogenase-A (LDH-A), and pyruvate dehydrogenase kinase
Frontiers in Endocrinology | www.frontiersin.org 5
1 (PDK1) (104–108). Upregulating these enzymes collectively
shifts glycolysis from aerobic to anaerobic (109).

PPGLs are also considered as metabolic diseases due to the
increased secretion of one or more catecholamines (epinephrine,
norepinephrine, and dopamine). Catecholamines play a crucial
role in the regulation of multiple metabolic pathways. Patients
with PPGLs usually manifest with impaired insulin secretion,
increased insulin resistance, elevated lipolysis, and the bone
resorption marker C-terminal telopeptide of type I collagen
(110). Many studies have revealed that oncometabolite such as
succinate, fumarate, and 2-hydroxyglutarate (2HG) are increased
in PPGLs (83, 111, 112). Another study found that compared to
PPGLs without SDHx mutation, PPGLs with a deficient SDH
have 25-fold higher succinate and 80% lower levels of fumarate,
cis-aconitate, and isocitrate (113). Mutation in FH and IDH lead
to the accumulation of fumarate and (R)-2-hydroxyglutarate,
respectively (88, 114). Mechanistically, these oncometabolite
modulate the activity of a-ketoglutarate-dependent
dioxygenases such as PDH, which are involved in the
induction of the pseudohypoxia pathway and activation of HIF
axis (10, 31, 115). In addition, PPGLs with a germline mutation
in genes encoding enzymes in the TCA cycle belong to Cluster I
tumors, characterized by a pseudohypoxia signature (31).
Together with the other intermediate metabolites of the TCA
cycle, succinate can increase the chance of tumor development
and progression through an ill-defined mechanism (83).

Results from more recent researches indicate that HIFs can
regulate non-coding RNA (ncRNA) either directly or indirectly.
Direct regulation is achieved by the recruiting HIFs to the HREs
located on the promoter regions of ncRNAs. Whereas indirect
regulation of ncRNA is achieved by epigenetic modification (116).
One of the HIFs targets microRNA 210 (miR-210) (117)
participates in a variety of biological processes including
carcinogenesis, cancer cell proliferation, apoptosis, angiogenesis,
and metastasis (118–120). On the other hand, miRNA can also
activate HIF viamTOR indirectly. Calsina et al. reported miR-21-3p
can regulate TSC2/mTOR axis in metastatic PPGLs and proposed
that miR-21-3p can be the predictive markers of metastases (121).
In addition, some lncRNA such as H19, MALAT1, HOTAIR, and
lncRNA-SARCC play important roles in the activity of VHL/HIF
axis (122).
INHIBITORS TARGETING THE
VHL/HIF AXIS

Since the VHL/HIF axis plays a critical role in the development
of PPGLs, targeting this axis could be a promising therapeutic
strategy. Multiple reagents targeting the VHL/HIF axis have been
explored and some of them have been applied clinically (123–
127). Among them, the tyrosine kinase inhibitors (TKIs) are
most widely used because TKIs can repress angiogenesis by
inhibiting the VEGF pathway (128–130). Some compounds
targeting the VHL/HIF axis can inhibit tumor growth in both
animal models and clinical trials (Table 1).
November 2020 | Volume 11 | Article 586857
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Tyrosine Kinase Inhibitors
To date, more than 40 protein kinase inhibitors have been
approved by the FDA for cancer treatment (131). Several TKIs
including sunitinib, cabozantinib, axitinib, Lenvatinib, and
pazopanib are currently being evaluated in phase II clinical
trials (www.ClinicalTrials.gov). By repressing the tyrosine
kinase receptors, these reagents can inhibit cancer cell growth,
metastasis, and the development of therapeutic resistance (132).
More recently, several case studies and/or clinical trials in small
cohorts suggest that TKIs could be a promising treatment for
metastatic PPGLs or the syndrome-associated PPGLs.

Sunitinib, an orally administered TKI, can target both VEGFR
and PDGFR (133), and therefore, it could potentially serve as a
therapeutic reagent for PPGLs treatment. Early in vitro studies
showed that sunitinib can repress the growth of PCCs (134),
inhibit both synthesis and secretion of catecholamine (135).
Several clinical trials have suggested that patients with metastatic
PPGLs responded well to sunitinib (136–140). Results from one of
our recent studies also suggested that sunitinib could be an optional
therapy for patients with VHL disease-associated PCCs (141).
Results from the SNIPP trial showed that sunitinib at 50mg daily
benefited most patients with progressive PPGLs. Of 23 evaluable
cases, the disease control rate (DCR) was 83% and median
progression free survival (PFS) was 13.4 months, 3 (13%)
Frontiers in Endocrinology | www.frontiersin.org 6
patients with germline variants in RET or SDHx achieved a
partial response (PR), 16 (70%) patients had stable disease (SD)
(142). Currently, a phase II clinical trial (the First International
Randomized Study in Malignant Progressive Pheochromocytoma
and Paraganglioma, FIRSTMAPP) studying the effect of sunitinib
on PPGLs is ongoing. In addition, results from sdhb knockout
tumors bearing mice showed that sunitinib treatment can prevent
tumor growth and vessel development in the first 2 weeks;
thereafter, resistance will develop (143). Another study by using
both in vivo and vitro models demonstrated that sunitinib and
sorafenib can inhibit the growth of PCCs (144, 145). Previous study
reported that a patient with recurrence and metastatic PPGLs
responded well to 12 weeks of sorafenib treatment evidenced by
regressed metastatic and decreased catecholamine level (146).

In addition, cabozantinib also appears to be a promising TKI
for patients with PPGLs, especially for those with bone
metastases. A trial (NCT02302833) enrolled 11 PPGLs patients
with bone metastases is currently ongoing. Preliminary results
identified 4 patients with PR (37%) and 6 patients with SD (55%);
all patients with SD had tumor regression (18%–29%). The DCR
was 92%, PFS was 16 months. None of the patients had any
serious hypertension or cardiovascular events (147). A recent
trial (NCT01967576) showed that 36% of patients with
metastatic PPGLs achieved a PR when treated with axitinib
TABLE 1 | The inhibitors targeting the VHL/HIF axis.

Drugs or compounds Targets or mechanisms Clinical trials for PPGLs (www.clinicaltrials.gov)

Tyrosine kinase inhibitors Sunitinib Targeting VEGFR-1,2, PDGFR-b,RET, FGFR NCT01371201, NCT00843037
Sorafenib Targeting RAF kinase, c-KIT, FLT-3, RET, VEGFR1-3, and

PDGFR-b
None

Cabozantinib Targeting VEGFR, MET, RET NCT02592356, NCT04400474, NCT02302833
Axitinib Targeting VEGFR NCT01967576, NCT03839498
Lenvatinib Targeting VEGFR, FGFR, RET, c-Kit, PDGFa NCT03008369, NCT02592356
Pazopanib Targeting VEGFR1-3, PDGFR-a,b, c-Kit NCT01340794

Non-selective HIFs
inhibitors

17-AAG Promoting protein degradation None
17-DMAG Promoting protein degradation None
Vorinostat Promoting protein degradation None
Topotecan Inhibiting translation and transcription activity None
Acriflavine Inhibiting heterodimerization None
2-Methoxyestradiol Inhibiting nuclear translocation and transcriptional activity None
YC-1 Inhibiting protein accumulation and transcription activity None
Doxorubicin/
daunorubicin

Inhibiting DNA binding NCT00002764, NCT00002608, NCT00002641

HIF-1a inhibitors PX-478 Inhibiting mRNA expression and translation None
EZN-2208 Inhibiting mRNA expression None
Chetomin Disrupting binding to p300 None
Echinomycin Inhibiting DNA binding None
KC7F2 Inhibiting protein synthesis None
Glyceollins Inhibiting protein synthesis and stability None
Bisphenol A Promoting protein degradation None
LW6 Promoting protein degradation None
PX-12 Promoting protein degradation None
Cryptotanshinone Blocking nuclear translocation None
cyclo-CLLFVY Inhibiting heterodimerization None
Indenopyrazole 21 Inhibiting transcriptional activity None
EZN-2968 Inhibiting mRNA expression and translation None

HIF-2a inhibitors PT2385 Inhibiting heterodimerization None
PT2399 Inhibiting heterodimerization None
PT2977 Inhibiting heterodimerization None
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(148); while only one of seven patients with metastatic PPGLs
who received pazopanib showed a PR (149). Finally, recruitment
for a phase II clinical trial has just begun to test if lenvatinib can
be used as an anti-angiogenic medication for metastatic PPGLs
(www.ClinicalTrials.gov) (Figure 2).

Although the promising therapeutic effects of TKIs on PPGLs
have been widely reported, the toxicity of TKIs should also be
mentioned. The side effects of TKIs include fatigue, nausea,
thrombocytopenia, hypertension, myocardial infarction, and
restrictive cardiomyopathy and so on. O’Kane et al. reported
that due to severe adverse events, several patients needed to
reduce the dose of sunitinib, and even 20% patients discontinued
trial participation (142). A phase III clinical trial compared the
safety of pazopanib and sunitinib in metastatic RCC, the results
showed that patients treated with sunitinib had a higher
incidence of fat igue, the hand-foot syndrome and
thrombocytopenia than patients treated with pazopanib.
Although the rate of cardiovascular adverse events of
pazopanib were similar to that of sunitinib, the abnormal liver
tests leading to discontinuation in pazopanib-treatment patients
should be noted (139). Furthermore, the tolerance of axitinib was
similar to that of other VEGFR inhibitors. Rini et al. reported
that axtinib more frequently causes hypertension than sorafenib
(40% vs. 29%) (NCT00678392) (140). Similarly, Van Geel et al.
reported that the incidence of hypertension in axtinib-treatment
patients was higher than that in pazopanib-treatment patients
(150). Burotto Pichun et al. reported that even 80% axtinib-
treatment patients developed severe hypertension (148).
Recently, a phase III randomized ATLAS trial assessed the
safety of axitinib versus placebo, axitinib-treated patients had
more grade 3/4 adverse events and discontinuations (151). Taken
together, the safety of TKIs needs to be further evaluated in
the future.

HIFs Inhibitors
Transcription factors including HIFs have been historically
considered undruggable. This is one of the reasons that
research in the pharmaceutical field has been mainly focusing
on HIF’s downstream pathways, such as VEGF. However, based
on the structure of HIF-2a (152), two compounds PT2385 and
PT2399 targeting HIF-2a were successfully identified (145, 153).
Subsequent in vitro and in vivo studies showed that these
compounds can inhibit the growth of clear-cell RCC (154). A
phase I trial found that for patients with progressive clear-cell
RCC the complete response, partial response, and stabilized
disease to PT2385 were 2%, 12%, and 52%, respectively (155).
It has been proposed that HIF-2a inhibitors possess a great
potential for the treatment of advanced PPGLs (156). These
initial results could also spearhead a multitude of preclinical and
clinical studies assessing the efficiency of the compounds in other
tumor types. In fact, PT2385 has entered its phase II clinical trial
(NCT03108066) evaluating its efficacy in patients with advanced
cancers carrying a VHL germline mutation. Recently, second-
generation allosteric inhibitor of HIF-2a PT2977 (MK-6482)
was identified. Compared to PT2385, PT2977 have increased
potency and improved pharmacokinetic profile (157). The result
of phase I/II trial of PT2977 in 55 patients with advanced RCCs
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revealed that 24% patients experienced a confirmed PR and 54%
had SD, with a clinical benefit rate of 78%. Moreover, a PT2977
monotherapy Phase III trial in patients with previously treated
advanced RCC is planned (158). Notably, previous studies
reported that HIF-2a was overexpressed in VHL and in SDH-
related PPGLs compared to HIF-1a (159, 160). Therefore,
inhibitors targeting HIF-2a appear to be more promising than
inhibitors targeting HIF-1a.

Other Compounds Targeting VHL/HIF Axis
Theoretically, any compounds capable of inhibiting the VHL/
HIF axis can potentially become therapeutic reagents for the
treatment of metastatic PPGLs. For example, the HSP90
inhibitors, 17-N-allylamino-17-demethoxy geldanamycin (17-
A AG ) a n d 1 7 - d i m e t h y l a m i n o e t h y l a m i n o - 1 7 -
demethoxygeldanamycin (17-DMAG) (161–163), and histone
deacetylase inhibitor, vorinostat (164, 165), are capable of
inducing HIF-a degradation. Topotecan can downregulate
HIF-a by inhibiting topoisomerase I (TOP-I) (166–168). Of
note, topotecan has already been used as a therapeutic reagent for
the treatment of metastatic ovarian carcinoma, recurrent small
cell lung cancer, and recurrent cervical cancer (169–171).
Acriflavine can inhibit dimerization between HIF-a and HIF-b
and subsequently repress the expression of HIFs target genes
(172). 2-Methoxyestradiol (2-ME), an active metabolite of 17b-
estradiol, can inhibit the synthesis, nuclear translocation, and
transcriptional activity of HIF-a (173, 174). In addition, an
antiplatelet aggregation agent YC-1 can not only suppress HIFs
transcriptional activity by inhibiting p300 recruitment but also
promote HIF-a degradation by enhancing FIH binding (175).
Finally, two anthracyclines, doxorubicin and daunorubicin, have
been demonstrated to inhibit the expression of HIFs targets
efficiently by interrupting HIF-a recruitment (176).

There are also compounds inhibiting HIF-1a synthesis. For
example, PX-478 is capable of downregulating both the mRNA
and protein levels of HIF-1a (177–179). EZN-2208 (PEG-SN38)
can downregulate the expression of HIF-1a in lymphocytic
leukemia (180). By hybridizing with HIF-1a mRNA, EZN-
2968, a 3rd generation antisense oligonucleotide, can
specifically inhibit HIF-1a translation (181, 182). Chetomin is
capable of repressing xenograft growth in vivo by disrupting
HIF-1a and p300 interaction (183). Finally, there is a myriad of
compounds including echinomycin, CAY10585, KC7F2,
glyceollins, bisphenol A, LW6, PX-12, cryptotanshinone (CPT),
cyclo-CLLFVY, and indenopyrazoles 21 that have all been
validated as selective inhibitors of HIF-1a with different
molecular mechanisms (184–196).
CONCLUSION

The VHL/HIF axis plays an important role in oxygen homeostasis
and cellular metabolism in both physiology and pathology.
Dysregulation of this axis due to either germline mutations,
somatic mutations, and epigenetic dysregulation can be involved
in tumorigenesis and progression of different cancer types
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including PPGLs. Mechanistically, by reprogramming metabolic
pathways the abnormally activated HIFs drive cancer cells toward
aerobic glycolysis. Based on the underlying molecular mechanisms
of VHL/HIF axis in PPGLs development, a wide spectrum of
drugs specifically targeting this axis have been and will continue to
be developed as PPGL therapeutics. With a better understanding
of the relationship between VHL/HIF axis and PPGLs, more
accurate diagnosis and prognosis of PPGLs, as well as efficacious
therapeutics against PPGLs, are expected in the near future.
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