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Cardiovascular diseases represent the number one cause of death globally, with
atherosclerosis a major contributor. Despite the clinical need for functional arterial
substitutes, success has been limited to arterial replacements of large-caliber vessels
(diameter > 6mm), leaving the bulk of demand unmet. In this respect, one of the most
challenging goals in tissue engineering is to design a “bioactive” resorbable scaffold,
analogous to the natural extracellular matrix (ECM), able to guide the process of vascular
tissue regeneration. Besides adequate mechanical properties to sustain the hemodynamic
flow forces, scaffold’s properties should include biocompatibility, controlled
biodegradability with non-toxic products, low inflammatory/thrombotic potential,
porosity, and a specific combination of molecular signals allowing vascular cells to
attach, proliferate and synthesize their own ECM. Different fabrication methods, such
as phase separation, self-assembly and electrospinning are currently used to obtain
nanofibrous scaffolds with a well-organized architecture and mechanical properties
suitable for vascular tissue regeneration. However, several studies have shown that
naked scaffolds, although fabricated with biocompatible polymers, represent a poor
substrate to be populated by vascular cells. In this respect, surface functionalization
with bioactive natural molecules, such as collagen, elastin, fibrinogen, silk fibroin, alginate,
chitosan, dextran, glycosaminoglycans (GAGs), and growth factors has proven to be
effective. GAGs are complex anionic unbranched heteropolysaccharides that represent
major structural and functional ECM components of connective tissues. GAGs are very
heterogeneous in terms of type of repeating disaccharide unit, relative molecular mass,
charge density, degree and pattern of sulfation, degree of epimerization and
physicochemical properties. These molecules participate in a number of vascular
events such as the regulation of vascular permeability, lipid metabolism, hemostasis,
and thrombosis, but also interact with vascular cells, growth factors, and cytokines to
modulate cell adhesion, migration, and proliferation. The primary goal of this review is to
perform a critical analysis of the last twenty-years of literature in which GAGs have been
used as molecular cues, able to guide the processes leading to correct endothelialization
and neo-artery formation, as well as to provide readers with an overall picture of their
potential as functional molecules for small-diameter vascular regeneration.
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INTRODUCTION

Cardiovascular diseases are a group of disorders affecting heart
and blood vessels that represent a significant global health
problem, being the leading cause of morbidity and mortality
in the world. In 2019 acute clinical events, such as heart attack
and stroke, mainly caused by the atherosclerosis of coronaries,
carotid, and cerebral arteries, have been the cause of 16.2% and
11.6% of the global deaths, respectively (Data from the Global
Burden of disease, https://vizhub.healthdata.org/gbd-compare/).
Atherosclerosis is a chronic systemic inflammatory condition
with a very complex etiology in which both genetic (e.g.
hypertension, diabetes, obesity, high blood cholesterol and
other lipids) and environmental (e.g. lifestyles including
unhealthy diet, physical inactivity, smoking, alcohol abuse)
risk factors play a role (Benjamin et al., 2017). Atherosclerosis
is characterized by the accumulation of lipids and fibrous
elements into the subendothelial space of arteries leading to
plaque formation, which, ultimately, could evolve into an
acute clinical event due to plaque rupture and thrombosis
(Libby et al., 2019). There are many evidences demonstrating
that high levels of plasma cholesterol-rich lipoproteins (LDLs)
have a causal role in the early events leading to lesion formation
(atherogenesis) (Ference et al., 2017). In this respect, it is known
that some vascular extracellular matrix (ECM) components
mediate their entrapment into the subendothelial space, thus
leading to lipids accumulation within the arterial intima.

A major commitment of vascular tissue engineering is to
design biomimetic scaffolds that combine the mechanical
properties of natural blood vessels with biocompatibility,
controlled biodegradability, and a specific combination of
molecular signals allowing for vascular regeneration. Despite
the clinical need for functional arterial substitutes, success has
been limited to arterial replacement of large- and medium-caliber
vessels with Dacron (polyethylene terephthalate) and Goretex
(expanded polytetrafluoroethylene) synthetic grafts, leaving the
bulk of demand unmet. In fact, for the replacement of small-
diameter vessels (< 6 mm), such synthetic grafts are often rejected
in a few months due to restenosis; hence, autologous veins (e.g.
the great saphenous vein) or arteries (e.g. the internal mammary
artery, and the radial artery) remain the best choice, despite their
limited availability. To overcome these limitations, in the last
decades, different tissue engineering approaches have been
applied to develop vascular substitutes using natural, synthetic
or hybrid materials, some of them reaching the preclinical/clinical
stages (Liu et al., 2018).

Several attempts were performed to create completely
biological living substitutes, such as collagen- or fibrin-based
scaffolds in combination with vascular cells, sometimes with
promising results (Peck et al., 2012). The approach of tissue
engineering by self-assembly (TESA), allowing for the
construction of an engineered blood vessel starting from
autologous fibroblasts, obtained from skin biopsy, has been
proven to be useful as arterial bypass grafts in long-term
animal models (L’Heureux et al., 2006) as well as
arteriovenous shunt in hemodialysis patients (L’Heureux et al.,
2007). However, besides the high costs of fabrication, the long

manufacturing time (i.e. few months) represents a limitation in
patients who need rapid intervention. Interesting results were
recently obtained by using acellular tissue engineered vessels
(A-TEV) (Koobatian et al., 2016; Smith et al., 2019; Smith
et al., 2020). This technology relies on decellularized natural
matrices functionalized with bioactive molecules, thus
providing host cells with a physiological environment. Issues
remain about the total removal of xenogenic material and
decellularizing agents that could elicit an immune response.

Several synthetic vascular grafts have been developed with the
aim to guide vascular cells to attach, proliferate, and synthesize
their own ECM, in which the inflammatory/thrombotic nature of
the scaffolds could be overcome by coating them with bioactive
natural molecules (Pashneh-Tala et al., 2016). Fabrication
methods, such as phase separation, self-assembly and
electrospinning, have been used to obtain biocompatible
nanofibrous scaffolds with a well-organized architecture and
mechanical properties suitable for vascular tissue regeneration
(Yao et al., 2020). However, several evidences have shown that
naked scaffolds for small-diameter blood vessel replacement
suffer from low patency rates, are pro-thrombotic, susceptible
to infection and do not have growth potential for the pediatric
population (Song et al., 2018). Furthermore, they often represent
a poor substrate to be populated by vascular cells (Awad et al.,
2018). To overcome these issues, variously functionalized
bioresorbable scaffolds have been developed as temporary
guides for neo-artery formation. In this respect, surface
functionalization with drugs or bioactive natural molecules,
including ECM components such as collagen, elastin, or
glycosaminoglycans (GAGs), and growth factors, has been
proven to be effective in reducing thrombotic events,
enhancing endothelialization, and further promoting cell
proliferation.

Here, the composition of normal blood vessel and some
pathophysiological roles of vascular proteoglycans (PGs) and
GAGs have been discussed. Besides, the potential of GAGs as
functional molecules for vascular tissue regeneration is the main
topic of this review. In this respect, we performed an in-depth
literature search, using MEDLINE (PubMed), with the aim of
providing readers with the main findings of both in vitro and in
vivo studies on the different small-diameter vascular devices,
functionalized with GAGs, developed in the last 20 years.

SIGNIFICANCE OF PROTEOGLYCANS AND
GLYCOSAMINOGLYCANS IN VASCULAR
BIOLOGY
Blood Vessel Wall Structure
Blood vessels share some common features as they all consist of
three concentric layers called tunica Intima, facing the vessel
lumen, tunica Media and tunica Adventitia. The Intima is
composed by a continuous monolayer of endothelial cells
anchored to the basement membrane, which is involved in
critical events such as blood coagulation, exchange of oxygen
and nutrients, vascular tone regulation through mechanosensing
(induction of endothelial nitric oxide synthesis by shear stress),
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inflammation, and immune response (Kruger-Genge et al., 2019).
Most of the Intima’s functions are modulated by the endothelial
glycocalyx, a dynamic and complex gel-like network on the
luminal surface of endothelial cells, consisting of PGs
(syndecans, glypicans), glycoproteins, GAGs (hyaluronan,
heparan sulfate and chondroitin sulfate) and soluble proteins
from both plasma and endothelium. The thickness
(approximately 0.5–5.0 μm) and structure of the glycocalyx
vary in relation to the vascular bed, blood flow rate,
pathophysiological conditions, and they result from a dynamic
balance between constant biosynthesis of new glycans and shear-
dependent alterations, with a considerable rate of turnover of its
components (Machin et al., 2019). Derangement of the
endothelial glycocalyx structure plays major roles in several
pathological conditions, including cardiovascular disease
(Machin et al., 2019), diabetes (Dogne et al., 2018), kidney
disease (Jourde-Chiche et al., 2019), sepsis (Uchimido et al.,
2019), and trauma (Tuma et al., 2016). Underneath the tunica
Intima there is theMedia, a thick contractile multilayer of smooth
muscle cells that provide support to the vessel as well as
participate in regulating both blood flow and pressure. The
Adventitia, with its collagenous ECM, is primarily responsible
for the tensile strength of blood vessels. The three layers are
separated from each other by an internal elastic lamina (between
Intima andMedia) and an external elastic lamina (betweenMedia
and Adventitia), consisting of fibers that provide elasticity to the
vessel wall. In this scenario, the ECM in which vascular cells are
immersed, mainly composed of collagens, elastin, fibronectin,
laminins, glycoproteins, and PGs, not only provides the vascular
wall with its mechanical properties, but also plays crucial roles in
vascular cells homeostasis and pathogenesis. Therefore, the
vascular wall is a very complex multilayer structure, in which
different resident and circulating cell types interact with each
other and with the ECM. Designing a substitute able to mimic the
mechanical properties as well as the physiological functions of the
vascular wall represents a challenge for tissue engineering.

Proteoglycans and Glycosaminoglycans of
the Vascular Wall
PGs are hydrophilic molecules, which provide the vasculature with
viscoelasticity and turgor. These molecules participate in a number of
vascular events such as regulation of vascular permeability, lipid
metabolism, hemostasis, and thrombosis, as well as interact with
vascular cells, growth factors, and cytokines, in order to modify
vascular cell adhesion, migration, and proliferation. Some PGs
exert specific functions in their soluble forms following cleavage by
proteolytic enzymes (Lepedda et al., 2021). The amount of PGs in the
artery wall is physiologically low, but increases deeply during the early
phases of atherosclerotic lesion formation. Many studies have shown
that PGs are involved in retention of cholesterol-rich lipoproteins and
other serum components, ECM metabolism, and crosstalk with
inflammatory cells that extravasate to the subendothelial space.
Readers are referred to the excellent review by Wight TN (Wight,
2018) for a more detailed discussion on this topic.

PGs have common structural features, as they all consist of a
core protein covalently linked to one or more GAG chains,

primarily responsible for their biological properties (Raman
et al., 2005). GAGs are a family of anionic
heteropolysaccharides that differ in terms of type of repeating
disaccharide units, chains length, charge density, degree of
sulfation, and hexuronic acid epimerization, found in
connective tissues as well as in biological fluids such as plasma
and urine (Vynios et al., 2002). The repeating disaccharide units
are composed by a N-acetylated hexosamine
(N-acetylgalactosamine or N-acetylglucosamine) and a
hexuronic acid (glucuronic acid or its carbon-5 epimer
iduronic acid) or galactose (in keratan sulfate). GAGs are key
structural and functional components of the ECM of connective
tissues, playing numerous biological roles, including embryonic
development, ECM assembly and regulation of cell signaling in
various physiological and pathological conditions. Indeed, their
numerous functions are the result of their large structural
heterogeneity, 202 unique disaccharide units have been
identified in mammals (Clerc et al., 2019), responsible for the
binding of a plethora of proteins including cytokines and
chemokines, enzymes and enzyme inhibitors, ECM proteins,
and membrane receptors (Kjellen and Lindahl, 2018). A
comprehensive GAG-interactome composed of 827 proteins
has been recently published (Vallet et al., 2021). Six main
classes of GAGs have been described so far: hyaluronan or
hyaluronic acid (HA), chondroitin sulfate (CS) and dermatan
sulfate (DS), keratan sulfate (KS), heparan sulfate (HS), and
heparin (Hep) (Figure 1); all GAG classes were found in
normal and diseased arteries (Wight, 1980).

Besides HA, that is neither sulphated nor covalently linked to a
protein core, GAGs together with their protein cores form
distinct PG families. PGs can be found in the ECM, in the
basement membrane (pericellular PGs), associated with the
cell surface (transmembrane, GPI-anchored), or inside the
cells (serglycin, the only currently known) (Iozzo and Schaefer,
2015). To date, more than 20 different PGs isoforms have been
identified in normal and diseased blood vessels (Wight, 2018). In
vascular tissue, versican is the main CS-PG (Yao et al., 1994),
whereas DS chains are found linked to decorin and biglycan, two
homologous small leucine rich repeat PGs (SLRPs) (Hultgardh-
Nilsson et al., 2015). KS is present in fibromodulin and lumican,
two more SLRPs (Hultgardh-Nilsson et al., 2015), whereas HS is
the main GAG in perlecan (Kinsella andWight, 2005), syndecans
(Gopal, 2020), and glypicans (Filmus et al., 2008). Among them,
versican, decorin, biglycan, as well as fibromodulin and lumican,
are classified as extracellular PGs, perlecan is a pericellular PG,
whereas syndecans and glypicans are localized on the cell surface
(Theocharis et al., 2016) (Figure 2).

With the exception of HA, GAGs are polymerized in the Golgi
apparatus, starting from a tetrasaccharide linker consisting of
xylose–galactose–galactose–uronic acid residues, by the
sequential and repetitive addition of constituent
monosaccharide residues. Post-synthetic chain modifications,
such as epimerization of GlcA to iduronic acid and sulfation
at specific positions, occur during polymerization, whereas
selective removal of 6-O sulfates by specific sulfatases may
occur in the extracellular space. Their structural heterogeneity,
in terms of chain length, degree of iduronation, degree and
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pattern and sulfation, which is further increased by dynamic
modifications in response to cellular and environmental stimuli,
is so significant that, virtually, there are not two identical
glycosaminoglycans in the body.

HA is a major constituent of the pericellular matrix and a key
player in maintaining endothelial glycocalyx integrity, providing
structural support and acting as signaling molecule by binding
specific receptors on the cell surface. HA is synthesized by
membrane-bound synthases as a high molecular weight GAG (up
to 3–4MDa), consisting of repeating residues of GlcNAc and GlcA
linked each other by β-1,3- and β-1,4-glycosidic bonds. The synthesis
takes place on the inner side of the plasmamembrane and, duringHA
elongation, chains are extruded through pore-like structures to the cell
surface without any further post-synthetic modifications (i.e. sulfation
or epimerization) (Moretto et al., 2015). HA accumulates in aged
vessels, stimulating vascular smoothmuscle cells dedifferentiation and
neointima formation (Moretto et al., 2015). Furthermore, during
glycocalyx shedding, HA cleavage by hyaluronidase one into pro-
inflammatory low molecular weight (<500 kDa) fragments
contributes to endothelial derangement (Girish and Kemparaju,
2007; Vigetti et al., 2014).

NANOFIBROUS SCAFFOLD DESIGN FOR
VASCULAR TISSUE ENGINEERING

A broad range of fabrication technologies are in use for the
production of small diameter vascular grafts. In this section, the
most used ones will be described, along with the materials used
for their manufacture (Figure 3).

Solvent Casting
Solvent casting is one of the earliest and most widely used
techniques. A liquid solution of the polymer of choice for the

fabrication of the final vascular graft is poured into a cylindrical
mold containing an inner rod. The solution is then solidified and
the system is disassembled. If polymers are dissolved in volatile
solvents, then the solution is cured and the solvent is left to
evaporate. Thermally induced phase separation (TIPS) can be
used to introduce porosity to the scaffold, in order to improve cell
infiltration. Another strategy to further modulate scaffolds’
porosity is to freeze-dry the polymer solution, by which ice
crystals are formed and then sublimated leaving a pore
behind. The rate of temperature decrease can influence pore
size and pore connectivity. By this approach, scaffolds of silk
fibroin loaded with extracellular vesicles isolated from Adipose-
derived Mesenchymal Stromal Cells (ADMSC) were fabricated
(Cunnane et al., 2020). These grafts presented 100% patency at
the early stages of the study (4 weeks), compared to the bare
scaffold and scaffold seeded with ADMCS prior to implantation.
To improve mechanical strength, the lyophilized silk fibroin
scaffolds were reinforced with a layer of electrospun
polycaprolactone (PCL) (Gupta et al., 2020).

Porous structures can be formed also by using so-called
porogens, by the salt-leaching method. As an example, salt is
introduced into the polymer solution, which is then cured and
immersed in water to promote the dissolution of the salt, resulting
in pore formation (Figure 4). This technique was used to
fabricate, for example, elastin-like recombinamer (Fernández-
Colino et al., 2019) and fast degrading poly(glycerol sebacate)
(PGS) (Wu et al., 2012) scaffolds with promising results.
Furthermore, the modification of these scaffolds with PGS
derivatives with slower degradation kinetics were shown to
improve outcomes in vivo (Fu et al., 2020).

Another strategy to produce porous scaffolds is to use
inverted colloid crystals. Microparticles of a material that is
immiscible in the polymer of choice are fabricated, tightly
packed in the molds, and then fused by annealing, before

FIGURE 1 | Structures of the repeating disaccharide units representative of the six GAGs classes [modified from (Vynios et al., 2002)]. Both DS and HS/Hep are co-
polymers of two types of disaccharide repeats where glucuronate is variably substituted by its carbon-5 epimer iduronate. Hep has both a higher degree of sulfation and
epimerization than HS. Except for HA, sulfation may occur in several positions, thus giving these glycans a characteristic high negative charge. Saccharides are reported
as chair conformations. Configurations of the O-glycosidic bonds are reported in red (within disaccharide units) and in green (between adjacent disaccharide units).
R1 � SO3

−; R2 � COCH3/SO3
−.
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adding and curing the main polymer. Finally, the
microparticles are dissolved, leaving a scaffold with highly
interconnected pore network (Joao et al., 2014). While these
techniques offer scalability and fast production, they fail to
mimic the complexity of the ECM and the microenvironment
in which cells are embedded.

Electrospinning
Electrospinning has emerged as one of the most prolific
techniques to fabricate vascular grafts, because of its ability to
form fibrous scaffolds that replicate the approximate diameter of
ECM fibers and scalability. Fibers form on a grounded collecting
mandrel, or static flat stage, when a polymer solution is ejected

FIGURE 2 | Schematic representation of the main vascular PGs according to their localization. Three main classes are reported: cell-associated, pericellular, and
extracellular proteoglycans. Protein moieties are shown as orange backbones (versican G1 domain is highlighted in red).

Frontiers in Chemistry | www.frontiersin.org May 2021 | Volume 9 | Article 6808365

Lepedda et al. Glycosaminoglycans in Vascular Tissue Engineering

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


through a charged needle. The fibers obtained with this technique
can range from the nano-to the microscale, depending on
polymer concentration, flow rate, applied voltage, and air gap
between the spinneret and the fabrication target. The rotation
speed of the collecting mandrel can be tuned to obtain fibers
oriented parallel to each other or circumferentially oriented, in a
similar way to the ECM in the media layer (Uttayarat et al., 2010).
At low (or no) rotational speeds, the fibers are deposited in a
random manner (Figure 5).

Several polymers, either of natural (e.g. fibrinogen, collagens,
silk fibroin, chitosan, alginate) or synthetic [e.g. polyurethane,
PCL, polylactic acid, poly(propylene carbonate)] origin, have
been investigated to produce matrices composed of nanofibers
for biomedical applications (Agarwal et al., 2008). Among the
former, silk fibroin represents a promising substrate for vascular
tissue engineering applications, due to its mechanical properties,
biocompatibility and slow degradation (Marelli et al., 2010; Catto
et al., 2015; Marcolin et al., 2017).

Multimaterial scaffolds can be fabricated by mixing various
polymers into one syringe, by simultaneously applying voltage to
different needles or by sequentially spinning different materials.
The porosity of scaffolds can be improved by co-electrospinning a
polymer, such as PCL, gelatin or PGS, with polyvinyl alcohol,
which can be dissolved and washed away after scaffold fabrication
(Khosravi et al., 2016; Tan et al., 2016). More complex scaffolds
can be obtained by sequential spinning of the same material with
different molecular weight (de Valence et al., 2012) or by
sequentially spinning different materials, such as PCL, elastin
and collagen, to obtain a tri-layered graft (McClure et al., 2010).
Often, more bioactive materials have weaker mechanical
properties and, thus, synthetic materials have to be added to
improve their mechanics. One way to implement this is by co-
axial electrospinning in a core-shell manner, in which a strong
polymer, such as PCL, is used in the core and a bioactive material,
such as collagen, as the shell (Duan et al., 2016). Scaffolds can be
mechanically reinforced also by electrospinning an outer layer of

PCL, which acts as a sheath. By this approach, Elliott et al.
fabricated aligned electrospun fibrin scaffolds with a coverage
of PCL, to avoid suture rupture (Elliott et al., 2019).

To improve mechanical properties of electrospun scaffolds,
hybrid approaches, combining electrospinning with fused
deposition modeling (FDM) (Centola et al., 2010; Wu et al.,
2020) or melt electrowriting (MEW) (Brown et al., 2011) were
explored too. MEW combines electrospinning and FDM, by
applying a voltage to a needle and grounding the collecting
surface, mostly using molten polymers and avoiding the use of
solvents. MEW has been used both to include reinforcements to
electrospun meshes (Jungst et al., 2019) as well as to create
standalone scaffolds (Saidy et al., 2020). Other techniques were
combined with electrospinning for the fabrication of vascular
grafts, including TIPS of thermoplastic polyurethane (Mi et al.,
2016) or poly(ester-urethane)urea (Soletti et al., 2010), or
braiding and TIPS of thermoplastic polyurethane and silk (Mi
et al., 2015).

3D Printing
3D printing relies on the accurate deposition of material in the X-Y
plane while also moving, gradually, in the Z direction. 3D printing
allows users to input patient-specific data and can recreate the
tortuosity and multiple branching of small caliber arteries, such as
the coronaries. Techniques such as 2-photon (or multiphoton)
polymerization or stereolithography use light to polymerize a resin
material, in a bath, by using either a focused laser or a mask, and then
illuminating the whole layer. Examples of materials used are
methacrylated gelatin (GelMA), methacrylated HA (Thomas et al.,
2020), polyethylene glycol diacrylate, polypropylene fumarate
(Melchiorri et al., 2016), polyester urethane and poly
(caprolactone-co-trimethylenecarbonate) diacrylate resins (Baudis
et al., 2011; Kuhnt et al., 2019; Baker et al., 2020), methacrylated
poly(ethylene glycol-co-depsipeptide) (Elomaa et al., 2015).

3D bioprinting allows the spatial distribution of different
materials and cell populations. By co-axially bioprinting

FIGURE 3 | Main methods for the fabrication of small caliber vascular grafts.
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endothelial cells (ECs) in a fugitive ink (such as gelatin or
Pluronics) in the inner core and GelMA or decellularized
ECM hydrogel with smooth muscle cells (SMCs) on the outer
shell and then liquefying the fugitive ink upon temperature
switch, a hollow endothelialized structure was obtained (Cui
et al., 2019; Gao et al., 2019). This approach was developed
after initial work based on co-axial printing of endothelial cells in
an alginate/ECM bioink in the shell and a core consisting of Ca-
containing Pluoronics fugitive ink (Gao et al., 2018) (Figure 6).

When using soft materials, such as hydrogels, traditional
extrusion bioprinting might be unsuitable to create large
constructs before they collapse. Strategies have been developed
to overcome this limitation, by bioprinting inside a supporting bath
consisting of the cross-linker and particles or gels that exhibit shear-
thinning properties, which is discarded after printing (Hinton et al.,
2015; Senior et al., 2019). These technique modifications have
enabled the printing of large-scale cardiovascular constructs at
high-resolution (Mirdamadi et al., 2020).

Cellular Self-Assembly
Trying to overcome issues related to both scaffolds’
biodegradation by the cells and undesired immune responses,
scaffold-free strategies have been developed. These vascular grafts
are produced by taking advantage of the ability of cells to self-
assemble and secrete ECM.

Early work by L’Heureux demonstrated that long-term culture
of fibroblasts produces an ECM that could be rolled into a tube
able to withstand the physiological pulsatile flow (L’Heureux
et al., 1998). Further studies showed this approach effective for
arterial bypass grafting in long-term animal models (L’Heureux
et al., 2006) as well as for arteriovenous shunt in hemodialysis
patients (L’Heureux et al., 2007). However, a major downside of
this strategy is the long culture period. The research team has
recently modified its protocol by making threads from the ECM
laid by the fibroblasts, which were knitted into tubes (L’Heureux,
2020; Magnan et al., 2020) (Figure 7). This method allows to
produce a fully human tissue graft, with no foreign material.

FIGURE 4 | Fabrication method of porous tubular scaffolds from elastin-like recombinamers by salt leaching/gas foaming technique and electrospinning [modified
from (Fernández-Colino et al., 2019)].
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Another approach to obtain implantable grafts was to seed
SMCs onto fast degrading polyglycolic acid meshes and then to
mature these constructs in flow bioreactors (Niklason et al., 1999;
Niklason et al., 2001). To speed the process and avoid the need of
harvesting autologous cells, the strategy was shifted to
decellularizing the constructs once mature (Dahl et al., 2003).
Such grafts were implanted in end-stage dialysis patients to treat
arteriovenous fistulas (Lawson et al., 2016; Kirkton et al., 2019), as
well as in patients with peripheral arterial disease (Gutowski et al.,
2020). Exploiting the self-assembly approach, Itoh et al. produced
hundreds of cell spheroids from a cell suspension of ECs, SMCs,
and fibroblasts, and then placed them onto a needle array using a
3D printer printhead. Once the spheroids had fused into a
continuous tissue, the needle array was removed and the
construct placed in a perfusion reactor for maturation (Itoh
et al., 2015). All these techniques require long culture times in
highly controlled facilities, which makes these grafts expensive.

Decellularized Matrices
Decellularized vascular grafts theoretically mimic the content and
structure of native arteries more accurately than synthetic
constructs. Decellularization consists in removing all cellular
content while trying to minimally disrupt the ECM, using
physical, chemical and/or biological methods and agents.
Arteries from cadaveric donors can be employed (Madden
et al., 2004; Olausson et al., 2012). Alternatively, there is the
possibility of using xenogenic blood vessels, which should have
fewer “availability” problems. Decellularized porcine (Tillman
et al., 2012), bovine (Daugs et al., 2017) and ovine (Mancuso et al.,
2014) arteries have been used as vascular grafts (Figure 8).

Decellularized matrices can also be functionalized with
bioactive molecules, thus facilitating the repopulation
processes as well as reducing adverse events, such as restenosis
and thrombosis. In this respect, interesting results were recently
obtained by Andreadis’ team that implanted a cell-free small-
diameter arterial graft based on small intestinal submucosa (SIS).
After coating with Hep-bound vascular endothelial growth factor,

implantation in the mouse abdominal aorta and in the sheep
carotid artery, showed successful endothelialization. Notably,
once integrated, both mechanical properties and vascular
contractility of this graft were comparable to native arteries
(Koobatian et al., 2016; Smith et al., 2019; Smith et al., 2020).

Although issues were raised on the risk of inflammatory/
immune reactions elicited by cell debris, including DNA
fragments (Zheng et al., 2005) and alpha-Gal epitopes (Naso
et al., 2012), in the last years, decellularized matrices have been
widely used in different fields of tissue regeneration. Currently,
there is no consensus on the criteria to be used for the
decellularization methods (Ji et al., 2019).

APPLICATION OF
GLYCOSAMINOGLYCANS TO VASCULAR
TISSUE ENGINEERING
Substitution of small-diameter vessels suffers of major
problems regarding low-patency rate due to over-
proliferation of smooth muscle cells (intimal hyperplasia)
and thrombosis due to a lack of a functional endothelium
lining the lumen of the graft. Hence, the need to design “smart
substitutes” containing the chemical cues able to induce the
population of the scaffold by host cells and the formation of a
physiological artery wall.

Because of their pleiotropic functions and their
physicochemical properties, GAGs have been extensively used
in many tissue engineering applications including wound healing,
as well as bone, cartilage, muscle, liver and nerve regeneration, as
very recently reviewed by Sodhi H and Panitch A (Sodhi and
Panitch, 2020). Furthermore, in the last 20 years, many studies
have addressed the issues on small-diameter vascular
regeneration by combining the most recent fabrication
methods with the biofunctionalization with GAGs for the
development of effective vascular grafts. We have tried to sum
up the main findings of these substantial studies in two tables,

FIGURE 5 | Representative scanning electron microscopy (SEM) images of random (mandrel speed � 500 rpm) and aligned (mandrel speed � 4000 rpm) PCL
fibers (panels A and B, respectively) [modified from (Idini et al., 2019)].
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according to the typology of GAG used, i.e. high and low
molecular weight HA and HA derivatives (HYAFF-11)
(Table 1), and Hep (Table 2). Also CS have been employed in
a few studies for scaffolds functionalization (see below).

Hyaluronan-Based Vascular Constructs
Since discovery in 1934, HA has been extensively studied, and
thanks to its viscoelastic properties, physiological activity, and
biocompatibility, it has been used in a wide range of medical
fields from orthopedics to cosmetics (Abatangelo et al., 2020).
Due to the high-water solubility and the propensity to form very
viscous solutions, its use in vascular tissue engineering requires
the crosslinking with other natural (e.g. type I collagen) or
synthetic materials (e.g. PCL) or its chemical modification to
obtain semisynthetic polymers (Table 1). Among the latter,
HYAFF-11, an HA derivative obtained by esterification with

benzyl alcohol, was proven to be useful for small-diameter
vascular grafts fabrication, also in a large animal model. This
polymer is biocompatible, bioresorbable, able to interact with
polar molecules, and it can be processed to obtain several types
of devices such as tubes, membranes, non-woven fabrics,
gauzes, and sponges (Vindigni et al., 2009). HYAFF-11
tubes, obtained by coagulation of a HYAFF-11/DMSO
solution around a cylindrical bar in an ethanol bath, were
successfully implanted in the abdominal aorta of 30 rats
(2 mm diameter, 1 cm length) (Lepidi et al., 2006a; Lepidi
et al., 2006b), as well as in the carotid artery of 10 pigs
(4 mm diameter, 5 cm length) (Zavan et al., 2008), as
temporary absorbable guides to promote regeneration of
vascular structures. These studies showed the potential of
these HA-based grafts to guide the development of a
functional neo-artery, consisting of a confluent endothelium

FIGURE 6 | 3D bioprinting of vasculature using core-shell approach, where endothelial cells are suspended in an alginate-ECM bioink as the shell and the core is a
fugitive bioink composed of Pluronic F127 containing Ca2+ ions (CPF127) [modified from (Gao et al., 2018)].
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lining the luminal surface and a vascular wall with organized
layers of elastin fibers. Interesting in vitro results were also
obtained with electrospun PCL or collagen type I scaffolds
functionalized with either high or low molecular weight HA,
showing excellent biocompatibility and the potential to guide
the formation of a polarized functional endothelium (Table 1).
Recently, Yuan et al. (Yuan et al., 2016) obtained highly aligned
HA/PLLA nanofibers in core-shell structure by coaxial stable jet
electrospinning, which was shown effective in inducing human
umbilical arterial smooth muscle cells elongation, orientation,
proliferation, and differentiation toward a contractile
phenotype. Circumferentially aligned HA/PLLA nanofibers
scaffolds were successfully implanted in the carotid artery of
six rabbits, showing high patency and efficacious vascular
regeneration, 6 weeks post-surgery (Yuan et al., 2016).

Heparin-Based Vascular Constructs
Since its discovery in 1916, Hep has been widely clinically used to
treat thrombotic disorders, as it amplifies the inhibitory activity
of antithrombin III toward thrombin by facilitating the
formation of a ternary complex with factor Xa. Although Hep
and HS share the same biosynthetic pathway, the former has
higher degree of sulfation (2.6 vs. 0.6 sulfate groups per

disaccharide) and epimerization (up to 90 vs. 20%
iduronation) (Liu and Linhardt, 2014). Initially known for its
anticoagulant properties, many evidences showed Hep’s
usefulness as anti-inflammatory agent in the treatment of
venous thromboembolism and other vascular diseases. Hep’s
pleiotropic roles include the inhibitory activities toward
neutrophils functions, endothelial activation and smooth
muscle cells proliferation (Yang et al., 2012; Poterucha et al.,
2017), well-known key events in atherogenesis and vascular graft
failure. Due to its capacity to bind and release growth factors,
such as VEGF and bFGF, and to modulate angiogenesis, together
with its anti-thrombotic properties, Hep has been used to
functionalize many different systems including hydrogels,
films, and electrospun fibers (Aslani et al., 2020). Table 2
summarizes the multitude of studies, published in the last
20 years, that exploited the angiogenic regulatory activities of
Hep for the development of effective small diameter vascular
grafts. Among them, the great majority developed electrospun
scaffolds made of exclusively synthetic (e.g. poly-Ɛ-caprolactone,
poly-L-lactide-co-caprolactone, poly-L-lactic acid) or hybrid
(containing collagen, silk, chitosan, keratin, etc.) mats
functionalized with Hep, mainly via chemical crosslinking
using N-Ethyl-N′-(3-dimethylaminopropyl) carbodiimide/
N-hydroxy succinimide (EDC/NHS). Besides, acellular tissue
engineered vessels (A-TEVs) consisting of vascular tissue
(mainly carotid artery or aorta segments from pig, dog, or
rat) or small intestinal submucosa, undergone a
decellularization process and, subsequently, coated with Hep
and, in some cases, angiogenic growth factors, have been
fabricated.

Most of the reported studies, performed in vitro by culturing
either endothelial cells or smooth muscle cells, showed good
mechanical properties, enhanced biocompatibility and anti-
thrombogenicity of these grafts, and the potential of Hep to
promote endothelialization and smooth muscle cells
differentiation toward a contractile phenotype. Besides, some
interesting results were obtained in vivo with both synthetic
grafts and A-TEVs.

Wu et al. (Wu et al., 2012) designed a cell-free fast-degrading
elastomeric graft consisting of a PGS core surrounded by a PCL
sheath, coated with Hep, which was successfully implanted in the
abdominal aorta of 21 rats (porous PCL scaffolds were implanted
in six rats as controls). The graft was rapidly substituted by a neo-

FIGURE 8 | Hematoxylin and eosin staining of native bovine pericardium (A) and decellularized bovine pericardium before (B) and after (C) 7 days of culture with
bovine fibroblasts. Magnification ×20 [from (Cigliano et al., 2012)].

FIGURE 7 | A thread (left) and a woven vessel (right) made from human
Cell-assembled Extracellular Matrix [modified from (L’Heureux, 2020)].
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artery with mechanical and functional properties very similar to
those of the native one.

To improve endothelialization and reduce thrombotic
events and restenosis, Song’s team developed two methods

for optimal surface functionalization of synthetic grafts with
Hep. In the first one, electrospun polycarbonate-urethane
nanofibrous scaffolds underwent plasma treatment followed
by Hep conjugation via end-point immobilization. Grafts

TABLE 1 | Hyaluronan-based vascular constructs for small-caliber artery grafting.

References Scaffold material and
manufacturing method

Development level Main findings

Turner et al.
(2004)

HYAFF-11 non-woven scaffolds: Unpressed and
pressed felts

In vitro (human saphenous vein endothelial
cells)

Pressed felts: Complete endothelialization after
20 days; deposition of a subendothelial matrix
containing laminin, fibronectin, type IV and type VIII
collagen

Remuzzi et al.
(2004)

HYAFF-11 non-woven meshes as sheets or 3D
tubular scaffolds obtained by wrapping the former
around a cylindrical mandrel after 7 days of culture

In vitro (human cell line and primary pig aortic
smooth muscle cells)

Tubular scaffolds highly cellularized within the wall
thickness but with lower mechanical resistance
than porcine coronary arteries

Lepidi et al.
(2006a)

HYAFF-11 tubes obtained by coagulation of a
HYAFF-11/dmso solution around a cylindrical bar
(2 mm diameter) in an ethanol bath

In vivo (implantation in the abdominal aorta of
15 rats)

Complete regeneration of a newly formed vascular
tube at day 90; no signs of inflammation, stenoses
or aneurysms; all animals survived during the
90 days follow up

Lepidi et al.
(2006b)

HYAFF-11 tubes obtained by coagulation of a
HYAFF-11/dmso solution around a cylindrical bar
(2 mm diameter) in an ethanol bath

In vivo (implantation in the abdominal aorta of
30 rats)

Complete endothelialization of the tube’s luminal
surface; complete vascular wall regeneration
15 days after surgery; complete degradation of the
construct 4 months after implantation

Arrigoni et al.
(2006)

HYAFF-11 non-woven meshes as sheets or 3D
tubular scaffolds obtained by wrapping the former
around a cylindrical mandrel after 7 days of culture in
a medium supplemented with 50 mg/ml of sodium
ascorbate

In vitro (primary pig aortic smooth muscle
cells)

Sodium ascorbate improved cell proliferation and
ECM synthesis as well as mechanical properties of
the vascular construct

Zavan et al.
(2008)

HYAFF-11 tubes obtained by coagulation of a
HYAFF-11/dmso solution around a cylindrical bar
(4 mm diameter) in an ethanol bath

In vivo (implantation in the carotid artery of 10
pigs)

Confirmation of the potential of hyaluronan-based
graft to guide the development of a well-
functioning neoartery with organized layers of
elastin fibers, 5 months post-surgery; 3 cases of
partial or complete occlusion by intimal hyperplasia
and graft thrombosis

Pandis et al.
(2010)

HYAFF-11 tubes obtained by coagulation of a
HYAFF-11/dmso solution around a cylindrical bar
(2 mm diameter) in an ethanol bath

In vivo (implantation in the vena cava of 15
rats)

Complete vein wall regeneration at day 30;
complete reabsorption of the graft 4 months after
surgery

Pandis et al.
(2011)

HYAFF-11 patches (0.1 mm thickness) In vivo (implantation in the abdominal aorta of
20 rats, rectangular breach of 1 mm × 5 mm)

Almost complete degradation of the scaffold and
replacement by a neoartery wall composed of
endothelial cells, smooth muscle cells, collagen,
and elastin fibers organized in layers, after
16 weeks

Du et al. (2011) Electropun aligned nanofibrous PCL scaffolds
functionalized with LMW-HA by using EDC/NHS
following aminolysis with 1,6-hexanediamine

In vitro (HUVECs) The combination of aligned PCL fibers and LMW-
HA promotes and guides the formation of a
polarized functional endothelium

Zhu et al.
(2014)

Human-like collagen/hyaluronic acid (HA MW
100,000–110,000 Da) composite disks obtained, at
different HLC/HA ratios, by cross-linking with
glutaraldehyde followed by freeze-drying

In vitro (human endothelial cells) and in vivo
(subcutaneous implantation in 12 mice)

Among the different composites assessed, the 10/
1 HLC/HA composite showed higher porosity,
better mechanical properties and excellent
biocompatibility

Yuan et al.
(2016)

Highly aligned PLLA/HA (HA MW > 400 KDa) core-
shell nanofibers (jet coaxial-electrospinning)
crosslinked with glutaraldehyde and hydrochloric
acid

In vitro (human umbilical arterial smooth
muscle cells) and in vivo (implantation in the
carotid artery of 6 rabbits)

Synergistic effect of nanotopographical and
biochemical cues in promoting scaffold population
by vSMCs and synthesis of elastin.
Circumferentially aligned HA/PLLA nanofibers
were effective in maintaining patency and
promoting vascular regeneration during 6 weeks
after surgery

Kang et al.
(2019)

Electrospun scaffolds of type I collagen glycosilated
with HA oligomers by reductive amination (using
sodium cyanoborohydride), crosslinked with
glutaraldehyde

In vitro (porcine iliac artery endothelial cells) Endothelial cells proliferation was promoted by HA
oligomers and inhibited by high molecular weight
HA. The scaffolds had no detectable degree of
hemolysis and coagulation

Jia et al. (2019) Electrospun scaffolds of type I collagen glycosilated
with HA oligomers using EDC/NHS, crosslinked with
glutaraldehyde

In vitro (porcine iliac artery endothelial cells) Potential of the collagen–HA electrospun
nanofibers as the vascular inner-layer scaffold

HYAFF-11: 100% benzyl ester hyaluronan-based biomaterial produced by Fidia Advanced Biopolymers (Abano Terme, Italy).
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TABLE 2 | Heparin-functionalized vascular scaffolds for small-caliber artery grafting. Acellular tissue engineered vessels (A-TEVs) (highlighted in gray).

References Scaffold material and
manufacturing method

Development level Main findings

Conklin et al.
(2002)

Decellularized porcine carotid artery covalently
linked with heparin using EDC

In vivo (implantation in the carotid artery of 2
dogs)

Excellent mechanical properties,
antithrombogenicity, and tissue compatibility;
effective scaffold population by both smooth
muscle cells and endothelial cells within 2 months
post-implantation

Tiwari et al.
(2002)

Poly(carbonate-urea)urethane graft (MyoLink™)
functionalized with arginine-glycine-aspartate
(RGD) or/and hep

In vitro (HUVECs under pulsatile flow for 6 h) RGD/Hep functionalization improved cell retention
and metabolic activity with respect to native
MyoLink

Tamura et al.
(2003)

Heparinized decellularized porcine carotid artery In vivo (implantation in the abdominal aorta of a
dog model)

Sufficient mechanical properties and successful
replacement by the host cells in 18 weeks

Conklin et al.
(2004)

Decellularized porcine carotid artery, covalently
linked with hep using EDC, incubated with basic
fibroblast growth factor

In vitro (human microvascular endothelial cells
or canine peripheral blood endothelial
progenitor cells cultured in static and dynamic
conditions)

bFGF coating on the Hep-bound decellularized
grafts significantly increases attachment and
proliferation of the seeded cells that remain stable
under perfusion conditions

Zhou et al. (2009) Decellularized canine carotid artery coated with
hep (EDC/NHS) and coated with vascular
endothelial growth factor

In vitro (HUVECs) and in vivo (implantation in
the carotid artery of 15 dogs)

Complete endothelium regeneration and higher
patency rate than the nonmodified scaffold after
6 months implantation

Centola et al.
(2010)

Electrospun PLLA/Hep scaffolds with an outer
layer of PCL by FDM

In vitro (hMSCs) Drug delivery system with a microenvironment able
to induce endothelial differentiation

Saitow et al.
(2011)

Heparinized silk-based construct In vitro (human aortic smooth muscle cells) Stimulation of elastogenesis

Ye et al. (2011) FGF2-loaded electrospun Hep–PCL vascular
scaffolds

In vitro (endothelial cells) In vitro (endothelial cells)

Yu et al. (2012) Electrospun microfibres scaffolds of PLLA-PCL
blends functionalized with Hep (EDC/NHS) and
heparin-bound stromal cell-derived factor-1α
(SDF-1α)

In vivo (implantation in the carotid artery of rats)
and in vitro (culturing of explants)

Effective recruitment of endothelial progenitor cells
(EPCs) to the luminal surface of the grafts, which
differentiated into endothelial cells, and of smooth
muscle progenitor cells, which differentiated into
smooth muscle cells

Wu et al. (2012) Poly (glycerol sebacate) core surrounded by an
electrospun PCL sheath, coated with heparin

In vivo (implantation in the abdominal aorta of
27 rats)

Three months after implantation, the neoarteries
resembled native arteries in the following aspects:
Regular, strong and synchronous pulsation; a
confluent endothelium and contractile smooth
muscle layers; expression of elastin, collagen and
glycosaminoglycan; and tough and compliant
mechanical properties

Ye et al. (2012) Electrospun Hep–PCL nonwoven tubular
scaffolds

In vitro (human endothelial cells) and in vivo
(implantation in the femoral artery of 2 dogs)

Low protein absorption and good cell
biocompatibility; presence of endothelial cells
monolayer and extracellular matrix 1 month after
surgery

Zhou et al. (2012) Decellularized canine carotid artery coated with
Hep (EDC/NHS) cultured with canine endothelial
progenitor cells in a custom-made bioreactor

In vivo (implantation in the carotid artery of
20 cell-donor dogs)

Excellent biocompatibility and high patency rate at
3 months post-implantation

Lu et al. (2013) Polyurethane-collagen/Hep-conjugated
polycaprolactone double-layer small-diameter
vascular graft

In vitro and in vivo (implantation in the femoral
artery of dogs)

Good biocompatibility and high patency at
8 weeks after surgery

Wang et al.
(2013)

Hep-bound P(LLA-CL)/P(LLA-CL) double-layer
small-diameter vascular graft

In vitro (endothelial cells from canine femoral
vein) and in vivo (implantation in the femoral
artery of 20 cell-donor dogs)

Biomechanical properties similar to those of canine
femoral arteries; satisfactory endothelialization
in vitro

Huang et al.
(2013)

Hep-bound P(LLA-CL)/P(LLA-CL) double-layer
small-diameter vascular graft pre-endothelialized

In vitro (endothelial cells from canine femoral
vein) and in vivo (implantation in the femoral
artery of 8 cell-donor dogs)

The pre-endothelialization has better mechanical
properties and cellular compatibility than the simple
heparinization

Hoshi et al.
(2013)

Heparinized POC-modified ePTFE grafts In vitro (platelets, primary endothelial cells,
blood outgrowth endothelial cells, and smooth
muscle cells)

Reduced platelet adhesion and inhibition of blood
clotting; support for endothelial cells adhesion,
viability, proliferation, NO production, and
expression of specific markers. Smooth muscle
cells increased expression of α-actin and
decreased proliferation

Pitarresi et al.
(2014)

Electrospun PHEA-eda-g-pla/pcl scaffold
functionalized with Hep (EDC/NHS)

In vitro (human vascular endothelial cells,
ECV 304)

Effective retention of bFGF and promotion of ecs
growth

(Continued on following page)
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TABLE 2 | (Continued) Heparin-functionalized vascular scaffolds for small-caliber artery grafting. Acellular tissue engineered vessels (A-TEVs) (highlighted in gray).

References Scaffold material and
manufacturing method

Development level Main findings

Yao et al. (2014) Co-electrospun PCL/Chitosan hybrid grafts
functionalized with Hep (ionic bonding with
chitosan)

In vitro (HUVECs and human SMCs) and in vivo
(implantation in the abdominal aorta of 9 rats)

Promotion of HUVECs growth and moderate
inhibition of hSMCs proliferation; optimal anti-
thrombogenic effects and enhanced in situ
endothelialization at 1 month after surgery

Wang et al.
(2015)

Small-diameter tubular PLLA/PLCL scaffolds
obtained by thermally induced phase separation
functionalized with Hep (EDC/NHS)

In vitro (pig iliac endothelial cells) and in vivo
(subcutaneous implantation in 4 rabbits)

60% PLCL promising scaffold for engineering
small-diameter blood vessel in terms of
biomechanical properties; heparinization provided
higher hydrophilicity, lower protein adsorption, and
better in vitro anticoagulation properties; good
cellular attachment, spreading, proliferation, and
phenotypic maintenance

Jiang et al. (2015) Decellularized rat aortas infused with poly(1,8
octanediol citrate) (POC) and functionalized with
Hep (EDC/NHS)

In vitro (platelets, HUVECs and human SMCs) Reduced platelet adhesion and inhibited whole
blood clotting; support for endothelial cell adhesion

Dimitrievska et al.
(2015)

Click-coated, heparinized, decellularized pig
aortic graft

In vitro (platelets, HUVECs) Reduced platelet adhesion and thrombogenicity;
supported endothelial cell adhesion and
proliferation

Chen et al. (2015) Electrospun poly(L-lactic acid-co-
ε-caprolactone) (P(LLA-CL)) core–shell
nanofibers loaded with hep and vascular
endothelial growth factor (VEGF)

In vitro (platelets, endothelial progenitor cells) Effective antithrombotic potential and promotion of
endothelial progenitor cells growth

Koobatian et al.
(2016)

Acellular tissue engineered vessel based on
small intestinal submucosa functionalized
sequentially with Hep (EDC/NHS) and VEGF

In vivo (implantation into the carotid artery of an
ovine model)

Complete endothelialization and formation of a
medial layer of circumferentially aligned smooth
muscle cells; high elastin and collagen content;
impressive mechanical properties and vascular
contractility comparable to native arteries

Shafiq et al.
(2016)

Electrospun poly (L-lactide-co-ε-caprolactone)
scaffolds conjugated with Hep and substance p

In vitro (platelets, human bone marrow-derived
mesenchymal stem cells) and in vivo
(subcutaneous scaffold implantation in 12 rats)

Effective host cell infiltration, neotissue formation,
collagen and elastin deposition

Duan et al. (2016) Coaxially electrospun PCL/collagen core–shell
nanofibrous scaffolds crosslinked by genipin and
functionalized with Hep

In vitro (mouse fibroblast L929 cells, ECs and
SMCs)

Good biocompatibility; support for vascular cells
attachment and growth on its surface, and for the
infiltration of SMCs inside

Tan et al. (2016) Co-electrospun PCL/gelatin/polyvinyl alcohol
functionalized with Hep

In vitro (platelets, HUVECs) and in vivo
(subcutaneous implantation in rats)

Good mechanical properties; antithrombogenic;
enhanced growth of endothelial cells

Zhang et al.
(2016)

Electrospun PCL/PCL2K-N3 functionalized with
alkynyl-Hep

In vitro (rat VSMCs) Reduced platelet adhesion; inhibition of VSMCs
proliferation in a dose-dependent manner and
promotion of the transition from synthetic
phenotype to contractile one; moderate Hep
density induces the formation of a confluent layer of
contractile smooth muscle cells

Gong et al. (2016) Decellularized rat aortas coated with electrospun
PCL, with a heparinized luminal surface

In vivo (implantation in the abdominal aorta of
12 rats)

Satisfactory patency for up to 6 weeks; successful
prevention of the occurrence of vasodilation and
aneurysm formation after transplantation and
reduced inflammatory cells infiltration

Fang et al. (2016) Electropun fibrous scaffolds of elastic poly (ester
urethane)urea with disulfide and amino groups
(PUSN) orthogonally functionalized with Hep
(EDC/NHS) and endothelial progenitor cells
(EPC) recruiting peptide (TPS)

In vitro (platelets, mouse bone marrow-derived
EPCs)

Reduced platelet deposition and improved EPCs
proliferation

Jiang et al. (2016) Decellularized rat aorta functionalized with CBP-
Hep (CBP, collagen binding peptide)

In vitro (platelets, HUVECs) Reduced platelet binding and whole blood clotting;
stabilization of long-term endothelial cell
attachment to the lumen of ECM-derived vascular
conduits

Li et al. (2017) Polycarbonate polyurethane scaffold treated
with NH3 plasma and functionalized with Hep
(EDC/NHS)

In vitro (mouse embryonic fibroblasts) and in
vivo (implantation in the carotid artery of
rabbits)

Improved in vitro anticoagulation and excellent
biocompatibility

Zamani et al.
(2017)

Composite silk-based vascular scaffold
functionalized with Hep using hydroxy-iron
complexes (HICs) as linkers

In vitro (HUVECs) and in vivo (subcutaneous
implantation in 12 rats)

Good biomechanical properties (flexibility, suture
retention strength, burst pressure, and
compliance); sustained antithrombogenicity,
cytocompatibility and nonhemolytic properties

(Continued on following page)
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TABLE 2 | (Continued) Heparin-functionalized vascular scaffolds for small-caliber artery grafting. Acellular tissue engineered vessels (A-TEVs) (highlighted in gray).

References Scaffold material and
manufacturing method

Development level Main findings

Hsieh et al. (2017) Electrospun poly-L-lactide-co-caprolactone
(PLCL) microfiber vascular grafts aminolyzed
with plasma treatment or fmoc-peg-diamine
insertion for Hep conjugation

In vivo (subcutaneous implantation in rats) Plasma treatment resulted in significantly higher
initial hep density and higher Hep stability on PLCL
microfibers than fmoc-peg-diamine treatment as
well as better mechanical properties; Hep coating
with both methods promoted cell infiltration

Braghirolli et al.
(2017)

Electrospun polycaprolactone scaffolds
functionalized with Hep (EDC/NHS) and
absorbed VEGF

In vitro [human EPCs or mesenchymal stem
cells (MSCs)]

Mechanical properties compatible with the native
arteries; antithrombogenic properties and
increased EPC proliferation, favoring the formation
of the endothelial layer

Qiu et al. (2017) Electrospun polycarbonate-urethane (PCU)
nanofibrous grafts treated with plasma to
conjugate Hep via end-point immobilization

In vivo (implantation in a rat common carotid
artery anastomosis model)

High patency rate at 2 and 4 weeks; complete
endothelialization of the luminal surface with an
aligned, well-organized monolayer of endothelial
cells, extensive graft integration in terms of
vascularization and cell infiltration from the
surrounding tissue

Henry et al.
(2017)

Electrospun PLLA scaffold blended with lowMW
PCL or low MW PLLA functionalized with Hep
(EDC/NHS) and absorbed VEGF

In vivo (implantation in a rat common carotid
artery model)

Enhanced endothelium formation and the overall
patency of vascular grafts; increased cell infiltration
into the electrospun grafts and production of
collagen and elastin fibers within the graft wall

Lee et al. (2017) PCL functionalized with Hep–tyramine polymer
and a potent anti-neointimal drug (mitogen
activated protein kinase II inhibitory peptide;
MK2i)

In vitro (platelets, VSMCs) Enhanced blood compatibility with significantly
reduced protein absorption and platelet adhesion;
significant inhibitory effects on VSMC migration
associated with intimal hyperplasia

Hu et al. (2017) Coaxial-elctrospun scaffolds of poly (L-lactide-
co-caprolactone) [P(LLA-CL)]/collagen/elastin
with hep and VEGF encapsulated in the core

In vitro (human aortic endothelial cells) and in
vivo (implantation into a rabbit infrarenal aortic
replacement model)

High attachment efficiency and proliferation; high
short-term patency

Caracciolo et al.
(2017)

Electrospun scaffolds from blends of poly
(L-lactic acid) (PLLA) and segmented
polyurethane (PHD) functionalized with
lysozyme/heparin (EDC/NHS)

In vitro [human adipose-derived stem
cells (MSC)]

Inhibition of platelet adhesion and of hemolysis;
adhesion and proliferation of human adipose-
derived stem cells; antimicrobial activities

Cao et al. (2017) Electrospun PCL scaffolds aminolyzed and
functionalized with hep (EDC/NHS)

In vitro (rabbit SMCs) Induction of SMCs penetration into the scaffold
and differentiation into contractile phenotype

Jiang et al. (2017) Rat aorta decellularized vascular graft
functionalized with antioxidant poly(1, 8-
octamethylene-citrate-co-cysteine) (POCC)
and Hep

In vivo (implantation in a rat aorta model) Grafts displayed antioxidant activity, patency, and
minimal intramural cell infiltration with varying
degrees of calcification (inversely related to the
antioxidant capacity), at 3 months post-surgery

Zhou et al. (2018) Dual layer conduit consisting of collagen
I-hyaluronic acid (external layer) and collagen
I-Hep (inner layer) crosslinked with EDC

In vitro [fibroblast cell (Cos-7) and human
microvascular endothelial cells (HMEC)]

Satisfactory mechanical performance and support
for cells adhesion, proliferation and elongation

Wan et al. (2018) Electrospun PCL/keratin nanofibrous mats
functionalized with Hep (EDC/NHS)

In vitro (platelets, HUVECs, human umbilical
artery smooth muscle cells (HUASMCs))

Effective antithrombotic potential; induction of NO
release, which enhance endothelial cell growth and
inhibits smooth muscle cell proliferation and
platelet adhesion

Xu et al. (2018) Electrospun PCL scaffolds functionalized with
Hep (EDC/NHS)

In vivo (implantation in infrarenal abdominal
aorta of 30 rats)

All implanted grafts were patent during the
6 months post-surgery and showed a well-
organized neo-tissue with endothelium formation,
smooth muscle regeneration, and extracellular
matrix formation

Norouzi and
Shamloo (2019)

Bilayer heparinized vascular graft: Inner layer
made by co-electrospinning of PCL and gelatin;
outer layer fabricated by freeze-drying of gelatin
hydrogel; Hep blending in gelatin solution and
emulsion of PCL fibers

In vitro (HUVECs and rat VSMCs) Improved endothelial cell attachment and
decreased amount of activated platelets;
mechanical properties similar to the coronary artery

Cai et al. (2019) Decellularized porcine carotid arteries
functionalized with Hep (EDC/NHS)

In vivo (subcutaneous implantation in 8 rats) Improved mechanical properties, reduced
inflammatory reaction and slow degradation time;
effective inhibition of thrombogenesis

Kuang et al.
(2019)

Two-layer composite vascular graft: Inner layer
made of poly(lactic-co-glycolic acid)/Collagen
nanofibers modified by mesoporous silica
nanoparticles and grafted with polyethylene
glycol and Hep; outer layer made of polyurethane
nanofibers

In vitro (HUVECs) and in vivo (implantation into
rabbit carotid artery)

Good blood compatibility; absence of inflammatory
reaction; regeneration of endothelial cells
monolayer and smooth muscle media layer

(Continued on following page)
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were implanted in a rat common carotid artery anastomosis
model, showing high patency rate and extensive graft
integration (Qiu et al., 2017). In the second one,
electrospun scaffolds were obtained using blends of high
and low molecular weight elastomeric polymers to improve
both functionalization and mechanical properties of the
grafts. PLLA scaffolds with 5% low molecular weight PCL
were functionalized with Hep, loaded with VEGF and
implanted into the carotid artery of rats, evidencing a
synergistic effect of these two angiogenic factors on graft
patency, endothelialization, and neo-artery formation
(Henry et al., 2017).

As above mentioned, Andreadis’ team designed an A-TEV
from decellularized SIS, coated it sequentially with Hep and
VEGF, and then implanted it in both mouse abdominal aorta
and sheep carotid artery (Koobatian et al., 2016; Smith et al.,
2019; Smith et al., 2020). They obtained promising results
including complete endothelialization and formation of a
medial layer of circumferentially aligned smooth muscle
cells, high elastin and collagen content, impressive
mechanical properties and vascular contractility
comparable to native arteries. They showed that VEGF was
essential for modulating the inflammatory response of

monocytes and the regeneration of a functional artery wall
(Smith et al., 2019). Additionally, they demonstrated that
VEGF was able to capture circulating monocytes that
differentiated into mature endothelial cells, therefore
directly contributing to the endothelialization of acellular
vascular grafts (Smith et al., 2020).

Chondroitin Sulfate-Based Vascular
Constructs
Differently from both HA and Hep, only few in vitro studies
dealt with usefulness of CS for functionalization of small-
diameter vascular grafts. In particular, Lerouge’s team
functionalized poly(ethylene terephthalate) scaffolds with
CS (via EDC/NHS) and assessed their functionality
culturing HUVECs and VSMCs from rat embryonic
thoracic aorta. Overall, these studies showed that CS
coating prevented platelet adhesion and activation, while
promoting HUVECs growth and resistance to flow-induced
shear stress, and survival and inward penetration of VSMCs
(Thalla et al., 2014; Savoji et al., 2017). The paucity of these
studies could be related with CS implications in
atherogenesis. In fact, CS is a major GAG found in both

TABLE 2 | (Continued) Heparin-functionalized vascular scaffolds for small-caliber artery grafting. Acellular tissue engineered vessels (A-TEVs) (highlighted in gray).

References Scaffold material and
manufacturing method

Development level Main findings

Smith et al.
(2019)

Acellular tissue engineered vessel based on
small intestinal submucosa functionalized
sequentially with Hep (EDC/NHS) and VEGF

In vivo (implantation in abdominal aorta of mice) Well-demarcated luminal and medial layers
resembling those of native arteries; anti-
inflammatory action of VEGF on infiltrating
monocytes

Wang D. et al.
(2019)

PLLA/PLGA/PLCL composite scaffolds
fabricated by using TIPS, functionalized with Hep
(EDC/NHS) and stromal cell-derived factor-1
alpha (SDF-1α)

In vitro (rat EPCs, HUVECs and hVSMCs) Enhanced anticoagulation of vascular scaffold;
acceleration of endothelialization and inhibition of
hVSMCs proliferation

Jin et al. (2019) Double-layer vascular scaffold: Inner layer made
of electrospun end-group heparinized PCL
nano- and microfibers; outer layer made of
electrospun PCL

In vitro (HCs and SMCs) and in vivo
(implantation into carotid artery of 6 rabbits)

Patency, endothelialization and fine
revascularization were observed at 2 months post-
implantation; aneurysmal dilatation of the outer
layer; no signs of calcification

Wang W. et al.
(2019)

Electrospun PCL scaffolds functionalized with
multiple layers of vascular endothelial growth
factor (VEGF) and Hep (repeated electrostatic
adsorption self-assembly) crosslinked by genipin

In vitro (platelets, HUVECs) Early and full release of VEGF to promote rapid
endothelialization; gradual but sustained release of
Hep for long-term anticoagulation and
antithrombogenicity; improved cell viability and
rapid endothelialization

Shi et al. (2019) Electrospun PCL/gelatin hybrid vascular grafts
functionalized with Hep (EDC/NHS)

In vivo (implantation in abdominal aorta of 18
rats)

Promotion of endothelialization and regulation of
smooth muscle regeneration; inhibition of
thrombosis

Wang et al.
(2020)

Electrospun PCL scaffolds functionalized with
multiple layers of vascular endothelial growth
factor (VEGF), polylysine, and Hep (repeated
electrostatic adsorption self-assembly)
nanoparticles crosslinked by genipin

In vitro (platelets, HUVECs) Successful induction of vascular endothelialization
and long-term anticoagulation; long-term release
of bioactive factors without burst release

Smith et al.
(2020)

Acellular tissue engineered vessel based on
small intestinal submucosa functionalized
sequentially with Hep (EDC/NHS) and VEGF

In vivo (implantation into the carotid artery of an
ovine model)

Immobilized VEGF captures blood circulating
monocytes that differentiate into mature ECs that
align in the direction of flow and produce nitric
oxide under high shear stress. Highly prevalent
circulating MC contribute directly to the
endothelialization of acellular vascular grafts under
the right chemical and biomechanical cues
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normal vessels and atherosclerotic lesions that participates in
apolipoprotein B100 binding, therefore contributing to lipids
accumulation into the subendothelial space of arteries. These
events are mediated by specific interactions between a
proteoglycan-binding site in Apolipoprotein B100,
consisting of a few basic amino acids, and the negatively
charged CS (Boren et al., 1998), with increasing affinity for
over-sulfated chains (Sambandam et al., 1991).

CONCLUSION

GAGs represent key players in vascular physiology as well as in
the pathogenesis of atherosclerosis. A deep knowledge of GAGs
structural complexity, which accounts for their numerous
functions, still represents a challenge but also a huge potential
source of information to pave the way to vascular tissue
engineering. In this review, we have provided readers with an
overview of the numerous efforts performed in the last 20 years,
in the attempt to develop functional resorbable scaffolds for
small-diameter vascular regeneration, using GAGs as
molecular cues to guide the correct endothelialization of the
luminal surface and neo-artery formation. Although many
progresses have been obtained both in vitro and in vivo using
HA, HA derivatives, or Hep as bioactive molecules, none of the
mentioned devices has reached the clinical trial yet, leaving the
field open to further studies, including those exploring the effects
of specific sulfated saccharide sequences or synthetic glycans
related molecules on vascular regeneration.
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