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In this era of precision medicine, the traditional role of 
the radiologist providing high quality (albeit qualitative) 
images needs to evolve further in order to help clinicians 
in their decision-making and contribute to the radiology 
value chain. Integrating quantitative imaging biomarkers 
into clinical practice allows us to measure the underlying 
pathophysiological mechanisms non-invasively, revealing 
properties relevant to detection, diagnosis, prognosis or re-
sponse to therapy. The data sets produced by the imaging 
modalities can be extracted and analyzed and thus act as 
valid and reproducible surrogates of the intrinsic biological 
processes.1

It is therefore important for radiologists to become acquainted 
with the process of implementation, validation, and standard-
ization of imaging biomarkers that are considered in vivo (or, 
more accurately in silico) virtual biopsies2

In this review, diffusion-weighted imaging (DWI) of the 
breast will be analyzed from the perspective of the develop-
ment of an imaging biomarker and its potential future role in 
the field of breast imaging.

tHe Development anD valiDation of 
Diffusion-mRi as an imaging biomaRkeR
The stepwise development of imaging biomarkers, provides 
an orderly framework within which to discuss the tech-
nique of DWI, as well as its clinical applications and its vali-
dation as an imaging biomarker (Figure 1).

The proof of concept in DWI
The first phase is the proof of concept, whereby the under-
lying pathophysiological mechanism to be evaluated by 
DWI is demonstrated. Diffusion is the process of random 
motion of water molecules in a free medium. In vivo, water 
mobility or diffusivity is limited by intracellular and extra-
cellular compartments, as well as tissue cellularity. Although 
the motion of water molecules is said to be “restricted” in 
tissues with a high cellular density (e.g. tumor tissue), in 
fact, there are three principal physical modes of diffusion: 
free, hindered and restricted diffusion.3–5 Free diffusion 
describes the random or Brownian motion of water mole-
cules due to thermal agitation in the absence of any obsta-
cles that follows a Gaussian distribution. Hindered diffusion 
refers to the delay of passage as they navigate around cellular 
obstacles, as in the extracellular space. Restricted diffusion 
is a term classically used to describe the trapping of water 
molecules within an enclosed compartment (i.e., the cell 
plasma membrane). The degree of water diffusion in tissue is 
inversely correlated with tissue cellularity and the integrity 
of cell membranes.

The proof of mechanism in DWI
The proof of mechanism refers to the relationship between 
the extracted imaging biomarker and the relevant disease. 
In order for the biomarker to become a surrogate of the 
underlying biological process, it has to undergo a process of 
technical and biological validation.

https:// doi. org/ 10. 1259/ bjro. 20180049
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Diffusion-weighted imaging (DWI) of the breast is a MRI sequence that shows several advantages when compared 
to the dynamic contrast-enhanced sequence: it does not need intravenous contrast, it is relatively quick and easy to 
implement (artifacts notwithstanding). In this review, the current applications of DWI for lesion characterization and 
prognosis as well as for response evaluation are analyzed from the point of view of the necessary steps to become 
a useful surrogate of underlying biological processes (tissue architecture and cellularity): from the proof of concept, 
to the proof of mechanism, the proof of principle and finally the proof of effectiveness. Future applications of DWI in 
screening, DWI modeling and radiomics are also discussed.
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DWI is used to visualize the degree of water molecule diffusion 
at in vivo MR imaging. DWI was initially applied in the clinical 
setting in the mid 1990s for the diagnosis of acute stroke5 and 
in 1997, Englander et al6 investigated the possibility of applying 
DWI to the human breast.

Image acquisition
The first step in the proof of mechanism of an imaging biomarker 
is the image acquisition, whereby data quality has to be checked 
regarding signal and contrast-to-noise ratios, spatial and 
temporal resolution, artifacts and reproducibility.

Description of the EPI sequence
In clinical imaging, the sequence used is a T2 weighted spin-
echo sequence with two motion-probing gradients next to the 
180° refocusing pulse.7 where segmented or single shot echop-
lanar readout techniques (EPI) are used to accelerate data 
acquisition. The faster a molecule diffuses, the greater the atten-
uation after applying the diffusion gradients and the weaker 
the corresponding pixel signal intensity at DWI. Thus, regions 
with restricted diffusion (i.e. higher density of cells) will show 
a higher signal than regions with fast water mobility. Typical 
DWI acquisitions have a diffusion time in the range of 30–50 
ms, corresponding to an approximate displacement of 14–17 µm 
for unrestricted free water at body temperature. The degree of 
diffusion weighting, described by the b-value and determined 
by the strength and timing of the applied diffusion gradients 
(in s/mm2), is the primary factor that affects the sensitivity of 
the diffusion sequence to water motion. In human tissues, the 

diffusion process is not free and is influenced by a combination 
of mechanisms (diffusion, microstructural restrictions, micro-
circulation) that contribute to the final signal attenuation. In 
vivo signal decay is considered mono-exponential within inter-
mediate b-value ranges, but due to the fact that the diffusion 
environment is highly complex, the concept of a single diffusion 
coefficient is arguable and as such is reported as an “apparent” 
diffusion coefficient or ADC.

At higher b-values, the signal decay fits the multiexponential 
model in vivo. At lower b-values (b < 150 s/mm2), the ADC is 
influenced by tissue microperfusion and can lead to overestima-
tions of the ADC. Thus, the choice of the optimal b-values will 
influence the conspicuity of the lesions in the DWI images but 
will also modify the ADC value. Pereira et al8 analyzed the ADC 
values of breast cancers at b-values ranging from 0 to 1000 s/
mm2 and found that the ADC value calculated for a combination 
of b-values of 0 and 750 s/mm2 showed a slightly better sensi-
tivity and specificity than did the ADC value calculated for other 
b-value combinations. Current recommendations propose two 
b-values of 50 and 800 s/mm2.9 Pereira et al8 also analyzed the 
ADC values of benign and malignant breast tumors with various 
combinations of b-values (0, 250, 500, 750, and 1000 s/mm2) and 
found that it is not necessary to use multiple b-values because 
the sensitivity of ADC with two b-values is equivalent to that 
with multiple b-values and the specificity of b-values 0 and 750 is 
higher than that of multiple b-values.

Figure 1.The stepwise development of imaging biomarkers. From Introduction to the Stepwise Development of Imaging Biomarkers 
(Chapter 2) in Imaging Biomarkers. Martí-Bonmatí L, Alberich-Bayarri A, editors. Springer; 2016. With permission of the author.
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The ADC describes the average area occupied by a water mole-
cule per unit time (mm2/s) and as a reference point, the ADC 
value of free water molecules at 37°C is 3.0 × 10−3 mm2/s. In 
general, determination of ADC is performed by acquiring images 
at two b-values and fitting the corresponding signal intensities 
into a monoexponential model. ADC values can be influenced 
by which b-values are applied, a fact that highlights the need for 
consistent and standardized protocols. At higher b-values, ADC 
decreases in normal breast tissue, fibrocystic changes and breast 
cancer.7,9

The observed ADC value depends on many factors: fluid 
viscosity, membrane permeability, water transport mechanisms 
and the microstructure of the compartment containing diffusing 
water. Thus, ADC value can provide a specific information on 
the proof of concept (tissue microstructure, cellularity). For 
DWI acquired with two or more different b-values, ADC can be 
calculated for each voxel in the image and presented as a para-
metric map. Malignant lesions will appear brighter on DWIs 
and darker on ADC maps compared with normal fibroglandular 
tissue (Figures 2 and 3). ADC is indeed the surrogate biomarker 

Figure 2.Breast images obtained with DWI in a patient with a Triple Negative subtype breast cancer in the left breast. Corre-
sponding slices from DCE postcontrast image (a), DWI at b = 0 s/mm2 (b), DWI at b = 700 s/mm2. (c), ADC map (d). Invasive 
tumors show reduced diffusivity on DW imaging, appearing hyperintense on b = 700 s/mm2 image (c) and hypointense on the 
ADC map (arrows) (d). ADC, apparent diffusion coefficient; DCE, dynamiccontrast-enhanced; DWI, diffusion-weighted imaging.

Figure 3.Breast images obtained with DWI in a patient with a HER-2 subtype breast cancer in the left breast. Corresponding slices 
from DCE post-contrast image (a), DWI at b = 0 s/mm2 (b), DWI at b = 700 s/mm2. (c), ADC map (d). Invasive tumors (arrows) 
show reduced diffusivity on DW imaging, appearing hyperintense on b = 700 s/mm2 image (c) and hypointense on the ADC map 
(arrow) (d). ADC, apparent diffusion coefficient; DCE, dynamic contrast-enhanced; DWI, diffusion-weighted imaging.
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of diffusion that has to undergo all the necessary technical and 
biological validation steps in order to become a clinically useful 
imaging biomarker.

EPI-related technical issues
Conventional EPI-based DWI sequences provide fast motion-
freezing imaging but DWI acquisition protocols must be opti-
mized to reduce artifacts and achieve adequate signal-to-noise 
ratio (SNR).10

Common EPI-related artifacts must be avoided during image 
acquisition in order to evade ADC quantification imprecisions.

•	 The magnetic susceptibility artifact, due to magnetic field 
inhomogeneities, can cause severe image distortions at the 
interface of materials with different magnetic susceptibilities 
such as the air/tissue or adipose/glandular tissue interfaces. 
Good patient positioning (avoiding skin folds) and improved 
shimming to reduce magnetic field inhomogeneities can avoid 
this artifact.

•	 Motion artifacts can cause misregistration, leading to false 
ADC values. Parallel imaging shortens acquisition times and 
minimizes these artifacts, ultimately leading to decreased 
image distortion (but also reduces SNR).

•	 Chemical shift artifacts can be overcome by adequate fat 
suppression and good-quality shimming.

•	 Ghosting artifacts are caused by phase mismatch during the EPI 
readout introduced by eddy currents or inadequate shimming, 
causing a mirror image that is shifted in the phase direction by 
half the field of view10,11

•	 Eddy currents are caused by strong gradients (especially 
evident in diffusion tensor imaging or DTI) and also originate 
image distortions, causing inaccuracies in ADC calculation.

•	 Low spatial resolution is a limitation of DWI that can be 
overcome by a higher SNR, afforded by higher magnetic field 
strength MR units.

Image analysis
The second phase in the proof of mechanism of DWI as an 
imaging biomarker is image analysis.

Once the source image quality is improved by implementa-
tion of noise reduction techniques, avoidance of artifacts and 
improvement of spatial resolution, signal analysis and feature 
extraction will yield the calculated tissue properties obtained 
from each voxel. In DWI, the final image with different ADC 
values calculated for each voxel is the parametric ADC map. 
ADC maps have poor anatomic detail and should be analyzed in 
conjunction with other MR images such as DWI, T2 weighted or 
dynamic contrast-enhanced (DCE) images in a multiparametric 
way.12 Data analysis in this phase includes post-processing of 
the images before ADC calculation, measurement of the ADC 
through region of interest (ROI) techniques and identification of 
confounding variables.

1. Post-processing of the images before ADC calculation with 
image registration software tools is applied to reduce 
spatial misalignment or pixel shifts due to patient motion, 
susceptibility or eddy current based distortions, using the 
b = 0 s/mm2 as a reference.

2. ADC measurements of lesions differ depending the ROI 
techniques, especially in large or non-mass lesions. 
Small ROI placed over the most hypointense area of the 
b = 700 s/mm2 or b = 800 s/mm2 image may provide 
more accurate measures in heterogeneous lesions while 
placing the ROI over the whole lesion may provide more 
reproducible results.13–15 Semiautomated ROI selection 
methods may allow for more consistent results16 and 
lately some authors claim histogram analysis17–19 might 
be an even more accurate way of assessing intra tumoral 
heterogeneity.

3. The T2 shine-through effect is a confounding variable 
that has to be taken into account when interpreting 
DW images. The standard diffusion image generates a 
T2 weighted reference image obtained without diffusion 
gradients and a DWI that reflects the water mobility but 
is also a T2 weighted image. In tissues with long relaxation 
times, the strong T2 signal maybe mistaken for restricted 
diffusion, a phenomenon known as the T2 shine-through 
effect.11,12

Biomarker validations. The proof of principle in 
DWI
To be clinically useful, a biomarker needs to undergo validation 
(performance of the test) and qualification (clinical approval) in 
order to ensure that the obtained measurements have a precise 
relationship with the underlying biological reality.2 Several vali-
dations including technical, biological and clinical have to be 
conducted before a biomarker is introduced in clinical research. 
These initial pilot tests performed on a small group of subjects 
are known as the proof of principle, to verify that the concept 
and related methods have the potential of being used before 
embarking on large-scale multicenter projects and clinical trials. 
Accuracy, repeatability and reproducibility studies of ADC20–23 
evaluate the different factors that may affect ADC’s precision. 
Precise measurement of ADC is important since the dynamic 
range of the biomarker is quite small, from approximately 0.5 × 
10−3 mm2/s in densely packed cells to 3.0 × 10−3 mm2/s in fluid-
filled cysts.24

Technical validations of DWI are performed using different 
measurements related to image acquisition, processing, analysis 
and ADC measurements These measurements are done with 
phantoms and in healthy volunteers or in patients24,25

Biological validation shows the link to tumor biology and is 
the correlation between preclinical disease models or human 
studies and reference methods such as histopathology, immu-
nohistochemistry or genomics. In these studies, the influence of 
epidemiological data (sex, age, physiological status) and genuine 
biological variations has to be studied.2

1. Correlation with histopathology. It has been proven that ADC 
values correlates well with the degree of cellular density in breast 
cancers26–29 as well as with the extravascular extracellular frac-
tion in preclinical models30

2. Influence of hormonal status.
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1. Menstrual cycle. Although initial studies posited increased 
ADC values during the second half of the menstrual 
cycle,7,31 these variations were non-statistically significant 
and subsequent studies confirmed no influence of 
the menstrual cycle32–35 or background parenchymal 
enhancement36–39 on ADC values.

2. Lactation. Breast tissue ADC values in lactating females 
are significantly reduced probably due to high lipid 
content and viscosity of the milk,34 but do not influence 
breast cancer ADC measurements.40

3. Menopausal status. ADC is significantly lower in 
postmenopausal compared with premenopausal 
patients,32,34,35 probably related to changes in water 
content, microcirculation and adipose content with age. A 
recent paper by Horvat et al41 does not find any difference 
in ADC values between benign and malignant lesions in 
patients stratified by BPE level, amount of fibro-glandular 
tissue or menopausal status.

3. Intravenous contrast. The influence of contrast administration 
on DW is controversial, most likely due to the different acqui-
sition parameters in the published papers42–46 A meta-analysis 
by Dorrius et al47 confirmed that contrast administration does 
not significantly affect breast lesion ADC values. The EUSOBI 
consensus statement9 recommends performing DWI before 
DCE-MRI and consistency in timing across examinations is also 
advocated.11

Clinical validations to see how well the biomarker works are 
initially performed as single-center observational studies in 
small groups of patients or meta-analyses of these studies.

In the realm of DWI, these studies focus mainly on three distinct 
clinical applications: lesion characterization, the prognostic 
value of ADC and response evaluation to neoadjuvant treat-
ments with DWI. Screening with DWI has also been explored 
and will be included in the section on future perspectives of DWI 
(see below).

1. Lesion characterization with DWI. The most investigated clin-
ical application of DWI is as an adjunct sequence to reduce the 
false positives encountered in contrast-enhanced MRI and avoid 
unnecessary biopsies (Figures 4 and 5). Since the first publica-
tion by Guo et al27 many studies have shown breast malignan-
cies have significantly lower ADC values than benign lesions. 
Two meta-analyses48,49 evaluating the diagnostic performance 
of quantitative breast DW imaging demonstrated overall better 
specificity than DCE MR imaging. More recently, another 
meta-analysis of 14 studies further confirmed that DWI can 
increase the accuracy of DCE-MRI50 with a resulting area under 
the summary receiver operating characteristics (ROC) curve of 
0.94. Variations in DWI acquisition protocols as well as types of 
lesions (mass vs non-mass) and patient cohorts across studies 
prevent the issuance of an optimal ADC threshold value to 
distinguish benign from malignant lesions due to dependence of 
lesion ADC measures on choice and combination of b-values.51 
Dorrius et al showed that despite the influence of choice of b 
values on ADC measurements, sensitivity and specificity are 
not significantly affected by choice of b-value.47 Moreover, a 

meta-analysis of 61 studies by Shi et al52 found that there was 
no significant difference in diagnostic accuracy for breast cancer 
between 1.5 and 3.0 T scanners. The EUSOBI consensus state-
ment offers a proposal for an analysis and interpretation scheme 
based on both qualitative and quantitative ADC value ranges on 
which future research protocols could be based in order to stan-
dardize DWI.9

2. The prognostic value of ADC. An area of active research is the 
correlation of ADC with molecular or traditional pathologic 
prognostic factors, as well as surrogate tumor phenotypes or 
recurrence scores. Although most of the associations have been 
non-significant to date, with as many studies finding significant or 
no significant correlation, there is a trend of concordance between 
ADC and more aggressive cancer features. This characterization 
of biological aggressiveness can be of help for selecting adequate 
treatments. In the most recent published literature, some authors 
find an inverse significant relationship between ADC and tumor 
grade,13,19,53,54 while others do not55–58 59 extending the debate 
that has been taking place since the earliest publications in 2009. 
On the other hand, most authors agree on the inverse 
correlation between ADC and the ki67 proliferation 
index19,53,60 a fact that could be of weight in considering 
neoadjuvant treatment, although a recent multicenter 
analysis in 845 patients did not find any relationship.54  
Although the earliest papers found a significant inverse correla-
tion between ER-positive tumors and ADC, the latest publi-
cations either find a significant relationship61–65 or not,13,17,19 
which is also in line with the fact that ER positive tumors are 

Figure 4.Same patient in Figure 2. Corresponding slices from 
DCE postcontrast image (a), ADC map (b). A BI-RADS four 
lesion (arrow) was identified in the contralateral breast and 
DWI characterized it as benign (ADC = 2,22×10−3 mm2/s). 
It was decided not to biopsy. 2 years later, the lesion was 
stable and 3 years later the patient underwent contralateral 
prophylactic mastectomy which did not show any malignant 
lesions. ADC, apparent diffusion coefficient; DCE, dynamic 
contrast-enhanced; DWI, diffusion-weighted imaging.
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slow-growing and lower-grade cancers and suggests that studies 
with larger number of patients and in multiple centers are needed. 
Most studies dealing with HER-2-positive tumors and ADC have 
found a positive correlation,66–69 possibly due to a higher degree of 
angiogenesis overcoming cellularity in this type of breast cancers. 
As would be expected by the underlying biological cellular 
density, most recent studies dealing with the difference in ADC 
values between invasive and in situ tumors have found lower 
ADC values in invasive cancers.55,70–72 Moreover, some authors 
can predict invasiveness in pure-DCIS lesions72–74 by detecting 
the areas with the lowest ADC values or indexes and even use 
ADC to up-grade to malignancy in high-risk or B3 lesions.75  
Attempts to differentiate between low grade and high-
grade ductal carcinoma in situ (DCIS) are in the center 
of the debate over the necessity of surgically treating all 
DCIS and previous as well as current literature does not 
find ADC a significant biomarker to stratify patients.72,76  
Associations between DWI characteristics (ADC and contrast-to-
noise ratio) and recurrence scores in ER-positive, HER-2-negative 

breast cancers have yielded promising results77,78 and can poten-
tially help stratifying patients into avoiding chemotherapy as well 
as being more cost-effective than the current recurrence scores 
schemes.

3. Response evaluation to neoadjuvant chemotherapy with DWI. 
One of the advantages of imaging biomarkers is to be able 
to non-invasively monitor response to drug treatments in a 
spatially- and time-resolved manner. The main utility of imaging 
techniques in this clinical setting is dual: to predict response early 
in the treatment course in order to spare the patients side-effects 
of unnecessary chemotherapeutic treatments and to accurately 
assess the extent of residual disease before surgery in order to 
plan the most adequate surgical approach. Lately, it has become 
even more important to predict pathological complete response 
(pCR) in order to omit surgery79 in patients with the highest 
pCR rates (tumoral subtypes HER2 and triple negative).

1. Early response prediction. Cytotoxic effects of 
chemotherapeutic agents (apoptosis, cell lysis) increase 
the mobility of water in the tissues, reflected in the increase 
of ADC value. Early studies with mice80 showed that 
increased diffusivity could be shown within days of therapy 
onset in implanted breast cancers. DWI may be able to 
offer earlier and more precise information on treatment 
response than DCE-MRI, as macroscopic volume changes 
are only the downstream manifestations of underlying 
patho-physiological phenomena (cell swelling and cell 
death) which occur early after treatment, and DCE can 
also show enhancement due to inflammatory changes. 
Several studies in breast cancer patients have proven that 
ADC can be an early predictor of response, as early as 
after the first cycle81–85 and earlier than DCE-MRI81,82 
(Figure  6). The introduction of histogram analysis19 or 
voxel-by-voxel functional maps to parametrize response 
can be of help especially in very heterogeneous tumors85 
and might be helpful in overcoming bias related to tumor 
segmentation techniques. Baseline ADC does not seem to 
predict response in all tumor subtypes and the usefulness 
of this parameter pre-treatment is not clear.86–88

2. Residual disease evaluation. Residual disease has 
traditionally been evaluated with DCE-MRI and meta-
analyses comparing both techniques have shown that DWI 
adds sensitivity for predicting pCR to the high specificity 
of DCE-MRI for residual disease.89 Both techniques 
combined achieve the best diagnostic accuracy.50 A 
recent meta-analysis focusing solely on DWI90 revealed 
a pooled sensitivity of 0.89 and a specificity of 0.72 for 
detecting pCR. The data definitely support the use of 
DWI in response evaluation, although future trials must 
incorporate rigorous quality assurance and control and 
reproducibility measures as well as multicenter designs91 
in order to ensure the standardization of ADC as a 
response biomarker.92

The proof of effectiveness and clinical qualification 
in DWI
Through qualification of a biomarker, the link between surrogate 
and clinical endpoints is established and it becomes a clinical 

Figure 5.Same patient in Figure 2. Corresponding slices from 
DCE postcontrast image (a), DCE subtraction image (b) ADC 
map (c). Two BI-RADS four lesions (arrows) were identified in 
a different quadrant from the index tumor. ADC characterized 
them as malignant (ADC = 1,28×10−3 mm2/s). An MR-guided 
vacuum-assisted biopsy was performed in the largest of the 
two lesions and an additional multicentric invasive ductal 
cancer was confirmed. ADC, apparent diffusion coefficient; 
DCE, dynamiccontrast-enhanced; DWI, diffusion-weighted 
imaging.
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decision-making tool.93 In order to achieve this, prospective 
large multicenter trials have to be undertaken to validate the 
wealth of evidence provided by single-center studies. American 
College of Radiology Imaging Network (ACRIN) multicenter 
studies underway (ACRIN 6702), or with published results,91 
reveal the complexity of standardization at all levels.24,92

futuRe Role of Dwi
Screening with DWI
The high intrinsic contrast achieved with DWI without the 
injection of external agents and the ease of implementation into 
multiparametric protocols due to the fact that it is an inexpen-
sive and fast sequence has triggered several studies on the role of 
DWI as an alternative to DCE for breast cancer screening. This 
research has been undertaken in different populations, mostly in 
patients with suspicious mammographic and ultrasonographic 
findings94–103 and due to the issues raised by the breast density 
legislation in USA, as well as concerns on the long-term use of 
gadolinium contrast agents, it is a very active area of research 
with promising preliminary data.

DWI modeling
The monoexponential decay model is the most commonly used 
in clinical applications, but more sophisticated techniques are 

being explored in order to extract additional biological infor-
mation. These techniques require, on the other hand, increased 
acquisition times (due the wider sampling of b-values and diffu-
sion directions) and complex post-processing tools.

1. DTI characterizes the diffusivity (rate of water diffusion) 
and the directionality (anisotropy) of water molecules, 
providing data on the microarchitecture through 
anisotropy measures10 It has proven its role in both 
lesion characterization and response evaluation.104–106 
(Figure 5).

2. Intravoxel Incoherent Motion (IVIM) explores the 
microvascularity of the tissues through a bi-exponential 
signal decay model.5,107 It has likewise proven useful in 
lesion characterization and response evaluation.108

3. Non-Gaussian diffusivity (diffusion kurtosis, stretched 
exponential diffusion) explores the complexity of the 
tissue microenvironment and its physical barriers to 
diffusion using higher b-value ranges than DWI (b > 1000 
s/m2). Recent studies have explored this technique in 
lesion characterization.109,110

Radiomics
The main objective of radiomics is the discovery of signatures 
(imaging biomarkers) which have strong associations with 
patient’s prognoses or tumor subtype classification.111 Imaging 
biomarkers have the potential to capture the entire tumoral area, 
including its heterogeneity in a non-invasive and quick way. In 
radiomics, a great number of image features (shape, histogram, 
texture features) are extracted from medical images. Through 
specific selection methods of stability analysis (repeatability 
and reproducibility tests) significant features are chosen and 
their prognostic powers are tested in order to choose a subset 
of significant features or signatures that will have prognostic 
information. When these phenotypic signatures are correlated 
with genotypes, it is called radio-genomics or even panomics 
(genomics, proteomics, metabolomics) to better stratify patients 
for more precise therapeutic care in precision medicine. There 
have been few reports on the use of radiomics with DWI images 
yielding information that goes beyond the ADC measurements: 
looking for radiomics classifiers for lesion characterization in 
BI-RADS four lesions,112 or in BI-RADS 4a and 4b lesions based 
on kurtosis DWI,113 building multiparametric radiomic feature 
maps for analysis of textural information and correlation with 
tissue biology113 or predicting sentinel lymph node metastasis.114

conclusions
DWI is a technique that provides complementary information to 
DCE-MRI exams. It has proven its value in single-center studies 
on lesion characterization and response evaluation, with a less 
clear role in tumor profiling through prognostic associations. 
Technical issues due to standard echoplanar imaging are being 
solved but the technique must be completely standardized and 
clear interpretation guidelines must be issued in order for DWI 
to become fully incorporated in breast cancer diagnosis and 
response evaluation. Potential areas of growth include detection 
with DWI without contrast agents, investigation of additional 
biological properties through DWI modeling and analysis of 

Figure 6.Breast images obtained in a patient with a Triple 
Negative subtype breast cancer in the left breast (same patient 
from Figure 1): baseline pre-neoadjuvant chemotherapy, early 
after two cycles and pre-surgery after eight cycles. Slices 
from baseline, early (after two cycles) and pre-surgical (after 
eight cycles) DTI in the top row. Corresponding slices (bottom 
row) from baseline post-contrast image, T2 weighted image 
after two cycles and post-contrast image after eight cycles, 
pre-surgery. Note that in the DTI images after two cycles, 
there is a functional qualitative partial major almost complete 
response whilst in the corresponding T2 weighted image, the 
morphologic response is minor or minimal. When comparing 
the DTI images after eight cycles with the corresponding DCE 
image, there is a complete response in the DTI images (arrow, 
top row) and a residual enhancement in the DCE images 
(arrow, bottom row) interpreted as partial major response. 
The final pathology confirmed a complete response that was 
already predicted by the early DTI exam after two cycles. DCE, 
dynamic contrast-enhanced; DTI, diffusion tensor imaging.
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radiomics classifiers in order to better stratify patients and enable 
a real precision medicine.

Multicenter trials are clearly needed to validate single-center 
studies and establish DWI as a useful clinical decision-making 
tool.
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