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There has been increasing interest in performing psychiatric brain imaging studies
using deep learning. However, most studies in this field disregard three-dimensional
(3D) spatial information and targeted disease discrimination, without considering the
genetic and clinical heterogeneity of psychiatric disorders. The purpose of this study was
to investigate the efficacy of a 3D convolutional autoencoder (3D-CAE) for extracting
features related to psychiatric disorders without diagnostic labels. The network was
trained using a Kyoto University dataset including 82 patients with schizophrenia (SZ)
and 90 healthy subjects (HS) and was evaluated using Center for Biomedical Research
Excellence (COBRE) datasets, including 71 SZ patients and 71 HS. We created 16 3D-
CAE models with different channels and convolutions to explore the effective range of
hyperparameters for psychiatric brain imaging. The number of blocks containing two
convolutional layers and one pooling layer was set, ranging from 1 block to 4 blocks.
The number of channels in the extraction layer varied from 1, 4, 16, and 32 channels.
The proposed 3D-CAEs were successfully reproduced into 3D structural magnetic
resonance imaging (MRI) scans with sufficiently low errors. In addition, the features
extracted using 3D-CAE retained the relation to clinical information. We explored the
appropriate hyperparameter range of 3D-CAE, and it was suggested that a model with
3 blocks may be related to extracting features for predicting the dose of medication and
symptom severity in schizophrenia.

Keywords: deep learning, machine learning, neuroimaging, schizophrenia, structural MRI, convolutional
autoencoder, diagnostic label
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INTRODUCTION

Deep learning (DL) has dramatically improved technology in
speech recognition, image recognition, and many other fields
(LeCun et al., 2015). Medical imaging can benefit greatly from
recent progress in image classification and object detection using
this cutting-edge technology (Esteva et al., 2019). In particular,
as the global burden of psychiatric disorders increases (Olesen
et al., 2012; Whiteford et al., 2013), psychiatric brain imaging
studies using DL are anticipated to bring many benefits to society
(Vieira et al., 2017). There are two major concerns about applying
DL to psychiatric brain imaging: (1) treatment of the high
dimensionality of data, and (2) the heterogeneity of psychiatric
disorders (Feczko et al., 2019).

The dimensionality of raw magnetic resonance imaging (MRI)
data is very high (often running into the millions), and large
computer resources are required to analyze them. To reduce
computational demands, in most neuroimaging studies, several
feature extraction methods have been used. Region of interest
(ROIs), one of the most popular feature extraction methods,
has contributed to detecting various structural and functional
abnormalities in the brains of patients with psychiatric disorders
(Fornito et al., 2012; Fusar-Poli et al., 2012; Linden, 2012;
Ratnanather et al., 2013). ROIs (often dozens or hundreds) are
usually set based on neuroscience knowledge (Tzourio-Mazoyer
et al., 2002). For example, average gray matter volumes or
cortical thicknesses at specific ROIs are extracted as feature,
and then the relationship between the feature and disease
clinical information is analyzed (Desikan et al., 2006; Poldrack,
2007; Nelson et al., 2017). Even in the studies using DL,
ROI-based features are often used as input (Vieira et al.,
2017; Heinsfeld et al., 2018; Pinaya et al., 2019). In addition,
many DL studies avoid using three-dimensional (3D) images
directly, but instead, DL networks are trained using two-
dimensional slices (Sarraf et al., 2017; Vieira et al., 2017;
Aghdam et al., 2019). A limitation of these studies is that
they ignore the 3D spatial information contained within the
original MRI scans.

In recent years, with improvements in computer performance
and refinement of computational techniques, studies have
investigated how to treat 3D MRI scans as inputs to DL.
For example, Wang et al. (2018) successfully discriminated
Alzheimer’s dementia from healthy subjects using 3D MRI data as
input to DL. Similar attempts have been made for discriminating
psychiatric disorders, including schizophrenia (Qureshi et al.,
2019) and developmental disorders (Wang et al., 2019). Although
these studies demonstrated that DL could apply to the analysis
of 3D MRI data, discrimination-based approaches may be
challenging due to the heterogeneity of psychiatric disorders.

Heterogeneity is one of the main challenges that current
psychiatric research faces (Feczko et al., 2019). The current
symptom-based definitions of psychiatric disorders, standardized
in the Diagnostic and Statistical Manual of the American
Psychiatric Association (DSM) (American Psychiatric
Association., 2013) and the International Classification of
Diseases (ICD) (World Health Organization., 1992), have been
highlighted as lacking predictive and clinical validity due to

genetic and clinical heterogeneity (Owen, 2014). For example,
in schizophrenia, a recent study found evidence for significant
overlapping of the relatively common risk variants tagged in
genome-wide association studies (GWAS) between several
psychiatric disorders, and there may also be lower genetic
correlation within disorders (Lee et al., 2014). In addition,
even in patients given the same diagnosis of schizophrenia, the
severity of symptoms, response to medication, and prognosis
often vary widely among patients (van Os and Kapur, 2009;
Owen et al., 2016). Therefore, in psychiatric disorders research,
a simple competition for discrimination accuracy based
on the current disorder categories may be insufficient to
elucidate on pathophysiology, although most current studies
using DL are attempting to discriminate disease in healthy
subjects (Plis et al., 2014; Vieira et al., 2017; Gao et al., 2021;
Quaak et al., 2021).

One possible alternative direction for using DL techniques
in psychiatric neuroimaging studies may be diagnostic label-
free feature extraction. In the current study, we focus on an
autoencoder (AE) as a DL algorithm that allows feature extraction
without labels (Hinton, 2006). AE is supervised learning in a deep
neural network having an output layer with the same data as the
input layer. Since the input is as supervision, no labels are needed,
unlike in general supervised learning.

Indeed, there are some studies that have used AE-based
feature extraction for psychiatric neuroimaging. For example,
Pinaya et al. (2019) extracted features from structural MRI
scans using AE, i.e., without using diagnostic labels. The
authors successfully predicted the age and gender of participants,
and discriminated patients with autism spectrum disorders
(ASD) and schizophrenia from healthy subjects. However, these
studies used ROI-based features such as cortical thickness
and functional connectivity as inputs to the AE. As such,
the use of 3D brain images for inputs to the AE remains
challenging, with a few exceptions. For example, Martinez-
Murcia et al. (2020) extracted features from 3D brain MRI
data of patients with Alzheimer’s dementia using a 3D
convolutional autoencoder (3D-CAE). They demonstrated that
the extracted feature was useful for predicting age and Mini-
Mental State Examination (MMSE) scores. This supports the
efficacy of labeling free features based on 3D-CAE with
MRI. However, particularly when investigating psychiatric
disorders, the appropriate architecture of 3D-CAE has not been
fully investigated.

The purpose of this study was to investigate an efficient
3D-CAE-based feature extraction for the neuroimaging of
psychiatric disorders. More specifically, in the current study,
we used datasets that included patients with schizophrenia,
which has frequently been reported to be heterogeneous in
previous neuroimaging studies (Sugihara et al., 2017). The
key points of our study are: (1) to use 3D MRI data while
preserving spatial information, and (2) diagnostic label-free
feature extraction using 3D-CAE. For this purpose, we explored
appropriate network structures of 3D-CAE by developing
models with different network structures and comparing
the predictive performance of clinical information by these
extracted features.
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MATERIALS AND METHODS

Experimental Overview
Figure 1 illustrates an experimental overview of our study.
We used two datasets, including participants diagnosed with
schizophrenia as well as healthy subjects: a dataset collected
at Kyoto University (Kyoto dataset) and a public dataset, The
Center for Biomedical Research Excellence (COBRE1) dataset.
(1) Gray matter was first extracted from the structural MRI
data as preprocessing. (2) We then trained 3D-CAE to extract
a latent feature representation from structural MRI using the
Kyoto dataset. Sixteen 3D-CAEs with varying network structures
were prepared for investigation of the optimal network depth
and complexity. (3) Subsequently, the COBRE dataset was used
to evaluate the applicability to another dataset. (4) Finally,
we evaluated whether the extracted feature retained clinical
information by linear regression of the clinical information using
the COBRE dataset.

Convolutional Autoencoder Training
An autoencoder is a kind of DL consisting of the encoder
and the decoder. The encoder learns latent representations and

1http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html

reduces the dimension of the input. The decoder learns to
reproduce the input as close as possible to the original using
the latent representations. 3D-CAE extends this architecture by
using convolutional layers that can extract features directly from
3D images (Guo et al., 2017; Nishio et al., 2017; Oh et al.,
2019). The CAE has two main hyper parameters: the number of
convolutional layers and the number of channels, which are the
target of the current study.

The convolutional layers apply a filter to input to create feature
maps that summarize the feature detected in the input. The
feature maps are created for the number of channels. Since the
convolutional layer generates feature maps while capturing the
spatial information of the matrix, convolutional neural networks
are beneficial to learning features of images. As the number of
channels increases, the complexity of a model increases, but the
number of dimensions of latent feature increase and requires a
huge amount of computational power. Also, as the number of
convolutions increases, the effective receptive field increases, thus
allowing global and abstract feature to be extracted. The effective
receptive field is a region of the original image that can potentially
influence the activation of neurons (Le and Borji, 2017; Luo et al.,
2017). If the effective receptive field is small, the feature will
contain only local information of the brain, and if it is large, it
will contain information on the whole brain.

FIGURE 1 | Experimental overview. 1. Preprocessing: The gray matter was extracted from the structural MRI and standardized and smoothed using SPM. 2. CAE
training: A schematic diagram is shown. 3D images of the Kyoto dataset were input, feature was extracted, and the original image was reproduced. 3. Feature
extraction: the model trained using the Kyoto dataset was adopted to the COBRE dataset without updating the weights. 4. Linear regression: Feature are extracted
and flattened. Each extracted feature vectors were an explanatory variable, and demographic and clinical information were objective variables. Regression errors
were evaluated to investigate whether the extracted features retain the information to predict demographic and clinical information. 3D, three-dimensional; CAE,
convolutional autoencoder; COBRE, Center for Biomedical Research Excellence; CPZE, dose of antipsychotic medication; MRI, magnetic resonance imaging; SPM,
Statistical Parametric Mapping.
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In this study, these two hyperparameters were explored
to investigate whether the total dimensions of the extracted
feature and the size of the effective receptive field affected the
relation of the feature to clinical information. As shown
in Figure 2, the set of two convolution/deconvolution
layers, and one pooling/unpooling layer was defined as a
convolution/deconvolution “block.” In this experiment, the
number of blocks was set, ranging from 1 block to 4 blocks. In 4
blocks, the effective receptive field is the whole brain; in 3 blocks,
it is about 30% of the brain (multiple lobes), in 2 blocks, it is
5% of the brain (multiple regions), and in 1 block it is 0.1% of
the brain (1 region). The number of channels in the extraction
layer was varied with 1, 4, 16, and 32 channels, but the number
of channels for other layers were fixed at 32. The number of
channels was considered limited to 32 due to the limitation of
the current experiment’s computational power. As a result, we
created sixteen 3D-CAE models (4 block conditions × 4 channel
conditions) to explore the effective range of hyperparameters for
psychiatric brain imaging.

Other hyperparameters were fixed and common among
models. The encoder was composed of convolution layers (a
kernel size of 3 × 3 × 3 and a stride of 1) with rectified linear
unit (ReLU) activations and average pooling layers (a kernel size
of 2 × 2 × 2 and a stride of 2). The decoder was composed of
convolution layers (a kernel size of 3 × 3 × 3 and a stride of
1) with ReLU activations and unpooling layers (a kernel size of
2 × 2 × 2 and a stride of 2). The loss function, consisting of the
mean absolute error (MAE) between the input images and the

reproduced images, was defined as follows:

Loss =
1
n

∑∣∣Xinput − Xreconstructed
∣∣ (1)

As an optimizer, we used a gradient-based method with
adaptative learning rates called Adam (Kingma and Ba, 2015)
(alpha = 0.0001, beta1 = 0.9, beta2 = 0.999) using mini-batches
with a size of eight samples. The training process was performed
with a maximum of 50,000 training iterations. We conducted
the experiments in Python 3.62 using the Chainer v.5.4.0 library
(Tokui et al., 2015).

We used a reference of training performances of 3D-CAEs,
referred to as the “average brain,” with which the model was
assumed to output the average intensities of the training dataset
regardless of the inputs. The average brain is one of the most
trivial solutions where the network outputs an image without
learning any information about individual differences of the
inputs. The average brain was used as a reference point to indicate
that the model at least reproduced individual differences. The
signal intensities of voxel i of the average brain was determined
as follows:

x
ave i =

∑n
s = 0 xs,i

n
(2)

where s is a sample from the training dataset and n is the
number of samples.

2https://www.python.org/

FIGURE 2 | Our proposed 3D-CAE architecture. One convolution/deconvolution block was defined as repeating two convolution/deconvolution layers and one
pooling/unpooling layer. The number of blocks was set from 1 to 4. The number of channels in the extraction layer was set from 1 to 32. Sixteen patterns of models
with different numbers of blocks and channels were developed. In order to explore the effective number of channels and blocks, the reproduction capability and
relation to clinical information were evaluated. act., activation function; 3D-CAE, three-dimensional convolutional autoencoder; ch., channel; Conv., convolution;
Dcnv, deconvolution; pad., padding; pool, pooling; Relu, Rectified Linear Unit; unpool, unpooling.
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Regression Analysis With Demographic
and Clinical Information
Using trained 3D-CAE, latent feature vector could be extracted,
and then the feature vector was flattened. The number of
dimensions of that feature vector ranged from millions to
hundreds, depending on the model. The relationship between
the extracted feature and the clinical information was examined
using regression analysis, based on the assumption that if
the extracted feature is “informative,” it could help predict
schizophrenia patients’ clinical information. Therefore, we
confirmed this by comparing the prediction performance of
3D-CAE-based features and conventional ROI-based features.
The linear regression analysis was performed with clinical and
demographic information as the objective variables and the
feature vectors as the explanatory variables (see the lower part
of Figure 1). Demographic and clinical information included
age, scores of positive and negative symptoms (PANSS), the
dose of antipsychotic medications [chlorpromazine equivalent
(CPZE)], Wechsler Adult Intelligence Scale (WAIS), duration of
illness, age at onset, and diagnosis. For the regression analysis,
in order to reduce the effects of correlated variables we adopted
ridge regression, one of regularized linear regression methods.
In the regression analysis, we executed a fivefold cross-validation
process whereby the COBRE dataset was randomly divided into
five groups of samples (folds), and then samples from fourfolds
were used for training the regression model, and the other fold
was used for the test of the regression model. The fivefold
cross-validation was repeated ten times. The performance of the
regression model was evaluated using the root mean square error
(RMSE). The diagnosis was evaluated using accuracy.

Differences in the performances of regression models were
evaluated using the two-way (number of channels × number
of blocks) analysis of variance (ANOVA). Subsequently, Tukey’s
multiple comparison test was performed for each group as a
post hoc analysis. The level of significance was set to 0.05.

The 3D-CAE models were also compared with the ROI
method. In the ROI method, using the automated anatomical
labeling (AAL) template (Tzourio-Mazoyer et al., 2002), the GM
was divided into 116 ROIs. The average intensities of each ROI
were used as the ROI-based feature for regression analysis. The
Student’s t-test was performed to compare the proposed 3D-
CAE model with the ROI method. The level of significance
was set to 0.05.

By calculating the gradient of the neural network at the
input T1-weighted image for each subject, it is possible to
visualize which regions of the input have higher weights.
In this study, we attempted to visualize the regions that
contribute to predicting clinical information by calculating the
gradient of a composite function of feature extraction and
clinical information regression functions. The calculation of a
saliency map for input image x, M(x), was defined as follows.

M(x) = ∂R(S(x))/∂x (3)

Where, S() was a feature extraction function based on
the 3D-CAE, and R() was a function predicting clinical
information using linear regression. To refine the visualization,

the gradients’ calculation was repeated by adding Gaussian
noise to the original image, similar to the technique
used in SmoothGrad (Smilkov et al., 2017). The maps
were then averaged by overall samples and divided
by the standard deviation to obtain a t-value, and the
values were finally converted to absolute values to yield a
3D saliency map.

Kyoto Dataset Description
A total of 172 subjects were investigated in this study, including
82 patients with schizophrenia and 90 healthy subjects. Patients
were recruited from hospitals in Kyoto, Japan, and diagnosed
by psychiatrists using the Diagnostic and Statistical Manual of
Mental Disorders, 4th edition (DSM-IV) (American Psychiatric
Association., 1994) criteria for schizophrenia, confirmed with the
patient edition of the Structured Clinical Interview for DSM-
IV Axis I Disorders (SCID) (First et al., 1997). No patients had
any comorbid DSM-IV Axis I disorder. The clinical symptoms
of all patients were estimated using the Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987). Healthy subjects were
screened with the non-patient edition of the SCID, confirming
no history of psychiatric disorders. Exclusion criteria for all
individuals included a history of head trauma, neurological
illness, serious medical or surgical illness, or substance abuse.
Note that participants were already diagnosed in order to
expedite the data collection, but the diagnostic labels were not
used to train the networks.

All participants were scanned with a 3.0-Tesla Siemens
Trio scanner (Siemens Healthineers, Erlangen, Germany). The
scanning parameters of the T1-weighted 3D magnetization-
prepared rapid gradient-echo (3D-MPRAGE) sequences were
as follows: echo time (TE) = 4.38 ms; repetition time
(TR) = 2,000 ms; inversion time (TI) = 990 ms; field of
view (FOV) = 225 mm × 240 mm; acquisition matrix
size = 240× 256× 208; resolution = 0.9375× 0.9375× 1.0 mm3.

COBRE Dataset Description
In this study, the COBRE dataset, which is a public dataset,
was acquired as a dataset with different scanning sites and
parameters to the Kyoto University dataset. All the subjects were
diagnosed and screened with the SCID. The clinical symptoms of
all patients were estimated using the PANSS. Exclusion criteria
for individuals included a history of head trauma, neurological
illness, serious medical or surgical illness, or substance abuse. We
included a total of 142 subjects from this database in our study,
including 71 patients with schizophrenia and 71 healthy subjects.

MRI data were acquired using a 3.0-Tesla Siemens Tim
Trio scanner (Siemens Healthineers, Erlangen, Germany).
The scanning parameters of the T1-weighted 3D-MPRAGE
sequences were as follows: TE = 1.64 ms; TR = 2,530 ms;
TI = 900 ms; FOV = 256 mm × 256 mm; acquisition matrix
size = 256× 256× 176; resolution = 1.0× 1.0× 1.0 mm3.

Demographic and clinical characteristics of Kyoto and
COBRE datasets are provided in Supplementary Table 1. There
was no significant difference between the two datasets with the
exception of the sex ratio.
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Division of Train, Validation, and Test
The 3D-CAE was trained using the Kyoto dataset. The dataset
was randomly partitioned into training data, validation data, and
test data (138 subjects, 16 subjects, and 18 subjects, respectively).
Training data, validation data, and test data were used for the
training of the 3D-CAE, the validation of the model during
training, and the final evaluation of generalizability within
the datasets independent of the training and validation data,
respectively. The COBRE dataset (142 subjects) was also used to
evaluate the applicability of the network to another dataset.

The regression analysis was carried out using the COBRE
dataset. The bias between MRI scanning sites might have
affected the distribution of features extracted by 3D-CAE; thus,
affecting the prediction error of the regression. Therefore, to
avoid the scanning site effect, we used a single dataset for
the regression. Then the fivefold cross-validation technique was
applied. Namely, the COBRE dataset samples (142 subjects)
were randomly divided into five subgroups (four groups for
training and one group for validation) and cross-validated
by changing the combinations of groups. This fivefold cross-
validation process was repeated ten times. Note that only patients
with schizophrenia had clinical information available for analysis,
and regressions based on the clinical information were performed
using data from patients with schizophrenia (71 subjects). The
details for the division of data are shown in Table 1.

MRI Preprocessing
The preprocessing was conducted using Statistical Parametric
Mapping (SPM12, Wellcome Department of Cognitive
Neurology, London, United Kingdom3) with the Diffeomorphic
Anatomical Registration Exponentiated Lie Algebra (DARTEL)
registration algorithm (Ashburner, 2007). All of the T1 whole-
brain structural MRI scans were segmented into gray matter
(GM), white matter, and cerebrospinal fluid. Individual GM
images were normalized to the standard Montreal Neurological
Institute (MNI) template with a 1.5 × 1.5 × 1.5 mm3 voxel size
and modulated for GM volumes. All normalized GM images
were smoothed with a Gaussian kernel of 8 mm full width at
half maximum (FWHM). Subsequently, each image was cropped

3https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

TABLE 1 | Division of dataset.

Kyoto COBRE

3D-CAE

(recon. error) Train 3

Validation 3

Test 3 3

Regression

(pred. error) Train 3

Validation 3

The Kyoto dataset was used to develop the 3D-CAE model and was divided into
train, validation and test dataset. The COBRE dataset was prepared for regression.
At regression, fivefold cross-validation was performed.
3D-CAE, three-dimensional convolutional autoencoder; COBRE, Center for
Biomedical Research Excellence.

to remove the background as much as possible. The GM area
was extracted from original images using a binary mask, created
using SPM12. As a result, the size of input images to the 3D-CAE
was 121× 145× 121 voxels.

Subsequently, the range of signal intensities in each image was
normalized with a mean of 0 and a standard deviation of 1. The
standardized value of voxel i in the sample s, x′s,i, was calculated
as follows:

x′s,i =

{
xs,i− µs

σs
(i ∈ GM )

0
(
otherwise

) (4)

where xs, i is the original value of intensity. µs and σs were average
and standard deviation of all voxels contained in the GM area of
sample s, respectively.

RESULTS

Technical Evaluations: Reproduction
Capability Performance
Figure 3A shows a representative example of learning curves
for the 3D-CAE with 16 channels and 3 blocks. Progressive
decreases were shown not only with “train loss” (red line), but
also “validation loss” (orange line) and “test loss” (green line);
this indicated that the 3D-CAE successfully learned without
overfitting. The level of MAEs were well below the level of
the “average brain” (dashed line) (see section “Materials And
Methods” for details). In addition, the curve for “COBRE loss”
(blue line) showed a similar trend. This indicated that the 3D-
CAE could be applied to MRI data from another site with
different scanning parameters. Similar trends of learning curves
were observed for the other fifteen 3D-CAEs with different
hyperparameter settings.

Figure 3B summarized the reproduction performances
(MAEs for the COBRE dataset) of the sixteen 3D-CAE models
with respect to the number of channels and number of blocks.
Regarding the number of blocks, it can be seen that the larger the
number of blocks, the larger the reproduction error. This result
is intuitively understandable, in that models with smaller blocks
are easier to reconstruct because extracted latent features do not
abstract the original image as much (Figure 4). Regarding the
number of channels, although the differences were small, there
was a tendency for the larger number of channels to be associated
with smaller reproduction errors (see Supplementary Table 2
for more details). This result is consistent with the fact that the
models with more channels have more expressive capability.

Clinical Evaluation: Relation to Clinical
Information
The efficacy of the proposed method was evaluated using
linear regressions for predicting demographic and clinical
information related to a psychiatric disorder, i.e., schizophrenia.
Demographic and clinical information, including age, the dose
of antipsychotic medication (CPZE), and scores of positive
and negative symptoms (PANSS), were used as an objective
variable, and all extracted features of 3D-CAE were used as
explanatory variables. Feature using the ROI-based method was
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FIGURE 3 | Learning performance of models. (A) shows the learning loss curve for a 16-channel and 3-block model. The red line shows the training loss, indicating
that the learning has progressed, and the loss has fallen sufficiently. The validation loss and test loss were also decreased, so the model was not overfitting. The blue
line indicates the loss at the other site (COBRE), and the loss degraded as well. It can be seen that the MAE of our proposed models was well below the level of
Ave.brain at which the model was assumed to output the average brain. This suggested that our 3D-CAE models have successfully reproduced the brain images
with individual characteristics. Similar learning curves were found for other models. In (B), the reproduction performance of each of the 16 models were compared.
The relationships between MAE, number of channels, and number of blocks are shown. The horizontal axis indicates the number of blocks, which is color-coded by
the number of channels. As the number of blocks increased, the MAE tended to be larger, and as the number of channels increased, the MAE tended to be slightly
smaller. 3D-CAE, three-dimensional convolutional autoencoder; COBRE, Center for Biomedical Research Excellence; MAE, mean absolute error.

FIGURE 4 | Visualization of extracted feature. The extracted features were mapped for four models with 16 channels. From left to right: the model with one, two,
three, and four blocks. The middle slices of the horizontal slice from 3D feature are shown. In the one-block model, the morphology of the brain can be seen, but
with four blocks, the images are more abstract.

also used for comparison with the conventional method. A linear
regression analysis was used as the simplest method to confirm if
extracted features from 3D-CAEs with different hyperparameters
(numbers of blocks and channels) preserved useful information.
Each of the 16 3D-CAE models were analyzed 10 times, and
the difference in predictive performance of the models was
examined statistically.

Figure 5 illustrates a representative example of the regression
analysis results. Differences in the performance of regression
models (RMSE) with respect to the number of channels with 3
blocks (Figures 5A–D) and respect to the number of blocks with
16 channels (Figures 5E–H) were demonstrated as representative

examples. The results of the comparison with the ROI method
are shown in Table 2. The detailed results are described in
Supplementary Tables 3–5, respectively.

Regarding the prediction of age, there were tendencies
for the RMSEs to be smaller with increases in the number
of channels (Figure 5A) and with decreasing number of
blocks (Figure 5B). Indeed, statistical analysis revealed
that there were significant differences between the models
(channel: p < 0.001; block: p < 0.001). However, even the
model with 32 channels and 1 block, which is considered
one of the most predictive models, is equivalent to the
ROI method (p = 0.346; Table 2), suggesting that for the
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FIGURE 5 | Regression performance plot. The left side (A–D) shows the model differences by number of channels for the four models with 3 blocks as an example.
The right side (E–H) shows the model differences by number of blocks for the four models, with 16 channels as representative examples. Regarding age, as shown
in (A,E), the RMSEs were smaller with increasing number of channels and decreasing number of blocks. Regarding CPZE, as shown in (B,F), the RMSEs were
smaller with increasing number of channels. On the other hand, the RMSEs may be smaller in block 3. Regarding positive symptoms and negative symptoms, as
shown in (C,D), there was no apparent trend in the number of channels. As shown in (G,H), the RMSE may be smaller in block 3. The results of each regression with
the ROI method is also included for reference. It suggests that a model with 3 blocks may be appropriate for extracting schizophrenia-related information.
***p < 0.001, **p < 0.01, *p < 0.05 (two-way analysis of variance followed by Tukey’s multiple comparison test). CPZE, chlorpromazine equivalent; RMSE, root
mean square error; ROI, region of interest.

prediction of age, 3D-CAE-based features were comparable to a
conventional method.

In addition, the superiority of the 1 block condition was
observed in the prediction of VIQ, PIQ and duration of illness
(Supplementary Tables 2–4). However, 3D-CAEs with 1 block
were not superior to the ROI method in predicting those
information (VIQ: p < 0.001; PIQ: p < 0.001; duration of illness:
p = 0.100; Table 2).

Regarding the prediction for CPZE, there was a tendency
for the RMSEs to be smaller with increases in the number

of channels (Figure 5C); on the other hand, the RMSEs were
smallest with the condition of 3 blocks (Figure 5D). Statistical
analysis revealed that there were significant differences between
the models (channel: p < 0.001; block: p < 0.001). Post hoc
analysis revealed that there were significant differences between
1 block and 3 blocks, and 3 blocks and 4 blocks. Moreover, the
lowest level of RMSE of 3D-CAE was significantly lower than
the RMSE from the ROI-based feature (p < 0.001; Table 2),
indicating that for the prediction of CPZE, 3D-CAE based
features outperformed a conventional method.
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TABLE 2 | The results of the t-test.

16 channels and 3 blocks model

3D-CAE
(ch16b3)

ROI P-value

SZ-related CPZE 197.85 (3.76) 214.75 (4.33) < 0.001***

Positive symptoms 4.67 (0.09) 4.72 (0.04) 0.088†

Negative symptoms 4.67 (0.07) 4.69 (0.07) 0.968

Duration of illness 11.87 (0.10) 11.23 (0.16) < 0.001***

Age of onset 7.00 (0.11) 7.47 (0.15) < 0.001***

Diagnosis 0.668 (0.03) 0.634 (0.02) 0.005**

clinical
information

Other Age 10.29 (0.18) 10.03 (0.10) 0.001**

VIQ 14.92 (0.17) 14.72 (0.05) 0.003**

PIQ 14.65 (0.11) 13.83 (0.09) < 0.001***

information

32 channels and 1 block model

3D-CAE
(ch32b1)

ROI P-value

SZ-related CPZE 206.57 (4.61) 214.75 (4.33) 0.001**

Positive symptoms 4.84 (0.16) 4.72 (0.04) 0.037*

Negative symptoms 4.89 (0.10) 4.69 (0.07) < 0.001***

Duration of illness 11.36 (0.17) 11.23 (0.16) 0.100

Age of onset 7.05 (0.13) 7.47 (0.15) < 0.001***

Diagnosis 0.632 (0.03) 0.634 (0.02) 0.868

clinical
information

Other Age 9.97 (0.16) 10.03 (0.10) 0.346

VIQ 15.17 (0.17) 14.72 (0.05) < 0.001***

PIQ 14.56 (0.13) 13.83 (0.09) < 0.001***

information

The differences between 3D-CAE and ROI are presented as mean (standard
deviation) and p-value of RMSE. Regarding the diagnosis, it is presented as
accuracy. The significantly better performances are marked in red. The 3D-CAE
model with 16 channels and 3 blocks was superior to the ROI method in predicting
CPZE, age of onset, and diagnosis. The model also appeared comparable or better
than the ROI method in positive symptoms. The 3D-CAE model with 32 channels
and 1 block was also superior to the ROI method in predicting the CPZE and age
of onset. Meanwhile, that the model was comparable to the ROI method for age
prediction is different from the model with 16 channels and 3 blocks. ***p < 0.001,
**p < 0.01, *p < 0.05, †p < 0.1 (t-test).
3D-CAE, three-dimensional convolutional autoencoder; ROI, region of interest; SZ,
Schizophrenia; CPZE, chlorpromazine equivalent.

Regarding the prediction of positive symptoms, there was
no clear tendency with respect to the number of channels
(Figure 5E). On the other hand, with respect to the number
of blocks, the RMSEs seemed to be the smallest with the
condition of 3 blocks (Figure 5F). Statistical analysis indicated
that there were significant differences between the models
(channel: p < 0.001; block: p < 0.001). Post hoc analysis revealed
that there were significant differences between 1 block and 3

blocks. Similar trends could be observed in the prediction of
negative symptoms (Figures 5G,H), where there were significant
differences between the models (channel: p < 0.001; block:
p < 0.001). In comparison to the conventional method, the 3D-
CAE model with 3 blocks showed a trend toward a smaller
prediction error for positive symptoms than the ROI method
(p = 0.088; Table 2), the mean RMSE (SD) was 4.67 (0.09)
and 4.72 (0.04), respectively, suggesting that the 3D-CAE might
be comparable or better than the ROI method. Regarding
the prediction of negative symptoms, there was no significant
difference between 3D-CAE and the conventional method
(p = 0.968; Table 2).

In addition, the superiority of the 3 blocks condition was
observed in the prediction of age of onset and diagnosis
(Supplementary Tables 2–4). Furthermore, 3D-CAEs with 3
blocks performed better than the ROI method in predicting
those clinical information (age of onset: p < 0.001; diagnosis:
p = 0.005; Table 2).

To summarize the regression analysis results, in terms of
clinical information related to schizophrenia, specifically for
predicting CPZE, positive symptom score, age of onset, and
diagnosis, 3D-CAE with 3 blocks had better prediction than
other numbers of blocks models, regardless of the number
of channels. In addition, 3D-CAE with 3 blocks performed
better than the ROI method in predicting clinical information.
On the other hand, in terms of information not directly
related to schizophrenia, such as age and intelligence, 3D-
CAE with 1 block had better prediction than 3D-CAE with
other numbers of blocks, regardless of the number of channels.
However, 3D-CAE with 1 block did not perform better than
the ROI method in predicting information not directly related
to schizophrenia.

The saliency map was calculated to examine the
correspondence between the features and the brain (Figure 6).
The map showed that the regions contributing to CPZE
prediction using 3D-CAE were the cerebellum, right middle
temporal gyrus, the insula, posterior cingulate cortex, and
precuneus. The regions that contributed to predicting the positive
symptoms were found to the cerebellum, right inferior temporal
gyrus, the insula, anterior and middle cingulate cortex. The other
visualization results are described in Supplementary Figure 1.

DISCUSSION

We have shown that (1) the proposed 3D-CAEs successfully
reproduced 3D MRI data with sufficiently low errors, and (2) the
diagnostic label-free features extracted using 3D-CAE retained
the relation of various clinical information. In addition, we
explored the appropriate hyperparameter range of 3D-CAE, and
our results suggest that a model with 3 blocks-based features
might preserve information related to the medication dose and
the severity of positive symptoms in patients with schizophrenia.

The reproduction errors of 3D-CAE were lower than the
average brain level, indicating that the proposed 3D-CAEs
successfully reproduced 3D brain MRI data with individual
characteristics. In addition, the 3D-CAE trained with the Kyoto
dataset was applicable to the COBRE dataset with different
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FIGURE 6 | The saliency maps. In our developed 3D-CAE model, the saliency maps of the signals contributing to the prediction of each clinical information were
obtained by calculating the gradient of the neural network. 3D-CAE, three-dimensional convolutional autoencoder; PCC, posterior cingulate cortex; MCC, middle
cingulate cortex; ACC, anterior cingulate cortex; Temporal_Mid_R, right middle temporal gyrus; Temporal_Inf_R, right inferior temporal gyrus.

scanners and scanning parameters. Although the current study
was tested using only two datasets, the results suggested that the
proposed method may have applicability to data from multiple
sites and scanners, itself a challenging issue in neuroimaging
studies (Jovicich et al., 2009; Schnack et al., 2010; Fortin et al.,
2018; Dewey et al., 2019; Yamashita et al., 2019).

Regression analyses demonstrated that the 3D-CAE-based
feature was comparable or more effective than the ROI-based
feature in predicting the medication dose and the severity of
positive symptoms in patients with schizophrenia, even though
3D-CAE-based features were extracted without using a diagnostic
label of schizophrenia. Because this approach enabled us to
extract neuroimaging features of individuals without information
on the clinical diagnosis, it can be useful for heterogeneous
population data. Furthermore, using this approach, we were able
to predict clinical variables. These imply that our approach in this
study could be an alternative method to conventional methods
based on categorical diagnostic information. This study showed
that the prediction of CPZE, positive symptoms, and age of
onset might be more improved in 3D-CAE than ROI. These are
clinically meaningful because the model would help clinicians
decide the treatment plan by predicting based on an objective
indicator. In contrast, the current medication dose is mainly
adjusted based on the patient’s self-reported condition.

Regarding the number of channels, 16− to 32-channel models
demonstrated better performance. This is easy to understand
because the more channels the model has, the more expressive
it is (Zhu et al., 2019). However, since increasing number of
channels inevitably results in increasing computational power
needs, estimation of the appropriate number of channels is still
important. Our results suggest that the number of channels may

be sufficient at 16 or 32 for reproducing structural brain MRI
scans. Regarding the number of blocks, our results indicated
that information from a local receptive field (small number of
block) was sufficient for predicting age. However, predicting
schizophrenia-related clinical data required information from
more global receptive fields (larger block numbers, such as
3-block). As the number of blocks increase, the effective
receptive fields expand, and the global feature of the brain
can be extracted (Szegedy et al., 2015; Le and Borji, 2017;
Luo et al., 2017). In our model, the 3 blocks model contained
eight convolutional layers, and effective receptive fields of the
feature unit were about 68 × 68 × 68 voxels, corresponding
to about 30% of the brain. This fact is consistent with the
previous neuroimaging studies showing that the medication
dose and symptoms severity are associated with the volume
of multiple brain regions, including the temporal lobe, frontal
lobe, and various subcortical regions (García-Martí et al., 2008;
Palaniyappan et al., 2013; Van Erp et al., 2016; van Erp
et al., 2018; Bullmore, 2019; Fan et al., 2019). The 3D-CAE-based
feature’s superiority may be related to the detection of local
signal interactions inherent in the convolutional methods; this
contrasts with the ROI-based method, in which signals within
each ROI are averaged and the interactions of local signals
are discarded.

In our model, the saliency map showed that the cerebellum,
temporal lobe, cingulate gyrus, and insular cortex had greater
contributions in predicting the severity of symptoms and dose
of antipsychotic medication. The present study results were
consistent with the results of previous studies showing that
positive symptoms and CPZE correlated with cortical thickness
thinning in the temporal lobe (van Erp et al., 2018), and
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that cerebellar atrophy was associated with positive symptoms
(Cierpka et al., 2017). The insular and cingulate cortices, which
were shown to be significant contributors to clinical variables in
the present study, have been repeatedly reported to be reduced
in the regional brain volume in schizophrenia (Glahn et al.,
2008; Takayanagi et al., 2013; Gupta et al., 2015; Uwatoko et al.,
2015). However, the relationship between these areas and positive
symptoms and CPZE requires further investigation. As a side
note, because the relatively high values of the edge of the brain
may be influenced by the traits of Smoothgrad (Smilkov et al.,
2017) that emphasize the edge, it was difficult to consider them
from a neuroimaging study perspective.

There are some limitations to our study. First, this study
only explored a limited range of hyperparameters. In CAE,
there are several hyperparameters than those explored, such as
activate function, optimizer, and learning rate. However, because
we focused on the total dimension of the extracted features
and the effective receptive field’s size, the numbers of blocks
and channels were explored as the target variables. In addition,
the exploration range of hyperparameters was limited due to
practical reasons including the computational power and costs of
the experiments.

Second, the differences in preprocessing of neuroimaging
data may affect the robustness of the study results. In this
study, we employed the standard preprocessing methods (e.g.,
image resolution, standardization, smoothing), which have been
used in neuroimaging studies, such as voxel-based morphometry
(Ashburner and Friston, 2000). Nevertheless, further studies may
evaluate the effects of the preprocessing methods on results.

Third, the datasets used in this study only included patients
diagnosed with schizophrenia as well as healthy subjects.
Considering the heterogeneity of psychiatric disorders, it
will be necessary to examine the applicability of diagnostic
label-free feature extraction using 3D-CAE to other psychiatric
disorders in the future.

Fourth, regressions were used to predict clinical and
demographic scores, but the 3D-CAE-based feature
outperformed the feature of the ROI does not necessarily
prove that the predictive value generated is clinically useful. In
the present study, the main goal was feature extraction, and
only simple regression was used for prediction. The additional
experiments with the development of a fine-tuned model
and evaluation using longitudinal data of disease process are
needed in the future. These may improve clinical decisions
for assessing patients’ prognosis and estimating an appropriate
medication dose.

In this paper, we presented 3D-CAE-based feature extraction
for brain structural imaging of psychiatric disorders. We found
that 3D-CAE can extract features that retained their relation
to clinical information from 3D MRI data without diagnostic
labels. Our data suggest that 3D-CAE models with effective
hyperparameter settings may extract information related to the
medication dose and the severity of symptoms in patients with
schizophrenia. The feature extraction without using diagnostic
labels based on the current diagnostic criteria is scientifically
significant and may lead to the development of alternative data-
driven diagnostic criteria.
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