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The use of already-approved drugs to treat new or alternative diseases has proved to be
beneficial in medicine, because it reduces both drug development costs and timelines.
Most drugs can be used to treat different illnesses, due their mechanisms of action are not
restricted to one molecular target, organ or illness. Diverging from its original intent offers
an opportunity to repurpose previously approved drugs to treat other ailments. This is the
case of sildenafil (Viagra), a phosphodiesterase-5 (PDE5) inhibitor, which was originally
designed to treat systemic hypertension and angina but is currently commercialized as
erectile dysfunction treatment. Sildenafil, tadalafil, and vardenafil are PDE5 inhibitors and
potent vasodilators, that extend the physiological effects of nitric oxide and cyclic
guanosine monophosphate (cGMP) signaling. Although most of the biological
implications of these signaling regulations remain unknown, they offer a large
therapeutic potential for several diseases. In addition, some PDE5 inhibitors’ molecular
effects seem to play a key role in different illnesses such as kidney disease, diabetes
mellitus, and cancer. In this review, we discuss the molecular effects of PDE5 inhibitors
and their therapeutic repurposing in different types of cancer.
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INTRODUCTION

The development of new drugs is a long, arduous and expensive process; thus, drug repurposing
represents an alternative and effective strategy, which reduces both development costs and
timeliness by using already approved compounds to offer alternative clinical options.

Drug repurposing, or repositioning, is defined as the process of finding new medical indications
and uses for existing drugs (1, 2). The available studies of bioavailability, pharmacokinetics, dosage,
safety, efficacy, and toxicity for already approved drugs, are the keystone for drug repositioning. This
data can be translated into savings in time and capital, which represents a new hope to develop low-
cost therapies for different diseases like cancer (3). In other words, drug repurposing contributes to
February 2021 | Volume 11 | Article 6272291

https://www.frontiersin.org/articles/10.3389/fonc.2021.627229/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.627229/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.627229/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:mrodriguez@inmegen.gob.mx
https://doi.org/10.3389/fonc.2021.627229
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.627229
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.627229&domain=pdf&date_stamp=2021-02-26


Cruz-Burgos et al. Repurposing PDE5 Inhibitors
implementing new treatments and new target discovery in the
shortest time possible and at an affordable cost (4).

The main examples of drug repurposing success are multiple
myeloma and colorectal cancer treatment. Thalidomide was
initially developed as a potent sedative and became popular
among pregnant women for relieving morning sickness. After
thalidomide was associated with congenital malformations, it
was withdrawn from the market. But in 2006, was officially
approved to be used in myeloma treatment in combination with
the steroid dexamethasone (5). Thalidomide (100–200 mg) has
shown antiangiogenic, pro-apoptotic and immunomodulatory
effects, while dexamethasone enhances such effects (20–40 mg)
(6). In the case of colorectal cancer, low doses of aspirin (75–300
mg) proved to reduce the risk of invasion and metastasis in Duke
stages B (muscle invasion), C (lymph node invasion) and D
(metastasis), after 5 years of therapy (7).

On the other hand, some drugs that are still found in clinical
trials with potential as repositioned drugs. The compound
AZD4017 was initially developed to treat type 2 diabetes
mellitus, obesity, and metabolic syndrome, nevertheless this
compound has demonstrated its effectiveness in patients with
idiopathic intracranial hypertension (IIH) (400 mg AZD4017
twice daily for 12 weeks). AZD4017 effect over IIH is explained
because its molecular mechanism of action; as an oral selective
competitive inhibitor of the intracellular enzyme 11b-HSD,
AZD4017 prevents the conversion of cortisone to active
cortisol, reducing intracranial pressure (8). In early stage-
surgically breast cancer the use of propanolol (80–160 mg
daily), reduced intratumoral mesenchymal markers and
promoted the infiltration of immune cells in phase II clinical
trials (9). Originally propanolol was designed to treat
hypertension, angina, anxiety, and cardiac arrhythmias because
it is a non-selective adrenergic b-blocker (10).

Interestingly, phosphodiesterase 5 (PDE5) inhibitors, as
sildenafil has proved to be effective in several pathologies, as
pulmonary hypertension, heart failure and Alzheimer disease,
but its use as an anticancer drug has emerged, considering that
cancer therapies are urgently needed (11, 12).
SILDENAFIL HISTORY

Many FDA registered drugs have more effects than previously
reported, and their molecular mechanisms of action remain
unclear. This is the case of sildenafil, commercially known as
Viagra, a PDE5 inhibitor. As a vasodilator drug, sildenafil’s
original purpose was to treat both hypertension and angina,
but it is currently used in erectile dysfunction treatment.

In 1983, Dr. Giles Brindley studied the effects of
phenoxybenzamine, an antiadrenergic with potential use for
erectile dysfunction. Dr. Giles proposed muscle relaxants could
produce erections (13). Muscle relaxants were known to
influence both, vascular and non-vascular smooth muscle,
however, the mechanism by which these drugs produced the
erection was unknown and these drugs presented a major
disadvantage as they had to be injected directly into the penis
Frontiers in Oncology | www.frontiersin.org 2
to produce the erection (14). For these reasons, researchers
improved their efforts to characterize the molecular
mechanisms of muscle relaxants in erectile dysfunction. At the
time, the pharmaceutical company Pfizer started a research
program to develop a selective PDE5 inhibitor to increase the
nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)
pathway for the treatment of angina.

In 1985, Pfizer’s project leader, Dr. Simon Campbell, carried
out preclinical trials for the compound UK-92-480, which was
capable to induce coronary artery dilatation in patients (15, 16).
During these trials, men reported an erectogenic effect with the
UK-92-480. A year later, its use as an antianginal drug was ruled
out and repurposed (17). But the molecular mechanisms of this
effect remained unclear until 1991, when Dr. Ignarro et al., found
that NO increases cGMP concentrations in smooth muscle cells
of the penis (18). Also, Dr. Solomon demonstrated that NO was a
second messenger of cGMP-mediated erection and also proved
the presence of the NO synthase (NOS) in the penis and blocking
erections with NOS inhibitors (19).

By the mid 90’s the evidence showed the potential of sildenafil
as an erectile dysfunction treatment, so Pfizer started extensive
research to prove the drug specificity and elucidate its molecular
mechanism of action. They found sildenafil’s molecular target
was PDE5, highly expressed in the corpora cavernosa of the penis
and its vasculature, but poorly in the myocardium, which
provides tissue specificity to the compound. In conclusion,
sildenafil’s molecular mechanism of action in the penis was
completed. Sildenafil increases cGMP levels in response to
NO-releasing by sexual stimulation, which results in smooth
muscle relaxation and increases blood flow to the corpora
cavernosa, producing an erection (Figure 1) (20–22).

For this reason, Pfizer’s program for treating angina shifted to
treating erectile dysfunction. Sildenafil’s clinical trials for erectile
dysfunction lasted from 1993 to 1998 with the FDA approval,
and sildenafil was commercially released as Viagra. The same
year it was approved in Europe (11). Since then, sildenafil has
been the drug of choice for the treatment of erectile dysfunction
(with a recommended dose of 25–100 mg) (Pfizer 2010), in
addition it promoted research on human physiology and
sexuality. Giving rise to the development of new PDE5
inhibitors such as vardenafil (2003), avanafil (2012), and
tadalafil (2003). By 2006, research on the mechanisms of
action of PDE5 inhibitors progressed leading to the
identification of new applications as well as the repurposing of
these drugs (23–25). In this review we will explore the potential
uses of sildenafil from its use in cardiovascular diseases and
erectile dysfunction to its possible utility in cancer therapy.
SILDENAFIL PHARMACOKINETICS
AND PHARMACOGENETICS

Orally administered, sildenafil is rapidly absorbed, and it reaches
a maximum plasma concentration within an hour and has a half-
life of 3–4 h (the shortest among PDE5 inhibitors). Its steady
state volume of distribution is 105L, exceeding the total volume
February 2021 | Volume 11 | Article 627229
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of body water, which suggests drug distribution into tissues and
tissue binding. It is also highly bound to plasma proteins (26, 27).

Sildenafil shows an extensive first pass metabolism with an oral
bioavailability of 40%. Hepatic CYP3A4/5, CYP3A5, CYP2D6, and
CYP2C19 are responsible for its biotransformation, also CYP2D6
and CYP2C19 are unique for sildenafil (27). Interestingly,
pharmacokinetic parameters as plasma drug concentrations
do not correlate with the drug’s efficacy, suggesting that
pharmacodynamic variability should play an important role in
interindividual variation for both efficacy and side effects. Drug
availability in plasma can be increased by age and concomitant drug
administration of inhibitors of CYP3A4/5 such as ketoconazole,
erythromycin, HIV protease inhibitors, cimetidine, antacids, and
grapefruit juice. In contrast, administration of CYP3A inducers such
as rifampin, phenobarbital, phenytoin, and carbamazepine will
decrease sildenafil’s plasma levels (27).

The high affinity of cGMP binding sites of Phosphodiesterase-
5 (PDE5) are now known to be on the N-terminal regulatory
GAF-A (GAF domain of the enzyme which is present in cGMP-
specific phosphodiesterases) (Figure 2). High-affinity cGMP
binding only occurs to the GAF-A domain (kDa =40). Cyclic
Frontiers in Oncology | www.frontiersin.org 3
nucleotide binding to this domain is 100-fold selective for cGMP
over cAMP=40 (28).

Sildenafil’s efficacy has been associated with six genetic
variants of GNB3, CYP3A4, VEGFA, ACE, and NOS3, these are
listed by the Pharmacogenomics Knowledge Base (PGKB), but
none of them have shown a clinical utility yet (29). Variant GNB3
rs5443 shows a higher level of confidence, indicating that the
phenotypic impact of the variant in sildenafil’s efficacy is
relatively strong, but not enough for clinical implementation.
This variant has a frequency of 30% in Caucasians, 80% in
Africans, and almost 40% in native American populations,
showing an apparent population stratification which may
require local dose adjustments as pharmacogenomic variants
are validated with further research (30).
SILDENAFIL IN DIFFERENT TYPES
OF CANCER

Cancer is a major public health problem worldwide, with
18,078,957 new cases and 9,555,027 deaths in 2018 cancer
FIGURE 1 | General mechanism of action of sildenafil in erectile dysfunction. Sexual stimulation results in the release of nitric oxide (NO) from nerves and endothelial
cells directly into the penis. NO enters the smooth muscle cells and binds to guanylyl cyclase. This interaction results in production of 3′-5′–cyclic guanosine
monophosphate (cGMP) from guanosine 5′-triphosphate (GTP). Sildenafil blocks degradation of cGMP, inhibiting PDE5. Accumulation of cGMP activates cGMP-
dependent protein kinase (PKG) leading to a decrease in intracellular calcium levels. Relaxation of arterial and trabecular smooth muscle increased arterial inflow and
the rigidity of penile erection.
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represents an extensive burden of disease. For these reasons, new
therapies are urgently needed and drug repurposing seems an
affordable option (31).

Different PDE isoenzymes have been proposed as cancer
therapeutic targets, but only PDE5 high levels have been found
in different types of cancer (32) therefore, suggested as targets for
inhibition, potentially with an anti-cancer outcome (33). PDE5
inhibitors family includes include exisulind, sildenafil, tadalafil,
vardenafil, avanafil, udenafil, while dipyridamole and cilostazol
are among the non-selective drugs. Anticancer effects of PDE5
have been demonstrated in breast cancer, colorectal cancer,
bladder cancer, leukemia and prostate cancer (PCa) (22).

In this section, we will discuss about the efficacy and
underlying cellular mechanisms of the family of PDE5
inhibitors in the field of oncology as repositioning drugs.

Breast Cancer
Breast cancer is the most common cancer among women (34).
Even though survival rates are rising, new therapies are still
needed to reduce mortality rates and increase patients’ life
quality. Evidence suggests that the cGMP signaling pathway is
aberrantly regulated in different cancers, including breast cancer
(35–37). Some cyclic nucleotides can act as second messengers
promoting protein kinase activation. In particular, cGMP
activates cyclic GMP-dependent protein kinase (PKG whose
activation has been recognized as an apoptotic pathway in
breast cancer) (38, 39). Therefore, PDE5 inhibition promotes
Frontiers in Oncology | www.frontiersin.org 4
cGMP accumulation representing a viable strategy in breast
cancer treatment. Tinsley et al., reported that inhibition of
PDE5 with sulindac sulfide (SS) caused the increase of cGMP,
the activation of PKG and this in turn, the inhibition in cell
growth and induction of apoptosis in breast cancer cell lines
(MDA -MB-231 and SK-BR-3) (40). In another study, performed
by the same group, they observed that the SS and sildenafil
(1µM) were potent inhibitors of cGMP hydrolysis in the MDA-
MB-231 and ZR-75-1 cell lines, and these cell lines express high
levels PDE5. Furthermore, they proved that PDE5 inhibition by
different mechanisms, including sildenafil and taladafil
treatments, diminished cell growth and induced apoptosis.
These effects are explained through attenuation of b-catenin
mediated transcription (41).

Recently, it was proved that treating the breast cancer cell line
MDA-MB-231 with very low doses of sildenafil (25µM),
impaired cancer cell proliferation, promote apoptosis and
decreases tumor growth. Sildenafil treatment affects HSP90
expression, a chaperone protein which promotes degradation
of PKD2, a serine threonine kinase with an important role in
cancer cell proliferation and viability (42).

Karami-Terani et al. (43), demonstrated that PDE5
expression is increased in breast cancer tissues compared to
normal tissue and benign tumors. Also, there is a significant
correlation between PDE5 expression and tumor malignancy
(44). Stimulation of pro-tumoral characteristics in stromal
fibroblasts has been observed in breast cancer due PDE5
A

B

FIGURE 2 | (A) Structure, and regulation of PDE5A. The catalytic domain is located near the C terminus of the protein and is relatively selective for cGMP as
substrate at physiological levels. The substrate binding site on the catalytic domain is the target for inhibitors such as the erectile dysfunction drug, sildenafil.
(B) PDE5A isoforms (A1, A2, A3) which differ only in the extreme 5’-end of the mRNA and accompanying amino acid sequence. For PDE5A3, the initiating codon is
in exon 2, the first common exon for all the isoforms. PDE5A2 is the most widely expressed isoform [adapted from (28)].
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overexpression. PDE5 activates stromal fibroblasts, which
produce and secrete chemokines like CXCL16, promoting
cancer progression. When treating fibroblasts associated to
breast cancer cells with sildenafil and vardenafil, CXCL16
levels are dropped, therefore cancer promotion is reduced.
Sildenafil and vardenafil, also affect cancer stem cells (CSCs) in
breast cancer. In these cells, the inhibition of PDE5 favors the
accumulation of cGMP, which impedes cAMP degradation,
activating PKA, and concluding in CSC elimination. This
mechanism increases the efficiency of both chemotherapy and
radiotherapy (45). In addition to the previously mentioned
mechanisms, Baravalle et al. (46), reported that sildenafil also
act as an aromatase inhibitor, a key enzyme in breast cancer
progression, since it is responsible for the conversion of
androgens into estrogens, thereby inducing breast cancer growth.

Due to their relaxation effects on smooth muscle and
endothelial vascular permeability, PDE5 inhibitors improve
blood supply to the tumor vasculature ameliorating
antineoplastic drug supply in the tumor region. Greish et al.
(47) analyzed the impact of sildenafil combined with
doxorubicin (DOX) (an anti-cancer chemotherapy drug) in
breast cancer. BALB/c mice implanted with breast cancer 4T1
cells were treated with a combination of DOX and sildenafil. The
treatment showed a significant reduction in tumor size compared
to those treated with doxorubicin alone. Likewise, El-Naa et al.,
(48) observed that sildenafil enhances the antitumor effect of
cisplatin, an antineoplastic drug, in the MCF-7 cell line. Di et al.
(49) also observed an increase in DOX sensitivity of MCF-7 and
MDA-MB231 cells in combination with sildenafil. These authors
pustulated that sildenafil decreases the side effects of
conventional chemotherapeutics through its cardioprotective
action. The clinical trial NCT01375699, evaluates the use of
sildenafil (100 mg three times daily on the day of DOX) as a
cardioprotective factor after DOX chemotherapy, in breast
cancer patients. Results are still in progress but, adding
sildenafil to chemotherapy has proven to be safe (50). These
findings suggest that PDE5 inhibitors could be used as adjuvants
in breast cancer treatment, decreasing cancer aggressiveness for
breast cancer with metastatic potential. In synthesis sildenafil has
protective properties against cardiovascular and side effects,
caused by conventional chemotherapies.

Prostate Cancer
It has been demonstrated that prostate cancer (PCa) cells lines,
such as LNCaP, have an increased expression of PDE5 (51).
Sildenafil (up to 50 µM) can sensitize cancer cells to improve the
efficacy of chemotherapeutic agents. Shi et al., (52), evaluated the
effect of sildenafil on ABC- transporters- mediated multi-drug
resistance in cancer cells. Protein transporters ABCB1, ABCC1
and ABCG2, are responsible for pump out or extrude
chemotherapeut ics drugs and reduce intrace l lu lar
concentration of drugs. It was observed that chemotherapeutic
agents were effluxed of the cell less effectively, suggesting a role of
sildenafil as a sensitizer of drug-resistant cancer cells. Moreover,
the study by Das et al., (53), demonstrated that sildenafil (10 µM)
improved DOX-induced apoptosis in prostate cancer cells by
Frontiers in Oncology | www.frontiersin.org 5
generating reactive oxygen species, caspase 3 and 9 upregulation,
suppression of Bcl-xL and phosphorylation of Bad. In an animal
model of PCa xenograft with PC3 cells in mice, the use of
sildenafil significantly inhibited tumor growth by inducing
apoptosis and increasing the expression of activated caspase 3.
In this study, not only sildenafil was found to improve the
antitumor efficacy of DOX, but it also had a protective effect
against reperfusion injury/ischemia, which is a side effect
induced by DOX (53). In addition, evidence in PCa points that
hypoxic cell populations show an inhibition of the NO/cGMP
pathway, which leads to chemoresistance and evasion of immune
detection. Restoration of the NO/cGMP pathway by treatment
wi th PDE5 inhib i tor s sens i t i ze s hypox ic ce l l s to
chemotherapeutic agents (54). Similarly, sildenafil (10µM) or
vardenafil but not tadalafil sensitize castration resistant PCa cells
to DOX (1µM) therapy by promoting apoptosis (55).

Despite its wide therapeutic window, sildenafil may show
serious cardiovascular side effects in patients with moderate to
severe cardiovascular disease (56). Most studies have
demonstrated that sildenafil could be useful in treating
disorders after radical prostatectomy. For example, erectile
dysfunction was treated with sildenafil citrate in men after
radiation therapy for PCa (57). Factors like age and radiation
dose are used as independent predictors to determine sildenafil
efficacy after radiotherapy (58). The combination of DOX and
sildenafil also ameliorated DOX-induced cardiac dysfunction.
This is related to a previous study that showed an improved
function of the left ventricle in PCa mice model treated with
sildenafil and DOX. In other cases, PDE5 inhibitors have been
evaluated as possible therapeutic agents to manage the evolution
of low urinary tract symptoms (LUTS) after low dose rate
brachytherapy (53). Tamsulosin and low doses of sildenafil
have been applied as combination therapy. A significant
improvement in the total of International Prostate Symptom
Score (IPSS) but insignificant changes in the maximum flow rate
(Qmax) and in the post void residual were observed. This
indicates that the use of tamsulosin and low-dose sildenafil to
treat LUTS following brachytherapy leads to LUTS improvement
(59).The mechanism of cell death induced by the treatment with
sildenafil and DOX in PCa cells involves increased surface
localization of CD95 (Fas receptor or APO-is a dead receptor)
in the membrane, with concomitant inactivation of NF-kB and
suppression of FLIP (inhibitory protein that blocks TRAIL-
mediated cell dead) and FAP-1 (Fas-associated phosphatase-1,
negative regulator of Fas) expression. These mechanistic studies
may contribute to expanding the use of PDE5 inhibitors in
enhancing chemotherapeutic efficacy in PCa tumors expressing
CD95, a surface receptor that induces apoptosis in cancer cells
(60). PDE5 inhibitors have been shown to be effective in
sensitizing PCa cells to antineoplastic treatments such as DOX.
The sensitizing effects of PDE5 inhibitors on apoptosis induction
have also been shown to affect DNA repair mechanisms (55). In
other studies, the treatment with green tea and PDE5 inhibitors
(vardenafil and tadalafil) in prostate cancer cells like PC-3,
induce antiproliferative effects (61). Similarly, in the PC3-
derived cancer stem cells (PCSC) PDE5 inhibitors (vardenafil
February 2021 | Volume 11 | Article 627229
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and tadalafil) increased apoptosis in combination therapy with
cisplatin (62). Other studies have evaluated the effects of
vardenafil and tadalafil over proliferation after riociguat
(stimulator of guanylate cyclase) treatment, indicating that
PDE5 inhibitors could protect against PCa progression,
however, this effect depends on the type of cells. For example,
VCaP cells have high levels of cGMP synthesis and riociguat
promoted proliferation in VCaP but not in LNCaP cells (63). In
this line, it was observed that cells harboring TMPRSS2-ERG
fusion as VCaP cells have increased risk of PCa progressions
when they are treated with PDE5 inhibitors (64).

After androgen deprivation therapy a large percentage of
patients who shows tumor growth are castration-resistant prostate
cancer (CRPC). During this stage treatment with vincristine, an
anti-mitotic and anti-microtubules agent that induces mitotic arrest
and cell death mediated by caspases has been considered as a
potential therapy for CRPC. However, its use is limited due to the
possible neuropathies it can generate. Combining vincristine with
sildenafil (10-25µM) is an approach to achieving greater efficacy at
lower doses to reduce toxicity. Sildenafil has been shown to
synergistically amplify the action of vincristine on tumor cells
both in vitro (PC-3 and DU-145 cell lines) and in vivo (65).

Several clinical trials such as NCT00142506, NCT00544076,
NCT00057759, NCT00511498 focus on the use of sildenafil as
recovery therapy in erectile dysfunction after prostate cancer-
related procedures, such as hormone therapy or radiation
therapy and radical prostatectomy, however, there are still no
clinical trials evaluating the use of sildenafil as a possible prostate
anticancer drug.

Colorectal Cancer
Colorectal cancer (CRC) is the third most common type of cancer
worldwide and one of the deadliest, showing a 5-year survival rate of
approximately 60% (66, 67). In addition, in recent years there has
been an increase of diagnosed CRC cases in people under 50 years
(68). Surgery is the first treatment option, and it is curative in 50% of
the patients. Sometimes, chemotherapy or radiotherapy are given to
ensure remission. Nonetheless, this surgical procedure has a high
mortality rate and it is of vital importance to develop effective
therapeutic strategies for the CRC treatment to ensure a positive
prognosis (69, 70).

PDE5 inhibitors can reduce the incidence of intestinal cancer by
altering epithelial homeostasis via cGMP. In rodents, treatment with
azoxymethane (AOM) a carcinogenic compound and dextran
sulfate sodium a polysaccharide which disrupted mucosal barrier
(AOM/DSS) leads to inflammation driven to colorectal cancer. In
this model, sildenafil administration protects against AOM/DSS,
generated epithelial barrier dysfunction. In addition, a reduction of
50% in multiplicity of polyps was observed compared to untreated
mice. Besides, polyps formed in sildenafil-treated mice showed
greater differentiation, less proliferation, less inflammation, little
infiltration of myeloid cells as well as a reduction in the expression
of pro-inflammatory factors such as INFg and IL-6 (71). In a study
of 192,661 patients, the use of PDE5 inhibitors was shown to be
associated with a decreased risk of developing colon cancer (72).

Drug combination therapy has demonstrated the potential
benefits of sildenafil as an anti-tumor agent. Regorafenib is an
Frontiers in Oncology | www.frontiersin.org 6
approved drug for the treatment of colorectal cancer and
hepatocellular carcinoma. Combination of regorafenib with
sildenafil has been used in patients with advanced solid tumors
in a safe way (73, 74). The addition of neratinib to this drug
combination has a greater lethality effect on colon cancer cells.
These three drugs decrease the expression of mutant K-RAS, in
addition to generating a prolonged inactivation of mTOR, AKT
and p70 S6K, and a reduction in markers such as PD-L1, PD-L2,
ODC that increased MHCA levels, which could increase in the
sensitivity of tumor cells to immunotherapies (73).

In colon cancer cell lines, apoptosis was induced using exisulind
and sildenafil (75). Accelerated turnover of the intestinal epithelium
shows a decrease in cGMP, which favors susceptibility to
tumorigenesis. PDE5 inhibitors suppress intestinal carcinogenesis
and improve epithelial barrier function, inhibiting cGPM
degradation and raising its levels (76). It has been proven that
sildenafil combined with curcumin increases the efficacy of 5-
Fluorouracil (antineoplastic drug) in controlling CT26 colorectal
tumors. The interaction of curcumin with sildenafil affects the
expression of several proteins, including the protective molecule
BCL-XL which decreases and increases the levels of reactive oxygen
species, leading to cancer cell death. Furthermore, it was observed
that the effects in the reduction of K-RAS mediated by curcumin
and sildenafil were potentiated by 5-Fluorouracil (77). The clinical
trial NCT03785210 evaluates if combination therapy of tadalafil (10
mg daily) with nivolumab (480 mg) and vancomycin (125 mg)
could decrease liver metastasis from primary colorectal and
pancreatic cancer, the study still on phase II. This suggests that
sildenafil should be a powerful chemotherapeutic combined with
other drugs. These approaches have demonstrated the ability of
sildenafil as a potential drug to be included in first-line treatments
for colorectal cancer.

Lung Cancer
According to the most recent GLOBOCAN report, lung cancer
represents 11.6% of all new cancer cases worldwide and is the
leading cause of cancer-related deaths (78). Lung cancer is strongly
associated with tobacco use, but it usually takes decades to develop.
Therefore, a lung cancer diagnosis is rare before age 30. Social and
cultural smoking patterns have led to a constant rise in lung cancer
diagnosis in women, but men are still more affected. Despite
treatment, survival rates are low and since the mid-1970s the
increases have been minimal (79). The focus on lung cancer
management should be aimed towards improving survival rates.
New approaches to the treatment of cancer have been shifted
towards the repurposing of drugs. moThe study of this type of
drugs is reinforced by previous reports of elevated expression of
PDE5 in multiple carcinomas when compared to adjacent normal
tissue, including lung cancer (80, 81). The proven effect of vardenafil
and tadalafil in the treatment of pulmonary hypertension boosts the
anticipation for favorable results in lung cancer.

Lung cancer cells overexpress PDEs resulting in a decrease of
cGMP levels, when compared to normal cells. By inhibiting their
catabolism, an increase of intracellular cGMP will be observed, as
a result, it may have antineoplastic effects by inhibiting tumor
growth and act as an effective anticancer agent (78, 81). Recent
studies have demonstrated that the combined use of platinum-
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based chemotherapeutic agents and PDE inhibitors have a higher
antiproliferative effect on lung cancer cells than platinum
monotherapy, the current standard of care (78, 82). This
outcome was observed in small cell lung cancer cells, where
the addition of sildenafil to the carboplatin monotherapy in small
cell lung cancer cells increased apoptosis and cytotoxicity. The
same effect was seen when combining carboplatin and sildenafil
with either roflumilast or theophylline (78).

Moreover, when evaluating cisplatin and PDE inhibitors, only
the combination with roflumilast, an inhibitor of PDE4, increased
apoptosis following a 24 h incubation (78). In Non-small Cell Lung
Cancer, combined therapy with PDE inhibitors showed more
cytotoxicity than carboplatin monotherapy following a 48 h
incubation period (78). Dipyridamole, a vasodilator, had an
additive effect in the cytotoxicity of cisplatin in breast
adenocarcinoma cells and non-small metastatic lung cancer cells.
In contrast, dipyridamole decreased the sensitivity to cisplatin in
endocervical carcinoma cells and had no effect in other studied cell
lines while it also showed the same tendency when evaluating the
sensitivity to the cytotoxicity of oxaliplatin. Thus, it was concluded
that the effects of dipyridamole on chemo response are subject to the
type of cell lines and drugs (82). Summarizing, the combination of
platinum compounds with PDE inhibitors showed an increased
antiproliferative effect by boosting apoptosis in lung cancer cell lines,
in contrast to platinum monotherapy. Due to this collaborative
effect, the combined use of these drugs has been suggested for use as
an additive and maintenance treatment in lung cancer (78). The
effect of dipyridamole on the cytotoxicity of doxorubicin was
measured through the resistant factor, the ratio of the IC50 for
doxorubicin monotherapy to that of its combination with
dipyridamole (82). By means of this variable, it was concluded
that 20 mM of dipyridamole enhanced the sensitivity of most cell
lines to doxorubicin cytotoxicity, achieving 15-fold-increase in the
sensitivity in metastatic lung cancer H1915 cells. Nonetheless, it
must be noted that dipyridamole reduced the sensitivity to
doxorubicin in ductal carcinoma and human papillomavirus-
related cervical adenocarcinoma (82).

Another combination therapy includes sildenafil with
radiotherapy in the treatment of Lewis lung carcinoma (LLC).
This combination abolished the irradiation-derived
immunosuppression by inhibiting expression and ARG1
activity of polymorphonuclear myeloid-derived suppressor cells
(PMN-MDSC), improved the CD8+ T cells response. This shows
the potential of sildenafil as an antitumor agent to delay tumor
recurrence after radiotherapy in lung cancer (83).

The clinical trial NCT00752115, studies the combination
therapy of sildenafil and carboplatin (cytotoxic agent) in
patients with previously untreated advanced non-small-cell
lung cancer. Administering 50 mg of sildenafil weekly is
expected to improve the distribution and efficacy of carboplatin.

Brain Cancer
Most cerebral lymphomas derive from the central nervous system,
and their treatment includes high chemotherapy doses of
methotrexate in conjunction with brain-radiation and intravenous
rituximab an antibody therapy (84). A main problem for brain
tumor treatment is the access through the brain blood barrier, i.e.,
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the presence of cerebral capillary endothelium, astrocytes, pericytes,
and micro vessels which hinder drug transport to the brain. PDE5 is
highly expressed in the 9L glioma cell line, and in other tumor cell
lines such as GL26 (mouse glioma), U87 (human primary
glioblastoma) and RG2 (rat glioma).

Brain tumor models in rats have shown that the treatment with
PDE5 inhibitors such as vardenafil and sildenafil in addition to
DOX improves survival and reduced tumor size (85). A study in a
murine model treated with an oral dose of 10 mg/kg vardenafil in
brain tumor metastatic mice, increased permeability of metastatic
brain tumors, without significantly affecting tight junctions of the
capillary endothelium of tumors, suggesting that PDE5 inhibitors
should activate its effect through stimulation of caveolae-mediated
endocytosis and micropinocytosis (86). PDE5 inhibitors have also
been documented to improve microvascular permeability of
monoclonal antibodies such as rituximab used successfully in
treatment for lymphoma (84). However, in glioblastoma
multiforme (GBM), the most aggressive and lethal brain tumor,
high levels of the PDE5 protein in tumor cells are associated with a
less aggressive cancer, diminishing invasive potential, and DNA
repair capacity of GBM cells, thus positioning PDE5 expression as
an important indicator of disease prognosis. The PDE5-low and
high expression groups may allow for the identification of tumors
that are more invasive and resistant to radiation. This provides
information that could help to predict which GBM patients will
develop radiotherapy inconsistent outcomes and who might be
candidates for alternative therapeutic procedures. Tumor
permeability and invasive differences may be dependent on PDE5
levels offering information on the potential application of PDE5
inhibitors in GBMs PDE5 negative patients (87). Currently, the
phase II clinical trial NCT01817751, tries to explain the mechanism
of action of sildenafil and other drugs (sorafenib and valproic acid)
in patients with recurrent high-grade glioma. Adding sildenafil to
the combination therapy of sorafenib and valproic acid, may
increase the concentration of sorafenib in the brain by blocking
ABCG2 transporter. This could stop the growth of tumor cells by
blocking enzymes essential for cell growth. In another pilot study
NCT02279992, use vardenafil to increase concentration of systemic
carboplatin in patients with recurrent malignant gliomas or
metastatic brain cancer, using 20 mg of oral administrated
vardenafil 1-h prior 100 mg carboplatin.

Head and Neck Cancer
Head and neck tumors occur in the oral cavity, oropharynx,
hypopharynx, and larynx. Most of them are histologically
classified as squamous cell carcinomas (HNSCC). Different risk
factors have been identified such as tobacco, excessive alcohol
consumption, infections with human papillomavirus, etc., and
therapeutic strategies are mainly surgery, radiotherapy,
chemotherapy, or a combination of them. As it is already known,
these treatments can lead to unwanted side effects that in this type of
cancer can be facial disfigurement, speech problems, changes in the
passage of food, among others, which significantly reduce the
quality of life of the patients (88). Therefore, it is highly relevant
to explore new outbreaks for the treatment of this disease.

The immune system plays a key role in the progression of
HNSCC, Myeloid-derived Suppressor Cells (MDSCs) play a
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critical role between the innate and adaptive immune system
through their ability to influence T-reg cells. In this sense, studies
on the suppression of the immune response mediated by MDSC
show that MDSC exploits the metabolism of L-arginine (L-Arg)
to produce lymphocytes that do not respond to antigenic
stimulation. Therefore, the functional elimination of MDSC
can overcome the immunosuppression exerted inside tumors.

Some approaches have been made in the use of PDE5 inhibitors
that can block the production of nitric oxide and arginase 1 and
restore the function of tumor-specific T cel ls . An
immunomodulatory effect has been shown by inhibiting PDE5
with tadalafil, which reduced the number of MDSC and T-reg in the
blood of patients with HNSCC, while increasing the concentration
of tumor-specific CD8 T cells (89). A similar study demonstrated
the ability of PDE5 inhibition to increase the function of the
immune system in cancer patients, confirming the observations of
the Donald T.Weed group (90). In vivo tests in a xenograft model of
athymic (nu/nu) mice inoculated with CAL27 cells, a line
of squamous cell carcinoma treated with tadalafil showed a
reduction in tumor weight and volume. In addition to showing
that tadalafil and sildenafil reduced cell viability in a panel of
HNSCC cell lines (UM1, UM6, UM47, and CAL27) (88). Two
clinical trials study the effects of combined therapy with tadalafil in
head & neck cancer. The clinical trial NCT02544880 use tadalafil
(10–20 mg) treatment to promotes an antitumor response and
creates a permissive environment that should increase the efficacy of
anti-tumor MUC-1/polyICLC vaccine in patients with resectable
and recurrent HNSCC. This trial proved the safety of combined
treatment, which was well tolerated with no serious adverse effects
or toxicities (91). The trial NCT03993353 uses combination of
tadalafil (10 mg) and pembrolizumab as a safe therapy for head &
neck cancer, the trial still in course.

Chronic Lymphocytic Leukemia
Leukemias are a group of blood and bone marrow malignant
diseases characterized by an increased number of leukocytes in
blood and bone marrow. Leukemias are classified according to
the dominantly presenting leukemia cells. In chronic
lymphocytic leukemia (CLL) mature cells are affected, while in
acute leukemia the main leukemia cells correspond to precursor
cells. Both precursor or mature cells are altered in chronic
myeloid leukemia (92).

B cells are one of the main cell types affected by lymphocytic
leukemia. B cell activity depends on the production of cyclic AMP,
which can be regulated by some PDE isoforms such as PDE 3,4,5,
and 7. Gartner, et.al., identified that the main cyclic AMP
hydrolyzing activity was performed by soluble PDE4 isoenzyme
(93). PDE5 inhibitors could play an important role regulating CLL
cells, sildenafil and vardenafil induce caspase-dependent apoptosis
of B-CLL cells in vitro. For 3.5 years, chronic lymphocytic leukemia
patients were treated once a week with sildenafil 50 mg, decreasing
the lymphocyte count (94). In 2004 Treon (95) reported that
sildenafil induced apoptosis in B cells from patients with
Waldenstrom’s macroglobulinemia, an incurable B cell
malignancy. Also, the role of sildenafil in combination with
(−)-eEpigallocatechin-3-O-gallate (EGCG) to induce myeloid
leukemia cells apoptosis, has been well described in vitro (61).
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EGCG is a polyphenol present in green tea, which is capable of
inducing apoptosis in acute myeloid leukemia through acid
sphingomyelinase activation. This stimulates Akt/eNOS axis
upregulating vascular cGMP.

In acute myeloid leukemia (AML) a synergistic effect between
sildenafil and EGCG has been described, increasing the pro-
apoptotic action of EGCG. In AML PDE5 inhibitors increased
cGMP concentration and apoptosis (61).

Melanoma
Melanoma is a malignancy of the melanocytes, skin pigment
producing cells and represents ~5% of all skin cancer cases.
Nevertheless, it is the most lethal type of skin cancer accounting
for >75% of all skin cancer deaths (96). Davies et al., reported that
BRAF somatic missense mutations were present in 66% of patients
with malignant melanoma, increasing BRAF kinase activity (97).
Similar results were described by Alsina et al. (98). The oncogene
BRAF acts throughMEK and the cGMP-specific phosphodiesterase
PDE5A, which enhances melanoma cell invasion by increasing
cGMP and upregulating cytosolic Ca2+, contractility (99). In 2014 a
prospective cohort study of 14,912 men concluded that sildenafil
prescription was related to a higher risk of melanoma (100) indeed,
sildenafil could promote melanoma progression.

Although there is a lot of evidence indicating melanoma
relationship with the use of PDE5A inhibitors such as sildenafil, a
recent meta-analysis has pointed to another possibility. Loeb, S. et al.
described a meta-analysis using Medline, EMBASE and Cochrane
library. They analyzed 866,049 men of whom 41,874 were
diagnosed with melanoma. This study found a little association
between sildenafil exposure and melanoma. They reported a
significant correlation between low PDE5 inhibitors exposure with
low-stage melanoma. Nevertheless, this association did not satisfy
Hill’s criteria for causality (101). In synthesis more research is still
needed to probe if sildenafil is associated with melanoma risk.
DISCUSSION

Most cancer studies that include the use of sildenafil are still under
in vitro and in vivo studies. However, to the date there are different
clinical trials evaluating the use of sildenafil in cancer therapy. In
these trials, sildenafil is often used in similar doses to the
recommended for erectile dysfunction therapy, ranging from 10
mg daily to 100 mg for at least 7 days which decreases the likelihood
of overdose toxicity and demonstrates the drugs safety for this
repurpose. Animal models have proved that drugs like regorafenib
combined with PDE5 inhibitors decrease tumor growth. The
combination of sildenafil with regorafenib decreases the
expression of protective proteins such as MCL-1 and BCL-XL
and the induction of death receptor signaling (73). In addition,
clinical trials, like the NCT02466802 trial evaluate the use of drugs
like neratinib to enhance the synergistic effect of regorafenib with
sildenafil in patients with advanced solid tumors. In hepatocellular
carcinoma (HCC) cytokine-induced killer cell-based
immunotherapy is effective at early stages but lacks efficiency in
advanced HCC. Tadalafil was used to target myeloid-derived
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suppressor cells (MDSC) enhancing immunotherapy effect. Results
show tadalafil reduces MDSC markers and tumor size (102).
Moreover, it has been found that PDE5 and PDE4 isozymes were
expressed in human bladder tumor cells and were sensitive to
exisulind at doses that inhibited tumor cell growth. In in vivo tests
the treatment with exisulind was associated with a reduction in
tumor size and proliferation in bladder cancer (103).

The evidence provided along the review, shows that sildenafil
can be used as an anti-cancer therapy in several types of cancer;
providing a tumor volume decrease, enhanced pro-apoptotic effect
and a synergistic effect with chemotherapeutic agents. Nevertheless,
the post-surgical distant recurrence is a common and worrying
event in cancer treatment. In these cases, metastasis remains even
when curative resection surgery is followed by adjuvant therapy.
One of the strategies to reduce the risk of post-surgical recurrence is
perioperative therapies (104), sildenafil has been studied as a
possible perioperative drug. In different kinds of cancer, it is
known that the increase of MDSC cells is related to poor
prognosis because of its association with high grade of recurrence.
PDE5 inhibitors such as sildenafil and tadalafil could affect MDSCs
Frontiers in Oncology | www.frontiersin.org 9
functions by decreasing the expression of arginase 1 (ARG1), IL4Ra,
and the concentration of reactive oxygen species (ROS), which
would increase the cytotoxic activity of NK cells against tumor cells
(105). Currently the NCT02998736 clinical trial seeks to determine
whether administration of tadalafil, before, during and after surgery
can decrease the spread of abdominal cancer. In addition to tadalafil
administration, the trial is looking to apply the influenza vaccine
after surgery with the intention of increasing and activating NK
cells. Although the trial is in phase I, it is an innovative approach to
using PDE5 inhibitors such as sildenafil or tadalafil to decrease
MDSCs and therefore decrease the likelihood of metastasis in
patients who have already gone through a resection of primary
tumors. The use of PDE5 inhibitors should be one of the great
advances in drug repositioning in the area of cancer therapy.
CONCLUDING REMARKS

Drug-repurposing represents a novel strategy that could redeem
time and financial resources in order to improve current
FIGURE 3 | General mechanisms of sildenafil in different types of cancer. The different types of cancer are highlighted in colors. Breast cancer (light blue). Three
mechanisms may decrease tumor progression: Combined therapy sildenafil + DOX, estrogen reduction by aromatase blockage or decrease secretion of CXCL16 in
fibroblasts with sildenafil or tadalafil. Tadalafil can block tumor growth and promote apoptosis. The same effect is caused by combined therapy sildenafil + sulindac
sulfide through PKG activation. Sildenafil can promote PKD2 degradation and decrease proliferation and viability, and enhance antitumoral effects of cisplatin.
Leukemia (dark green). Sildenafil + EGCG promote activity of acid sphingomyelinase increasing apoptosis. Lung cancer (light green). Sildenafil may decrease tumor
growth through cGMP and enhance cytotoxicity of carboplatin to promote apoptosis. Combined therapy of sildenafil + radiotherapy reduces activity of MSCS and
promotes immune response of CD8+T cells. Colon cancer (yellow). Sildenafil prevents inflammation of intestinal epithelium decreasing the risk of cancer. Combined
therapy sildenafil + curcumin, enhance efficacy of 5-fluorouracil to promote apoptosis. Combination of neratinib, regorafenib and sildenafil affects mutant KRAS
expression to increase sensitivity of cancer cells to immunotherapies through MHCA. Prostate cancer (orange). Blocking ABC transporters. Sildenafil disrupted the
efflux of chemotherapeutics promoting their activity. Sildenafil can promote caspase activity and ROS to produce apoptosis and sensitize hypoxic cancer cells to
chemotherapeutics through NO/cGMP pathway restoring. Brain cancer (deep blue). Sildenafil + DOX, improves survival of cancer patients.
February 2021 | Volume 11 | Article 627229

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cruz-Burgos et al. Repurposing PDE5 Inhibitors
therapies or to propose new ones, using already existing drugs,
that benefits cancer patients widen the frame of therapeutic
options. PDE5 inhibitors are a relatively new drug class, which
pharmacokinetics and pharmacodynamics have not been fully
elucidated. Hence, its potential for repurposing to treat other
ailments is currently being explored. In this review, we delved
into the evidence that supports the repositioning of PDE5
inhibitors, as anti-cancer drugs. PDE5 inhibitors can act as
chemotherapeutic adjuvants, positively impacting cancer
treatment. We discuss a molecular synergy between sildenafil
and anticancer drugs showing encouraging outcomes for breast,
lung, prostate, leukemia, head & neck, and colorectal cancer
(Figure 3). Unfortunately, many of these synergistic effects have
been observed only in vitro with a few clinical trials in course.
Research to validate these observations in vivo and assess survival
rates and cost-benefit of the proposed chemotherapy cooperation
is still needed. Increasing repurposing of drugs such as sildenafil
could improve research and cancer treatments.

Here, we summarize the mechanisms of action and diverse
effects of PDE5 inhibitors, which may serve as the basis to officially
suggest their repositioning to treat several types of cancer (Table 1).
PDE5 inhibitor sildenafil has already demonstrated significant
efficacy as a proapoptotic, anti-inflammatory, and immune
modulator when used in combination with anticancer drugs and
recently as a perioperative drug. PDE5 inhibitors offer an attractive
Frontiers in Oncology | www.frontiersin.org 10
alternative to improve current cancer chemotherapeutics.
Nevertheless, more investigations are needed to demonstrate its
effects and molecular mechanisms on specific types of cancer. Drug
repositioning is a strategy with the potential to improve current
drug efficiency that is cost-effective.
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