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Global Implementation of Precision Oncology
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Advances in sequencing technologies have provided
unprecedented insights into the molecular landscape
of tumors. With next-generation sequencing (NGS),
comprehensive molecular profiling of tumors can be
generated expediently and at a fraction of the costs
associated with traditional sequencing methods.1 On
the shoulders of these scientific advances in se-
quencing technology, genome-driven therapy has
been pushed to the forefront of cancer medicine
(precision oncology). Since cancer is a disease driven
primarily by alterations in the genetic code,2 it follows
that identifying specific alterations driving the malig-
nant process should fuel the development of novel
therapeutic strategies. Therein lies the concept of
precision oncology—an opportunity to personalize
care, with the promise of greater efficacy with less
toxicity for the individual patient. Indeed, for a number
of patients, this dream has been fulfilled with the re-
cent regulatory approvals of targeted and immuno-
oncology agents in a histology agnostic setting, in-
cluding the approval of the TRK inhibitor, larotrectinib,
for patients with TRK fusion–positive solid tumors3 and
more recently the approval of pembrolizumab for
patients with tumor mutational burden–high solid
tumors.4 Further, targeted therapies previously ap-
proved in a histology-specific setting, such as BRAF
inhibitors in melanoma5 and trastuzumab in human
epidermal growth factor receptor 2 (HER2)–positive
breast cancer,6 have demonstrated promise in other
tumor types harboring the relevant alterations, leading
to regulatory approvals in these settings.7,8 However,
critics of precision oncology have questioned the cost-
effectiveness of large-scale implementation of NGS as
a means to improve outcomes for patients with
cancer.9-11 Indeed, rising healthcare costs are a sig-
nificant concern, especially in countries with a uni-
versal health insurance system where budgetary
limitations are an important consideration in care
delivery.

In this study, Seet et al enrolled 1,015 patients treat-
ed over a period of 6 years at the National Cancer
Center Singapore on a prospective protocol for geno-
mic profiling—the Individualized Molecular Profiling
for Allocation to Clinical Trials (IMPACT) study
(NCT02806388). A total of 1,064 NGS analyses were
performed on the 1,015 enrolled patients, of which
38% (405/1,064) identified potentially actionable al-
terations. Of the 405 NGS analyses that identified
potentially actionable alterations, 189 were formally
discussed at a molecular tumor board (MTB), with 111

patients allocated to a clinical trial following the MTB.
Among these 111 patients, 20 were eventually en-
rolled on a genomically matched clinical trial. Notably,
an additional 33 patients were directly enrolled on
genomically matched clinical trials without formal
discussion at an MTB, for a total of 53 patients. As the
authors acknowledge, key limitations of this study
include the heterogeneity of NGS assays used and the
single-center nature of this experience. The different
NGS assays used in this study is an understandable
consequence of the evolving molecular testing tech-
nologies taking place during the duration of the trial
over which patients were enrolled. Although this study
was conducted at a single center, the National Cancer
Center Singapore is the largest cancer center in Sin-
gapore, an island city-state with a total population of
5.9 million.

Most of Singapore’s health care is delivered through a
government-run, publicly funded system where pa-
tients have a shared financial responsibility. Thus, a
spike in healthcare costs will have a direct economic
impact on patients and be closely scrutinized.
Therefore, this study is timely and provides key data for
relevant stakeholders to evaluate the feasibility of
widespread implementation of precision oncology ef-
forts in the local context. Table 1 summarizes the
findings of similar efforts across the globe.12-23 Briefly,
all these studies primarily used DNA-based assays to
identify actionable alterations in tumors from patients
with advanced cancers who would then be matched to
receive genomically matched therapies, mostly in the
setting of a clinical trial. There is considerable variation
in genomic matching rates across studies, with some
studies reporting matching rates as low as 4% and
others as high as 36% (Table 1). We believe that the
observed variation in matching rates across studies
is multifactorial, including differing definitions of what
constitutes a match, timely availability of genomically
matched studies, clinical fitness of the patient pop-
ulation for clinical trial enrollment, availability of
bioinformatic support for variant annotation, and
determination of clinical significance. In this study, the
authors report a genomic matching rate of 5% (53/
1,064), which is similar to a study performed at an-
other academic institution in Singapore20 but is lower
when compared with similar studies across the globe
(Table 1). Factors such as geographic variation in the
prevalence of actionable alterations, technical differ-
ences in the assays used, and availability of genom-
ically matched clinical trials are potential explanations
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for this disparity, and further studies are needed to eluci-
date this underlying variation.

As significant efforts in distinct geographical areas are
underway to enhance the clinical impact of precision on-
cology, several challenges remain. First, the type of tumor
sample used can affect the results of genomic assays and
have downstream effects on therapeutic decisions. In a
study comparing mutation calls from whole-exome se-
quencing in matched fresh and archival melanoma tumor

biospecimens, the concordance rate was only 43%.24 The
observed lack of concordance between archival and fresh
biospecimens is likely to be because of a combination of
poor quality DNA from archival specimens and temporal
evolution of the molecular landscape of the tumor, due in
part to selection pressure from intervening therapeutic
efforts.25 However, although using fresh biospecimens to
identify actionable alterations is preferred in a precision
oncology platform, logistical challenges frequently steer

TABLE 1. Precision Oncology Efforts Across the Globe

Study Setting Assay(s)
Number of
Patients

Number of
Assays

Number of
Patients
Matched

Match
Rate, %a Reference

North America

MSK-IMPACT Single-
center

DNA: 341- to 410-gene NGS panel (all exons and
selected introns)

10,336 10,945 527b 11b 12

MD Anderson
Personalized
Cancer Therapy
Program

Single-
center

DNA: 10-gene NGS panel (hotspot) 1,144 1,144 211 18 13

MD Anderson
Personalized
Cancer Therapy
Program

Single-
center

DNA: 11- to 50-gene NGS panel (hotspot) 2,000 2,000 83 4 14

MD Anderson
Personalized
Cancer Therapy
Program

Single-
center

DNA: 236 genes 339 339 122 36 15

PREDICT Single-
center

DNA: 182- to 236-gene NGS panel (Foundation
Medicine)

347 347 87 25 16

IMPACT/COMPACT Single-
center

DNA: 23- to 50-gene NGS panel (hotspot);
Protein: PTEN IHC

1,640 1,640 89 5 17

NCI-MATCH Multicenter DNA: 143-gene NGS panel (hotspot); Protein:
PTEN, MLH1, MSH2, and Rb IHC

5,540 5,540 686 12 18

Europe

MOSCATO Single-
center

DNA: 40- to 75-gene NGS panel (hotspot), CGH,
WES in limited number of cases; RNA:
RNAseq; Protein: MET and phospho-MET IHC

843 843 199 24 19

Asia

IMPACT-SG Single-
center

DNA: NGS panel (variable number of genes,
hotspot); Protein: ALK, cMET, cMYC, FGFR2,
HER2, HGF, MMR, NTRK, PTEN, ROS1, and
PD-L1 IHC

1,015 1,064 53 5

IMAC Single-
center

DNA: 50-gene NGS panel (hotspot) 365 365 23 6 20

NEXT 1 Single-
center

DNA: 83- to 381-gene NGS panel (hotspot);
Protein: PTEN, MET, and HER2 IHC

588 588 60 10 21

TOP-GEAR Single-
center

DNA: 114-gene NGS panel (all exons and
selected introns)

187 187 25 13 22

Kyoto University
Hospital Study

Single-
center

DNA: 215-gene NGS panel (all exons and
selected introns)

73 73 9 12 23

Abbreviations: CGH, comparative genomic hybirdization; HER, human epidermal growth factor receptor 2; NGS, next-generation sequencing; WES, whole
exome sequencing.

aMatch rate = number of patients matched/number of patients with genomic profiling results.
bAmong the first 5,009 patients.
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care providers and patients toward the use of archival tissue
for molecular profiling. The recent emergence of plasma
genotyping as a tool to obtain molecular information about the
tumor provides an opportunity to obtain real-time genomic
information about the tumor while avoiding the need for re-
peated invasive tumor biopsies. Indeed, the concordance
between plasma and tissue genotyping has been reported to
be 81% in patients with metastatic non–small-cell lung
cancer.26 Although plasma genotyping can overcome some
challenges associated with tumor biopsies, detection of ac-
tionable alterations by plasma genotyping is dependent on
tumor shedding, which is influenced by several factors in-
cluding disease burden, tumor location, vascularity, and
cellular turnover.27-29 Indeed, such variations can lead to false-
negative results and affect clinical decision making.30-32 Thus,
although we anticipate that plasma genotyping will develop an
increasing footprint in longitudinal molecular profiling and
change clinical practice, tissue genotyping will continue to be
an integral part of precision oncology platforms until efforts to
validate and overcome diagnostic limitations associated with
plasma genotyping mature.

Second, as evidenced by this and other studies in precision
oncology (Table 1), emerging molecular assays are increas-
ingly multiplexed, with more genes being sequenced at
greater depth. Although this provides significantly greater
information about the molecular profile of the tumor, clinical
actionability is heavily dependent on having a robust and
multidisciplinary precision oncology decision support system
involving clinicians, bioinformaticians, pathologists, cancer
biologists, and clinical trial support staff.

Third, the cost-effectiveness of large-scale implementation
of precision oncology platforms has yet to be established. In
countries such as Singapore where patients bear a

significant portion of healthcare costs, a thoughtful patient
selection process for a precision oncology strategy will likely
reduce the economic burden on patients and governmental
funding agencies. For instance, extensive molecular pro-
filing could be reserved for patients with adequate per-
formance status and organ function for clinical trial
enrollment. Although the costs of performing molecular
assays will continue to fall in the coming years, personnel
costs associated with analyzing the data may rise owing to
increasing complexity. Thus, a measured approach to
precision oncology is key to maintaining cost-effectiveness
while maximizing clinical benefit for the individual patient.

In conclusion, this study, along with others conducted in Asia
and elsewhere, demonstrates the feasibility of implementing
precision oncology efforts across diverse geographical set-
tings. However, having adequate infrastructure and tech-
nology to support such an effort is only the first step.
Furthermore, such efforts need to be supported by specialized
centers with established phase I clinical trial programs
equipped with the necessary critical mass of trials evaluating
novel agents. Indeed, the promise of precision oncology is
delivered only when patient outcomes are improved through
the delivery of molecularly matched agents. Thus, a robust
precision oncology decision support system needs to be
developed in parallel with laboratory infrastructure to ensure
accurate and timely analysis of increasingly complex mo-
lecular data derived from highly sophisticated assays in a
patient-centered context. Finally, such initiatives need to be
coupled with joint international collaborative efforts to drive the
development of novelmolecularly targeted and other agents in
the setting of biomarker-driven trials, which is critical to ful-
filling the ultimate goal of precision oncology for all patients
across the globe.
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