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The recent identification of recurrently mutated epigenetic regulator genes (ERGs) supports their critical role in tumorigen-

esis. We conducted a pan-cancer analysis integrating (epi)genome, transcriptome, and DNA methylome alterations in a cu-

rated list of 426 ERGs across 33 cancer types, comprising 10,845 tumor and 730 normal tissues. We found that, in addition

to mutations, copy number alterations in ERGs were more frequent than previously anticipated and tightly linked to ex-

pression aberrations. Novel bioinformatics approaches, integrating the strengths of various driver prediction and multi-

omics algorithms, and an orthogonal in vitro screen (CRISPR-Cas9) targeting all ERGs revealed genes with driver roles with-

in and across malignancies and shared driver mechanisms operating across multiple cancer types and hallmarks. This is the

largest and most comprehensive analysis thus far; it is also the first experimental effort to specifically identify ERG drivers

(epidrivers) and characterize their deregulation and functional impact in oncogenic processes.

[Supplemental material is available for this article.]

Although it has long been known that human cancers harbor both
genetic and epigenetic changes, with an intricate interplay be-
tween the twomechanisms underpinning the hallmarks of cancer
(Hanahan andWeinberg 2011), it is onlywith the fruition of large-
scale international sequencing efforts that major enigmas of the
cancer (epi)genome have started to be solved (Jones et al. 2016;
Ng et al. 2018). One of the most remarkable findings of the inter-
national high-resolution cancer genome sequencing efforts, spear-
headed by The Cancer Genome Atlas (TCGA), is the high
frequency of genetic alterations in the genes encoding proteins
that directly regulate the epigenome (referred to here as epigenetic
regulator genes [ERGs]) (Gonzalez-Perez et al. 2013; Plass et al.
2013; Shen and Laird 2013; Timp and Feinberg 2013; Vogelstein
et al. 2013; Yang et al. 2015). This high rate of ERG genetic dereg-
ulation constitutes a “genetic smoking gun,” indicating that epige-
netic mechanisms lie at the very heart of cancer biology. These
discoveries have sparked a debate on the role of ERG deregulation
(either through mutational or nongenetic events) in ERG expres-
sion and in the mechanisms underlying tumorigenesis and epige-
nome alterations that are rampant in virtually all human
malignancies (Plass et al. 2013; Timp and Feinberg 2013). We
also still lack a systematic understanding of the functional impor-
tance of ERGdisruption in tumor development and progression, as
well as its impact on cancer cell phenotype.

ERGs are a group of more than 400 coding genes in the hu-
man genome,most of which encode enzymes that add (“writers”),
modify/revert (“editors”), or recognize (“readers”) epigeneticmod-
ifications (Plass et al. 2013; Vogelstein et al. 2013) controlling a
range of critical cellular processes. Based on the observation that
many ERGs are frequently disrupted across differentmalignancies,
they are candidates to be drivers of cancer development and pro-

gression, potentially acting as oncogenes or tumor suppressors
(Plass et al. 2013; Vogelstein et al. 2013). Although several distinct
definitions of “driver gene” exist in the literature (Sawan et al.
2008; Vogelstein et al. 2013), we define “driver genes” as those
genes that, when deregulated (through somatic mutations, copy
number variations, or aberrant expression), assume primary im-
portance in tumor development such as conferring a selective
growth advantage, immortalization, and invasiveness. This defini-
tion relies on inferencemodels for driver prediction and functional
data (based on the impact of the gene on cellular processes) com-
pared to other methods that are mostly based on statistical models
(largely driven by the mutation frequency of a gene) (Parmigiani
et al. 2009; Meyerson et al. 2010; Lahouel et al. 2020). In line
with this physiological definition, we refer to those ERGs that
make a net contribution to tumorigenesis as “epigenetic driver
genes” (henceforth called “epidrivers”). Our definition is different
from that used by other investigators (Vogelstein et al. 2013), who
define epidrivers as the genes (not necessarily among ERGs) that
are aberrantly expressed through changes in DNA methylation
and chromatin modifications and confer a selective growth
advantage.

The products of ERGs are involved in processes such as DNA
methylation, histone modification, chromatin remodeling, and
other chromatin-based modifications, and many ERGs may have
both histone and nonhistone substrates. All of these processes, in
turn, are involved in the proper control of not only gene expression
programs, required for the establishment and maintenance of cell
identity and function, but also DNA repair, recombination, and ge-
nome integrity (Murr et al. 2006; Bell et al. 2011). Because common
cancers represent the final outcome of a multistep process, epi-
driver-based disruption of cellular processes may not only assume
aprimary role at different stages of tumorigenesis but also constitute
critical mechanisms underpinning cancer cell plasticity and
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emergence of cancer resilience.Here,we conducted a systematic and
comprehensive pan-cancer investigation of (epi)genetics- and tran-
scriptome-based deregulation of all ERGs using in silico data cura-
tion in clinical samples and characterization of the driver
potential by different computational tools. We also developed and
tested a conceptual framework for experimental identification and
functional characterization of the mechanistically important epi-
drivers that reshape the epigenome and contribute to cancer pheno-
types. This framework builds on the latest knowledge of the cancer
(epi)genome and genomic databases and includes powerful new ex-
perimental models including state-of-the-art genome-editing
screens, phenotyping, and functional genomics.

Results

A four-stage strategy was used to identify and characterize ERGs
with cancer driver potential (Fig. 1A).We assembled a comprehen-
sive compendium of ERG genes by literature mining and manual
curation, resulting in a list of 426 genes coding for histone modifi-
ers, DNAmethylation regulators, chromatin remodelers, helicases,
and other epigenetic entities (Fig. 1B; Supplemental Tables S1, S2).
To identify the candidate epidrivers across different cancer types,
we first used comprehensive in silico data mining of genetic and
RNA expression alterations of ERGs using data from TCGA (Fig.
1A). Collectively, the data encompassed 33 different cancer types
from25 tissue types, with sequencing information from10,845 tu-
mor samples and 730 normal tissues, including a total of
90,144,805 genetic alterations, which encompassed 1,500,358
somatic mutations (single-nucleotide alterations [SNAs]) and
88,644,447 somatic copy number alterations (CNAs) (of which
4,294,698 were deep deletions/amplifications). We subsequently
characterized, across various cancer types, the driver potential of
ERGs based on ConsensusDriver scores (Bertrand et al. 2018),
which we complemented with our proposed Pan-Cancer Driver
and Multi-Omics Driver scores, and the implications of these
ERGs in cancer hallmark pathways. Finally, we performed an or-
thogonal validation of the driver potential of 426 ERGs in cell
linemodels in comparisonwith the findings from the clinical sam-
ples (Fig. 1A).

Pan-cancer analysis of genetic alterations in ERGs

To identify potential epidrivers, we first analyzed the frequency of
genetic disruption of ERGs (vs. all genes) across malignancies from
different anatomical sites. Our analysis revealed that the predom-
inant genetic alterations in ERGs were deep amplifications or
SNAs, depending on the cancer type (Fig. 2A,B). In comparison,
the predominant genetic alteration in all human genes was deep
amplification in most cancer types (Supplemental Fig. S1A,B).
Overall, higher proportions of amplifications than deletions
were observed in ERGs or in all genes across all cancer types except
a few (mainly, DLBC and PRAD) (Fig. 2A,B; Supplemental Fig. S1A–
C). Some cancer types (e.g., OV) had predominately CNAs with al-
most no SNAs (Fig. 2A–D; Supplemental Fig. S1A,B). In most can-
cer types, the CNAs (Supplemental Fig. S1D) and SNAs
(Supplemental Fig. S2) were uniformly distributed across chromo-
somes, with the exception of GBM, KIRP, and UVM, which
showed CNAs in specific chromosomes (Supplemental Fig. S1D).

Many specific ERGs were identified as being genetically al-
tered at noticeably high levels in different malignancies (Fig. 2E,
F). In particular, SNAs in IDH1 (Fig. 2E,G; Supplemental Fig. S2)
and deep CNAs in ACTL6A (Fig. 2F,H) had high proportions of al-

terations, exceeding 40%of samples in LGG and LUSC, respective-
ly. Several ERGs had the highest mutation frequency repeatedly in
many cancer types, namely the KMT2C/D family (seven cancers),
ARID1A (five cancers), BAP1 (three cancers), and ATRX (three can-
cers) (Fig. 2E,G; Supplemental Table S3). A similar observation was
made for deep CNAs in ERGs, namely BOP1 (four cancers), ATAD2
(four cancers), MECOM (three cancers), and PHF20L1 (three can-
cers) (Fig. 2F,H). A larger percentage of ERG alterations was also ob-
served when both deep and shallow CNAs were included (Fig. 2C,
D; Supplemental Fig. S1C,D). Among the top ERGs altered by deep
CNAs, the majority showed amplifications, with the exception of
HR, PHF11, and SETB2, which were commonly deleted in many
cancer types (Fig. 2H). Frequently amplified ERGs often co-oc-
curred in the same tumor sample in many cancer types; in partic-
ular, the aforementioned pan-cancer recurrent genes BOP1,
ATAD2, and PHF20L1 highly co-occurred (Supplemental Fig.
S3A). These co-occurrences remained prominent even when the
analysis was focused only on deep amplifications/deletions across
tumors (Supplemental Fig. S3B,C). Moreover, the family of TDRs
(TDRKH, TDRD10, and TDRD5) highly co-occurred together.
Generally little overlap was observed between the genes with a
high frequency of SNAs and those with a high frequency of
CNAs (except for a few ERGs) (Fig. 2E–H).

When ERGs were stratified by functional groups, similar total
proportions of genetic alterations were seen among ERG classes
(Fig. 2I). DNA methylation writers and editors were characterized
by a prominent proportion of SNAs in several cancer types, com-
pared with other ERG classes (Fig. 2I; Supplemental Fig. S4A,B).
Indeed, DNA methylation modulators appeared among the top
SNA profiles (Fig. 2G) but not among the top CNA profiles (Fig.
2H) of ERGs. Moreover, in many cancer types, DNA methylation
writers or editors, which are among the smallest ERG classes,
were the group showing the largest percentage of genetically al-
tered ERGs (Supplemental Fig. S4A,B). Among ERGs that could
be classified as tumor suppressors, KMT2D, KMT2C, ARID1A,
ATRX,CREBBP, and PBRM1were frequentlymutated inmany can-
cer types, whereas oncogenic ERGs were each mutated in specific
cancer types, mainly IDH1 in LGG and DNMT3A in LAML
(Supplemental Fig. S5A,B).

Pan-cancer analysis of RNA expression in relation to genetic

and DNA methylome aberrations of ERGs

The second approach in our analysis focused on RNA expression
deregulation (by RNA-seq) of ERGs across cancer types. For each
cancer type, the analysis consisted of two parts: expression varia-
tion across tumor samples relative to one another (independent
of the corresponding normal tissue) and expression changes in tu-
mor relative to adjacent normal tissue. By integrating genetic and
transcriptomic information matched to the same samples (using
the TCGA database) a higher proportion of tumor samples showed
significantly increased ERG expression (Z-score> 2) relative to
down-regulation (Z-score <−2) (Fig. 3A), in line with the observed
higher proportion of samples with ERG amplifications than with
deletions (Figs. 2A, 3A).

Amplifications and deletions significantly correlated (false
discovery rate [FDR] < 0.05)positivelywith increased anddecreased
expression, respectively, in all cancer types and chromosomes (Fig.
3A,B), except for Chromosome X, because of a statistical artifact
(Methods; Supplemental Fig. S6A,B). SNAs significantly correlated
(FDR<0.05) negatively or positively with expression across tumor
samples and chromosomes, so the correlation was not
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Figure 1. Study design. (A) A four-stage approach to identify and characterize ERGs with cancer driver potential. (B) The compendium of ERGs curated
and analyzed, comprising 426 genes classified into histone modifiers, DNA methylation regulators, chromatin remodeling factors (ChRC), helicases, and
other chromatin modifiers (some of which were further divided into subgroups based on function or their presence in molecular complexes). Histone acet-
ylation, histone methylation, and DNA methylation modifiers are further stratified each into “writers” (w), “editors” (e), and “readers” (r). (∗) The histone
modifying genes whose functions are not well characterized andwhich were, therefore, assigned based on ENCODEChIP sequencing data; (∗∗) the histone
modifying genes without assignment of residues in the histone tails.
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Figure 2. Pan-cancer analysis of genetic alterations across ERG categories and classes. (A,B) The percentage of samples with genetic deregulation in ERGs
(A) and the percentage of ERGs showing different types of genetic deregulation (B), by cancer type. ERGs are considered altered if at least 1% of samples
harbor these genetic aberrations. (C) Proportion of samples with SNAs versus that with deletions (−1,−2) or amplifications (+1, +2) in ERGs for each cancer
type. Each gene is represented by two dots (red and green) depicting amplified and deleted CNAs, respectively. (D) Circos plots showing the relative
amount of deregulation in CNAs by chromosomal distribution in two representative cancer types (LUAD and THYM, characterized by high and low
CNA burden, respectively). The level of CNAs for each ERG was calculated as the proportion of samples considering all types of CNAs (amplification =
+1, +2 and deletion =−1, −2) in ERGs in each cancer type. (E,F) Box plots showing the percentage of samples with SNAs (E) and deep CNAs (F) by
gene and by cancer type. The most deregulated ERGs are highlighted for each cancer type. (G,H) Heatmaps representing the top genetically deregulated
genes showing SNAs (G) and CNAs (H) in at least 10% and 15%, respectively, of the samples for any cancer type. Only samples with deep CNAs were
included. ERGs are grouped into functional categories as indicated. (I) The percentages of ERGs that show genetic alteration among all cancer types by
functional groups. Genetic alterations: (SNA) single-nucleotide alteration, (amp) deep copy number amplification, (amp_SNA) deep amplification co-oc-
curring with SNA, (del) deep copy number deletion, (del_SNA) deep deletion co-occurring with SNA, and (ma) multiple alterations. In cases in which both
types of CNAs (amplification and deletion) of one genewere present in the samples, we reported in B andH the alteration thatwas at least twice as prevalent
as the other; otherwise, the alteration was reported under the multiple alteration category.
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Figure 3. RNA expression alterations of ERGs across cancer types, in relation to genetic and DNA methylome variations. (A) Multi-omics plot of SNA,
CNA, and RNA expression alterations across ERGs and cancer types. Amplifications, deletions, and SNAs were annotated as described in Methods. The
most deregulated ERGs in RNA expression (with the y-axis value above 10) are highlighted for each cancer type. (B,C) Circos plots showing Pearson’s cor-
relation between CNAs (B) or SNAs (C) and expression Z-scores in different cancer types across the chromosomal regions. Positive and negative correlations
are indicated in orange and blue, respectively. Only ERGs with correlation (R2) > 30% and FDR<0.05 in at least in one cancer type were considered for the
analysis in B; the R2 limit was set to 10% in C. (D) Expression quantitative trait methylation (eQTMs) analysis showing Pearson correlation values (x-axis)
between RNA (RSEM counts) andmethylation (beta) levels of promoter CpGs for each ERG in different cancer types. The line bar indicates highly significant
CpGs [−log(P-value) > 50]. Red, blue, and black dots represent CpGs with FDR<0.05, P<0.05, and P>0.05, respectively. (E) Number of ERGs or all genes
with differential RNA expression in tumor relative to adjacent normal tissues for each cancer type (|log FC| > 2 and FDR<0.05). The star denotes a P-value <
0.05 by a two-sample test of proportions of up- versus down-regulation. (F ) Heatmaps showing the most differentially expressed ERGs comparing tumor
samples with adjacent normal tissues among cancer types. Only the top differently expressed ERGs with |log FC| > 3 and FDR<0.05 are annotated.
(G) Volcano plots showing differentially expressed ERGs in tumors relative to adjacent normal tissues. ERGs are shown in blue (|log FC| > 1), and the
most deregulated ERGs with |log FC| > 3 are highlighted for each cancer type (FDR <0.05). Sample sizes for each cancer type are indicated in A and E.
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unidirectional (Fig. 3A,C). ERG-specific analysis revealed some
ERGs with noticeably high expression aberrations within tumor
samples (Fig. 3A). Among them, several ERGs were repeatedly up-
or down-regulated in several cancer types; the primary genes were
CHRAC1, PHC3, and BOP1, which were among the top 10 most
up-regulated ERGs recurrently observed in 18, 9, and 7, respective-
ly, out of 33 cancer types (Fig. 3A, only the top 5 ERGs are shown;
see Supplemental Table S3 for the top 10 ERGs). Many of the ERGs
with thehighest deregulatedexpressionare the sameERGswith the
highest CNAs of the corresponding cancer type (Fig. 3A vs. Fig. 2F).

Because epigenetic inactivation could be an additional mech-
anism for aberrant expression of ERGs, we performed concurrent
analyses of transcriptomic and DNA methylome data available
for the tumor samples in the TCGA.We correlated themethylation
with RNA-seq levels by limiting the comparison to CpGs in pro-
moter regions (−1000 to +500 bp of TSS) and RNA transcripts of
the overlapping gene. The most significantly correlated CpG for
each gene is shown in Figure 3D, and results for all analyzed
CpGsareprovided inSupplemental Table S4 and the figshare repos-
itory (https://figshare.com/articles/Supplemental_data/12613220).
All CpGs that were highly significant [−log(P-value) > 50] were neg-
atively correlated with the expression of their corresponding gene,
and many of them were recurrent in several tumor types, namely
CpGs in TDRD1 (n=16 tumor types), RNF17 (n=13 tumor types),
SP140L (n=5 tumor types), and STK31 (n=3 tumor types) (Fig. 3D).

Comparing the expression levels of ERGs in tumor relative to
adjacent normal tissue in each cancer type also revealed a predom-
inant pattern of overexpressed ERGs in most cancer types, except
GBM and KICH (Fig. 3E). Similar observations were made when
all human genes were analyzed (Fig. 3E). ERG-specific analysis re-
vealed several ERGs with significant deregulation of expression
(FDR<0.05) (Fig. 3F,G) and recurrence in several cancer types.
Several genes had similar recurrence across several cancer types,
namely PADI3 (in 11 of 18 cancers), PRDM13 (in 10 of 18 cancers),
AURKB (in 9 of 18 cancers), andHIST1H1B andHIST1H3B (each in
8 of 18 cancers), based on the selection of only the top genes (FDR
<0.05 and log10 fold change [log10FC] > 3) (Fig. 3G).

Characterizing the driver potential of deregulated ERGs across

cancer types

The third strategy in our analysis to characterize the potential driver
roles of ERGswas based onConsensusDriver, a novel approach that
provides a systematicway to integrate the strengths of various driver
prediction algorithms (Bertrand et al. 2018). The ERGswith a poten-
tial driver role (ConsensusDriver score >1.5) are shown for each can-
cer type (Fig. 4A) and are significantly enriched relative to the 233
total genes (Bailey et al. 2018) that have a driver score >1.5 (P=
4.0×10−22, Fisher’s exact test). Six additional ERGs would still be
classified as drivers at a score<1.5 but with manual curation by
Bailey et al. (2018), and these are ATR, EZH2, HIST1H1C, PHF6,
SMARCB1, and TET2. The ConsensusDriver score matched to a
high extent with the driver potential predicted based on SNA fre-
quencies in each cancer type, and to a lesser extent with that pre-
dicted based on CNA, FC, or Z-scores (Fig. 4A); the latter three, if
matching with ConsensusDriver score, never occurred without
SNAs, further emphasizing the importance of SNAs in the deriva-
tion of ConsensusDriver score (Fig. 4A). IDH1 had the highest
ConsensusDriver score, as evident in LGG, and this ERG showed a
driver role in six other cancer types, which explains why it addition-
ally had the highest pan-cancer ConsensusDriver score (PANCAN)
(Fig. 4A).

In comparison, ARID1A was the ERG with the most frequent
driver score, appearing in 13 cancer types, althoughwith a relative-
ly weak to modest driver role in individual cancer categories.
ConsensusDriver ERGs were enriched in several gene families
(namely ARID(1A/2), ASXL1/2, CHD3/4/8, IDH1/2, KDM(5C/6A),
KMT2A/B/C/D, NSD1/2, and SMARCA1/4) as well as in UCEC (n=
14 ERGs) and BLCA (n=10 ERGs) (Fig. 4A). Genetic deregulation
of ConsensusDriver ERGs often co-occurred in the same sample
across several cancer types, with KMT2D and ARID1A having the
highest co-occurrence scores. The ERGs within the same KMT2A/
B/C/D family highly co-occurred together even though they were
not mapped to the same chromosomes (Supplemental Fig. S3C),
whereas IDH1 and IDH2 were mutually exclusive (Fig. 4B).

We complemented ConsensusDriver (weighted for SNAs)
with our Multi-Omics Driver score that is weighted for each of
SNAs, CNAs, and expression aberrations. The Multi-Omics Driver
scores for all ERGs across cancer types is shown in Figure 4C and
Supplemental Table S5 (the figshare repository: https://figshare
.com/articles/Supplemental_data/12613220). This score revealed
ERGs with a high Multi-Omics Driver score in most cancer types
(such as ATAD2) against those showing single driver score (such
as IDH1, which has a high SNA driver score in LGG but relatively
lowCNAand expression driver scores).Wenext formulated anoth-
er score, the Pan-Cancer Driver score, that additionally weights for
pan-cancer coverage on top of SNAs, CNAs, and expression aberra-
tions (Fig. 4D). ATAD2 had the highest Pan-Cancer Driver score,
showing all the SNA, CNA, and expression Z-score alterations in
many cancer types. When we considered the top 39 Pan-Cancer
Driver genes, representing a sample size identical to that identified
fromConsensusDriver, we found several driver ERGs to be similar-
ly represented in both sets, namely, SMARCA4 (score= 11), ASXL1
(score = 12), BAP1 (score = 26), KMT2B (score = 38), and MECOM
(score = 37). HM andHA, but not DM,modulators were highly rep-
resented among the top 100 Pan-Cancer Driver ERGs, probably
because DM modulators are mostly altered by SNAs (Fig. 2G vs.
2H), and hence are characterized by ConsensusDriver (e.g., IDH1
and DNMT3A) (Fig. 4A) rather than Pan-Cancer Driver (Fig. 4D;
Supplemental Fig. S5B) profiles. Similarly, ARID1A, which is char-
acterized predominantly by the SNA type of genetic alterations,
showed ConsensusDriver potential in many cancer types (Fig.
4A) but did not appear among the top 100 Pan-Cancer Driver
ERGs (Fig. 4D; Supplemental Fig. S5B). Genetic deregulation of
Pan-Cancer Driver ERGs often co-occurred in the same sample
across several cancer types (Fig. 4E).

Next, we investigated whether epidrivers are enriched in
pathways affecting the 10 hallmarks of cancer. Our compendium
of 426 ERGs was significantly enriched in four hallmarks, namely
genome instability and mutation, evading growth suppressors,
sustaining proliferative signaling, and enabling replicative immor-
tality (Fig. 4F; Supplemental Fig. S7A,B), further supporting a
driver role of ERGs in tumorigenesis and characterizing the nature
of biological pathways inwhich ERGs play a functional role in can-
cer. These four hallmarks were also topmost significant in the 39
ConsensusDriver (P<0.05), top 39 Pan-Cancer Driver (P<0.1),
and 42 multi-omic driver (P<0.05) ERGs (Supplemental Fig. 7C).

Orthogonal CRISPR-Cas9 screen to assess the driver potential

of ERGs in epithelial-to-mesenchymal transition (EMT)

We conducted a CRISPR-Cas9 screen using a custom-made lentivi-
ral CRISPR library consisting of 1649 gRNAs targeting all 426 ERGs
(Fig. 5A; Supplemental Fig. S8) and A549 lung cancer cells stably
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Figure 4. Characterization of ERG driver potentials. (A) Heatmap showing the ConsensusDriver scores (with values ranging from 1.5 to 7.5) as obtained
by Bailey et al. (2018). ERGs with a score≥1.5 in at least one cancer type are shown. The top 10 deep amplifications or deletions (green circles), SNAs (blue
empty diamonds), or significant Z-score (purple crosses) of each cancer are overlapped onto the heatmap. (B) Significant (FDR <0.05) co-occurrence and
mutual exclusivity for ConsensusDriver ERGs in a pan-cancer analysis. The node size is proportional to both the number and thickness of its connections
with other nodes. Blue and red edges represent co-occurrence (odds ratio [OR] > 1) and mutual exclusivity (OR <1), respectively. The transparency of the
edges indicates the averageOR across cancer types, and their thickness is proportional to the number of cancer types in which the OR is significant. The co-
occurrence filter was set to at least 5% of the samples per cancer type (Methods). (C) Heatmap of the Multi-Omics Driver scores of ERGs per cancer type.
The ERGs shown represent a pooled set of the top three ERGs in each cancer type, as ranked by the mutli-omics driver score. (D) Top 100 ERGs by Pan-
Cancer Driver score using SNA (5% of samples), CNA (5% of samples), and expression data (15% of samples with significant Z-score or FDR<0,05
with log10FC>1). Results are represented as bar plots counting the number of cancers in which a given gene has a particular genomic or expression al-
teration. From outer to inner track: (1, pink) SNAs; (2, green) CNAs; (3, purple) Z-score; (4, orange) log10FC. Inside the last track, co-occurrence or mutual
exclusivity was calculated as in B, except that the co-occurrence filter was set to at least 10% of the samples per cancer type. Genes are aggregated by their
functional features. (E) Significant co-occurrence for the top 100 ERGs by Pan-Cancer Driver score. Co-occurrence ormutual exclusivity was calculated as in
D but ordered instead by chromosome number. (F) Spider pie chart showing enrichment of the 426 ERGs in pathways affecting the 10 hallmarks of cancer;
the corresponding P-values and ORs are illustrated by green gradients and black spots, respectively. The names of ERGs overlapping with the four signifi-
cantly enriched hallmarks are indicated.
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Figure 5. CRISPR-Cas9 screen to perform orthogonal assessment of the driver potential of ERGs in EMT. (A) The screening strategy used to identify pos-
itive and negative regulators of EMT among ERGs. (B)Western blot analysis of Cas9 expression in A549 lung cancer cells. “Pool” represents a heterogeneous
population of transduced and stably Cas9 expressing cells derived from the parental cells. Individual cell clones derived by cloning rings are numbered 1, 2,
5, 6, 7, 8, and 9. Actin beta was used to normalize for equal loading. (C) Validation of the transduction efficiency of the lentiviral CRISPR ERG library 10 d
after puromycin selection using FACS compared with uninfected A549 cells. (D) Enrichment of vimentin-positive (VIM+) population analyzed by FACS after
CRISPR ERG library transduction at day 14 after puromycin selection. (E) Validation of cell sorting for the enrichment of VIM+ population by FACS based on
the fluorescent antibody EPCAM (EPCAM loss is associated with the mesenchymal cell state) of VIM+, vimentin-negative (VIM−), uninfected cell line, and
negative control antibody IgG. (F) Confirmation of cell enrichment for VIM+ and VIM− fractions after sorting. FACS-sorted VIM+ and VIM− populations were
grown in culture for 2 wk and analyzed by FACS after staining with cadherin 2 (also known as N-cadherin) antibodies. (G) The overlap of the top EMT-
associated ERG gRNAs after Illumina MiSeq deep sequencing; the numbers are derived from two statistical methods (DESeq2 and edgeR) at days 14,
21, and 28 after transduction. (H) Heatmap showing the top ERGs based on enriched and depleted gRNAs at days 14, 21, and 28 after transduction com-
paredwith day 0. (I) Volcano plot of ERG gRNAs at day 28 after transduction. (J) Expression analysis by qRT-PCR of EMTmarkers (cadherin 1 [also known as
E-cadherin], vimentin, and cadherin 2) on single targeted A549-VimCas9 clones following EP400 loss of function, relative to expression in the parental A549
Vim Cas9 cell line. (∗) P<0.05, indicates results of one-way ANOVA test. Error bars are SEM of n=2. (K) Representative image of scratch assay performed on
the parental cell line and three generated EP400 KO clones at day 0 and after 24 h (left). On the right, a graph plot showing percentage area closure 24 h
after the scratch as averaged of at least six areas analyzed for each clone and for the parental cell line. Experiments were performed in duplicates.
(L) Transwell migration assay showing increase of migration at 13 h for A549-Vim Cas9 EP400 KO Cl4 compared to the parental cell line. (KO)
Knockout; (Cl) clone; (vim) vimentin. (M ) An example of network analysis of selected top ERGs (EP400) associated with the EMT population, obtained
with the GeneMANIA package. (N,O) The bar plots show the mutation frequency of EMT-specific ERGs (identified in the CRISPR-Cas9 screen) in clinical
samples from nonmetastatic (M0) and metastatic (M1) subsets (based on the annotation of TCGA samples).



expressing Cas9 (Fig. 5B,C), aimed at an orthogonal in vitro assess-
ment of driver potential of ERGs. The screen was conducted in
A549 lung cancer cells, considered a gold standard for studying
the epithelial-to-mesenchymal transition (EMT), a cellular pro-
gram conferring on cancer cells multiple traits associated with
higher-grade malignancy, which may have an underlying epige-
netic mechanism (Tam and Weinberg 2013). In the A549 cells, a
red fluorescent protein (RFP)-tagged reporter is under the control
of the endogenous vimentin promoter, thereby permitting the
real-time monitoring of the transition from epithelial to mesen-
chymal status of the cells (activation of vimentin-RFP expression,
mesenchymalmarker) (Fig. 5D–F). The transduced A549-VimCas9
cells were further grown and collected at days 14, 21, and 28 after
transduction, followed by flow cytometry (FACS) sorting to enrich
for vimentin-positive (VIM+) and vimentin-negative (VIM−) frac-
tions (Fig. 5C,D).

VIM+ cells were further confirmed to express additionalmark-
ers that are associated with the mesenchymal cell state, including
cadherin 2high, cadherin 1low, and EPCAMlow (Fig. 5E,F;
Supplemental Fig. S9). These EMT markers remained stable after
a prolonged culturing of VIM+ cells (Fig. 5F), showing RFP fluores-
cence in A549 cells that provides a quantitative readout of EMT. To
identify potential regulators of EMTamongERGs,we subjected the
cells to deep sequencing followed by enrichment or depletion
analysis of gRNA-targeting ERGs across the three different time
points (days 14, 21, and 28) (Fig. 5G–I; Supplemental Fig. S10A–
C). The top most significant hits identified belonged predomi-
nantly to histonewriters, histone readers, and chromatin remodel-
ers (Supplemental Table S6) and several biological pathways
(Supplemental Fig. S11). Among the topmost significant EMT-spe-
cific hits, one-third belonged to the category of histone methyla-
tion writers, whereas several ERGs (including KMT2A, EP400,
MBD5, and SRCAP) were found to be frequently targeted by genetic
alterations in several cancer types (Fig. 2E).

To validate our findings, we knocked out individually sever-
al of the identified targets in A549 cells by using three to four dis-
tinct gRNAs for each gene and analyzed the changes in
expression of the epithelial marker cadherin 1 and the EMT
markers cadherin 2 and vimentin in the mutant clones (Fig. 5J;
Supplemental Fig. S12). Moreover, because EMT is associated
with an increased tumor invasiveness, we evaluated whether an
increase in the migration capacity was observed in cells upon
loss of the candidate epidrivers of EMT by performing scratch
and transwell migration assays. Indeed, loss of several of the epi-
drivers candidates led to a significant gain in EMT markers and
was accompanied by a gain in the migration capacity of cells
(Fig. 5K,L; Supplemental Fig. S12). This was significant in all
knockout clones of EP400, KAT2B, ARID1B clone 2, and MBD5
clone 10 (Supplemental Fig. S12).

Next, we assessed the potential link of EMT-specific, en-
riched, or depleted ERGs to biological pathways using different
gene set enrichment bioinformatics tools and found that the
NOTCH1, WNT, and TP53 pathways were highly correlated
with EMT-associated ERGs identified in the CRISPR-Cas9
screen (Supplemental Fig. S11A–C). We further applied the
GeneMANIA prediction tool (Warde-Farley et al. 2010) to the
top ERGs identified in our screen and found several directional
dependencies (predominantly through physical interactions
and common pathways) (Fig. 5M; Supplemental Figs. S11D,
S13). EP400, KMT2A, SRCAP, and KAT2B were found to have di-
rect interactions with several genes known to be involved in
EMT, including PYGO1, PYGO2, and TWIST1, and a substantial

number of genes known to form multiprotein complexes, there-
by, connecting previously uncharacterized complexes/pathways
to the EMT process. Finally, the top ERGs identified in our
CRISPR-Cas9 screen (including MBD5 and JMJD8) were sig-
nificantly more frequently mutated in metastatic cancer cases
compared with their nonmetastatic counterparts across 21 differ-
ent cancer types (Fig. 5N,O), further corroborating the findings of
the CRISPR-Cas9 screen that EMT-specific ERGs may be involved
in conferring on cancer cells invasiveness and metastatic
potential.

Identifying epidrivers involved in sustaining proliferation

of cancer cells

To further expand our finding on the involvement of ERGs in hall-
marks of cancer, we next applied the CRISPR library targeting all
426 ERGs on the A549-Vim and an independent cell line
(MCF10A cells, the human mammary epithelial cell line widely
used in vitro model for studying oncogenic transformation) and
analyzed the ERGs involved in sustaining cell proliferative capaci-
ty. To this end, the cells A549-Vim and MCF10A cells expressing
Cas9 were infected with the CRISPR library. Following selection,
the cells were collected at different time points, subjected to
deep sequencing, and analyzed for significantly enriched and de-
pleted gRNAs (Fig. 6A; Supplemental Figs. S14, S15). We revealed
56 gRNAs that are enriched in MCF10A cells over the passages,
15 of whichwere also detected usingDESeq2 (an independent stat-
istical analysis method) (Supplemental Fig. S14B,C). The cell cycle
was found to be among the top pathways enriched on the list of
genes associated with enriched gRNAs (Supplemental Fig. S14D),
consistent with the notion that the loss of function of the ERGs
is linked with an increase in proliferation of MCF10A cells.
KEGG analysis also revealed NOTCH and FOXO signaling path-
ways, twomajor pathways involved in breast cancer development,
and several of the identified putative epidrivers (i.e.,ATRX, PHF11,
NAP1L2, and PRDM5) show high mutation rate, copy number
depletion, and/or decrease in expression in breast cancer
(Supplemental Table S3). Based on the analysis of depleted
gRNAs, we identified ERGs associated with cell cycle and cell sen-
escence (Supplemental Fig. S14F), and these ERGs showed higher
rate of copy number amplification or up-regulation in breast can-
cer (i.e., ARID4B and EZH2). Similarly, when the analysis was per-
formed onA549 cells (e.g., comparisonD0 vs. D14), we revealed 69
ERGs associated with enriched gRNAs (Supplemental Fig. S15),
among which several genes showed high mutation, copy number
alteration, or decrease in expression rates in lung cancer.

Finally, by overlapping the genes associated with enriched
gRNAs or depleted gRNAs in A549 and MCF10A, we identified
ERGs consistently implicated in proliferation in both cell types.
Nine genes (TET1, KDM1A, SMARCE1, IDH2, CBX3, BMI1,
NAP1L1, ARID1B, and HDAC2) were associated with enriched
gRNAs in both cancer types (Fig. 6B). Three genes (TET1,
ARID1B, and BAZ1A) are highlymutated in breast and lung cancer
types (Supplemental Table S3), whereas TET1, IDH2, and ARID1B
were also among the top genes altered in several cancer types
(Supplemental Table S3), further corroborating their putative
role as cancer drivers. A higher number of genes were identified
when depleted gRNAs were overlapped between the two cell lines
(Fig. 6C,D) several of which (i.e., BOP1, RSF1,ACTL6A,ASH2L, and
ATR) showed high copy number amplification or increase in ex-
pression in breast and lung cancer, suggesting that those genes
might play essential roles in cancer proliferation and viability.
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Discussion

In the present study, we performed a pan-cancer analysis of (epi)
genomic and transcriptomic alterations in a comprehensive panel
of ERGs using available cancer genome data sets and a range of

novel and powerful bioinformatics tools, revealing candidate epi-
drivers across cancer types.We cataloged recurrent pan-cancermu-
tations or CNAs in specific ERGs or classes of ERGs. Application of
driver prediction algorithms and orthogonal CRISPR-Cas9 in vitro
screens revealed the ERGs with a potential driver role conferring
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D

Transcriptional misregulation in cancer

P53 signaling pathway
Viral carcinogenesis
Chronic myeloid leukemia
Longevity regulating pathway

Figure 6. CRISPR-Cas9 screen to perform orthogonal assessment of the driver potential of ERGs in cancer cell proliferation. (A) The screening strategy
used to identify regulators of cell proliferation among ERGs in both A549 and MCF10A cell lines/clones. (B,C, left) Venn diagrams showing the genes as-
sociatedwith significantly enriched (B) or depleted (C) gRNAs in the screens performed on A549 andMCF10A cells using edgeR analysis in CRISPRAnalyzeR.
(B,C, right) Heatmaps showing the adjusted P-values of the commonly enriched (B) or depleted (C ) gRNAs in both cell lines. Data are presented as –log10
(adjusted P-value). (D) KEGG pathway analysis performed on genes associated with commonly depleted gRNAs (left) and with commonly depleted and
enriched gRNAs (right) in both cell lines. All pathways in red show P < 0.05.
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on cancer cells the traits associated with the hallmarks of cancer.
This is the largest and most comprehensive analysis thus far of
the cancer-associated disruption of ERGs and the first experimen-
tal effort to identify epidrivers in oncogenic processes through an
ERG-wide screen.

Our finding that the predominant genetic alterations in ERGs
across tumor samples of most cancer types are CNAs, notably am-
plifications, reveals that in addition to recurrent mutations, both
amplifications and deletions in ERGs may play more important
roles than previously anticipated. These results extend the previ-
ous studies on a limited set of cancer types showing thatmutations
in ERGs are recurrent (Gonzalez-Perez et al. 2013; Plass et al. 2013;
Timp and Feinberg 2013; Vogelstein et al. 2013) and that amplified
regions are enriched for genes involved in epigenetic regulation
(Zack et al. 2013). The finding that some cancer types (such as
OV and SARC) show frequent deep CNAs with virtually no SNAs
argues that the roles of epidrivers in those cancer types may be
driven primarily by CNAs, with a relatively minor role of muta-
tions. Our results that different ERG classes showed similar pat-
terns of genetic alterations, with the exception of DNA
methylation writers, which showed a markedly high ratio of am-
plifications to deletions, suggest that amplification of this class
may be the principal mechanism of their genetic deregulation
across cancer types. These different patterns of alterations may re-
flect distinctmechanisms bywhich these CNAs are generated and/
or positive/negative selection during tumor development.

The importance of CNAs highlighted herein further suggests
that any driver prediction model, particularly for ERGs, would
need to account for genetic amplifications and deletions. The in-
clusion of other omics phenotypes, such as RNA expression, is
also important particularly given the high level of RNA expression
aberrations observed in ERGs across many cancer types. Recent ev-
idence questions the conventional interpretation of hotspotmuta-
tions as being evidence of positive selection and driver events
(Hess et al. 2019), further reinforcing the need to integrate multi-
ple omics in driver prediction models. Accordingly, we proposed
the Multi-Omics and Pan-Cancer Driver prediction tools, which
account for the SNAs, CNAs, and RNA expression aberrations
and complement (rather than overlap with) the ConsensusDriver
approach, which seems to be heavily weighted by SNA frequen-
cies, at least for ERG driver prediction based on our results. Where-
as our Multi-Omics Driver score highlighted the epidrivers within
each class of malignancy, our Pan-Cancer Driver score reflects the
recurrence of driver potential across cancer types.

We observed both cancer type–specific and cancer-wide ge-
netic deregulation of ERGs. A subset of ERGs was frequently genet-
ically altered across many malignancies (SNAs in the KMT2A/B/C/
D family members and ARID1A, and deep CNAs in BOP1 and
ATAD2 were each seen in several cancer types), consistent with
the notion that disruption of some ERGs represents a shared driver
mechanism operating across multiple cancer types. Little overlap
was observed between the ERGs showing a high frequency of
SNAs and those with a high frequency of CNAs (except for a few
ERGs) (Figs. 2E–H, 4C). Similarly, in expression analysis, we ob-
served both cancer type–specific and cancer-wide deregulation of
ERGs. Whereas ERG expression correlated highly with CNAs, it
correlated negatively with some SNAs and positively with others,
a finding consistent with recent evidence indicating that interac-
tion between driver mutations and transcription may be context
dependent (Ding et al. 2018). Furthermore, some discrepancy be-
tween mutation and expression alterations in ERGs may be ex-
plained by the impact of nonmutational mechanisms on gene

expression. This is supported by our observation that some cancer
types, such as GBM, have a low burden of SNAs (Fig. 2E) and CNAs
(Fig. 2F) in ERGs, in line with a lowwithin-tumor variation in ERG
expression (Fig. 3A), but a high number of ERGs with deregulated
expression in tumor samples relative to adjacent normal tissue
(Fig. 3E–G) and vice versa (e.g., STAD). Our analysis of DNAmeth-
ylation and RNA-seq levels revealed that tumor-specific differen-
tially methylated CpGs in promoter regions were negatively
correlated with the expression of their corresponding genes, un-
derscoring the notion that epigenetic inactivation could be an ad-
ditional mechanism for aberrant expression of ERGs.

ERGs, including top predicted driver genes, were commonly
enriched in four of ten cancer hallmarks: genome instability and
mutation, evading growth suppressors, sustaining proliferative sig-
naling, and enabling replicative immortality (Fig. 4F). The latter
two hallmarks overlapped, respectively, with cell cycle (accelerator
of proliferation) and cellular senescence (defined as irreversible cell
cycle arrest, hence, a decelerator of proliferation), which were
found to be among the top pathways deregulated in the genes as-
sociated with enriched gRNAs (Supplemental Figs. 14D and 15D).
Although it has been proposed that the hallmarks of cancer are ac-
quired through distinct mechanisms in different cancer types
(Hanahan and Weinberg 2011), our results suggest that many of
these functional capabilities may be acquired through the shared
mechanism involving the disruption of ERGs.

Our orthogonal in vitro CRISPR-Cas9 screen also identified a
set of specific ERGs affecting markers of tumorigenesis such as cell
proliferative potential and EMT. Our results that five epidriver can-
didates (SRCAP, EP400, ARID1B, MBD5, and KMT2A) among the
top 15 ERGs enriched in EMT fraction (Fig. 5H; Supplemental
Tables S6, S9) were found among the most mutated ERGs in clini-
cal samples across cancer types (Fig. 2G) support the driver role of
EMT-specific ERG tumorigenesis. In addition, an analysis of the in-
teraction networks of the top ERG hits associated with EMT
(KAT2B, EP400, SRCAP, ARID1B, and SUV39H1) uncovered several
directional dependencies involving genes known to play a role in
EMT and multiprotein complexes regulating chromatin structure
and function, connecting previously uncharacterized complexes/
pathways to the EMT process.

This study contributes to a greater understanding of the
deregulation of ERGs and their functional impact in cancer. This
insight should prove instrumental in the clinical application of
ERGs, especially considering a growing interest in developing epi-
genetics-based prognostic and therapeutic strategies. Developing
“epigenetic drugs” capable of modulating specific ERGs (epi-
drivers) can circumvent the high toxicity and off-target effects of
broad epigenome reprogrammers (DNMT inhibitors, histone
deacetylase inhibitors) and offer a potent tool for precision medi-
cine (Ahuja et al. 2016; Brien et al. 2016; Jones et al. 2016).
Therefore, the results of our study may provide the basis for trans-
lational approaches aimed at developing epigenetics-based early
detection and personalized cancer treatment and prevention.

Methods

Generating the compendium of epigenetic regulator genes

A compendium of genome-wide ERGs was generated by integrat-
ing the different available gene databases (The Human Gene
Database—GeneCards, https://www.genecards.org/; the NCBI
Eukaryotic Genome Annotation Pipeline https://www.ncbi.nlm
.nih.gov/genome/annotation_euk/process/; Cytoscape version
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3.6.1) and the most relevant publications (Gonzalez-Perez et al.
2013; Plass et al. 2013; Timp and Feinberg 2013; Vogelstein et al.
2013; Yang et al. 2015; Xu et al. 2017). This resulted in a compre-
hensive list of 426 genes, which we categorized into 12 groups
based on their functional features: (1) Histone methylation editor
(HM_e) =histone demethylases (HDMs); (2) histone methylation
writer (HM_w)=histone methyltransferases (HMTs); (3) histone
methylation reader (HM_r); (4) DNA methylation writer
(DM_w); (5) DNA methylation editor (DM_e); (6) DNA methyla-
tion reader (DM_r); (7) histone acetylation editor (HA_e) =histone
deacetylases (HDACs); (8) histone acetylation writer (HA_w)=
histone acetyltransferases (HATs); (9) histone acetylation reader
(HA_r); (10) chromatin remodeling complex (ChRC); (11) heli-
cases; and (12) other chromatin modifiers = the remaining ERGs
included in the study (Fig. 1B). To classify ERGs based on their po-
tential function as a tumor suppressor or an oncogene, we used the
TSGene (https://bioinfo.uth.edu/TSGene/) (Zhao et al. 2013) and
OncoKB (https://oncokb.org/) (Chakravarty et al. 2017) databases,
respectively.

Data resource

We downloaded the data sets using the publicly available TCGA
(provisional) database from cBioPortal (https://www.cbioportal
.org/datasets), which consists of data sets with genetic alterations,
including single-nucleotide alterations (SNAs) and copy number
alterations (CNAs), and gene expression (expression median and
Z-scores) of 426 ERGs. For reproducibility, analyses were repeated
using the TCGA expression and genetic data downloaded on
May 16, 2019, and March 26, 2019, respectively.

We used TCGA abbreviations for 33 cancer types as follows:
(LAML) acute myeloid leukemia; (ACC) adrenocortical carcinoma;
(BLCA) bladder urothelial carcinoma; (LGG) brain lower grade gli-
oma; (BRCA) breast invasive carcinoma; (CESC) cervical squamous
cell carcinoma and endocervical adenocarcinoma; (CHOL) chol-
angiocarcinoma; (COAD) colon adenocarcinoma; (ESCA) esopha-
geal carcinoma; (GBM) glioblastoma multiforme; (HNSC) head
and neck squamous cell carcinoma; (KICH) kidney chromophobe;
(KIRC) kidney renal clear cell carcinoma; (KIRP) kidney renal pap-
illary cell carcinoma; (LIHC) liver hepatocellular carcinoma;
(LUAD) lung adenocarcinoma; (LUSC) lung squamous cell carci-
noma; (DLBC) lymphoid neoplasm diffuse large B cell lymphoma;
(MESO) mesothelioma; (OV) ovarian serous cystadenocarcinoma;
(PAAD) pancreatic adenocarcinoma; (PCPG) pheochromocytoma
and paraganglioma; (PRAD) prostate adenocarcinoma; (READ) rec-
tum adenocarcinoma; (SARC) sarcoma; (SKCM) skin cutaneous
melanoma; (STAD) stomach adenocarcinoma; (TGCT) testicular
germ cell tumors; (THYM) thymoma; (THCA) thyroid carcinoma;
(UCS) uterine carcinosarcoma; (UCEC) uterine corpus endometrial
carcinoma; (UVM) uveal melanoma.

Pan-cancer analysis of genetic alterations in ERGs

The proportions of each of the CNAs and SNAs detected in ERGs
were calculated among tumor samples within each of the 33 can-
cer types. The raw SNA data set contained somatic, nonsynony-
mous mutations, which were transformed into data with
mutation status indicating the number of SNAs for a gene in
each sample. The raw CNA data set was used to characterize
CNAs by genomic position and amplitude as follows: CNA=0 in-
dicates diploid with no alteration; amplification=1 indicates a
shallow gain (a fewadditional copies, often broad); deep amplifica-
tion= 2 indicates a high-level amplification (more copies, often fo-
cal); shallow deletion=−1 indicates a shallow loss, possibly a
heterozygous deletion; deep deletion= −2 indicates a deep loss,

possibly a homozygous deletion (https://www.cbioportal.org/).
For more robust analyses, we regrouped CNAs into three groups:
(1) no alteration, (2) deep amplification (amp), and (3) deep dele-
tion (del). We then pooled together the resulting merged data sets
of SNAs and CNAs matched to the same sample ID. The same cri-
teriawere used for calculating genetic deregulation in all genes and
for ERG functional classes. Circos plotswere generated as described
previously (Krzywinski et al. 2009; Gu et al. 2014).

Multi-omics analysis of genomic and transcriptomic aberrations

in ERGs

To effectively visualizemultidimensional data sets of the deregula-
tion of ERGs across different cancer types, we integrated SNAs,
CNAs, and RNA expression alterations. For each ERG, the propor-
tions of CNAs versus SNAs were calculated among tumor samples
within each of 33 cancer types. The analysis included only
genetically deregulated genes that show SNAs and CNAs (amplifica-
tion=1, 2, and deletion=−1,−2) in at least 1% and 10%of the sam-
ples in any cancer, respectively. ERGs were then classified based on
theirmutationprofiles such that thoseharboringmostly SNAs,with
CNAs not passing the threshold of 10%, were considered as only
mutated; whereas genes with CNAs in at least 10% of the samples
were considered as amplified or deleted. Finally, pooled results of
SNAs and CNAs were integrated with RNA expression data, ex-
pressed as Z-score values for each corresponding ERG in each
cancer type. The percentage of samples with significant Z-scores
(Z>2 or Z<−2) was reported for each ERG in each cancer type.

Differential expression analysis of ERGs in tumor samples

and adjacent normal tissues

We downloaded HTSeq count files from the Genomic Data
CommonsData Portal (https://portal.gdc.cancer.gov) for each can-
cer type and divided adjacent normal samples and tumor samples
based on the ID annotation of TCGA samples. Of the total of 33
cancer types, we focused on 18 cancer types that had available
ID annotation for adjacent normal samples.We usedDESeq2 anal-
ysis to calculate expression changes comparing tumor samples
with adjacent normal tissues. Genes with coverage of fewer than
10 reads were excluded. Only ERGs with absolute values of log
FC>1 and FDR<0.05 were considered to be significantly differen-
tially expressed.

Co-occurrence and mutual exclusivity analysis

Co-occurrence and mutual exclusivity analysis was performed in
each cancer type separately and then meta-analyzed across cancer
types. The data setwas limited to the samples that had information
about both SNAs andCNAs from cBioPortal (nonsynonymousmu-
tations, fusions, deep amplifications, and deep deletions). For each
gene pair and cancer type, we calculated an odds ratio (OR) quan-
tifying how strongly the presence or absence of SNAs and/or CNAs
in the first gene was associated with the presence or absence of the
alterations in the second gene. The P-values were derived from the
ORs using the Fisher’s exact test and were further adjusted for mul-
tiple testing using the Benjamini–Hochberg FDR correction. The
Haldane-Anscombe correction was used to avoid a division-by-
zero error. The significant ORs (FDR<0.05) were averaged across
cancer types for each gene pair. ORs greater or less than 1 indicate
tendencies toward co-occurrence and mutual exclusivity, respec-
tively. Specifically, within each co-occurrent gene pair, the propor-
tion of samples with both genes mutated needed to represent at
least 5%–10% of the samples per cancer type.
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ERG driver prediction models

The characterization of potential driver roles for ERGs was based
on ConsensusDriver, a novel approach that provides a systematic
way to integrate the strengths of various driver prediction algo-
rithms (Bertrand et al. 2018). ConsensusDriver scores for ERGs
overlapping with the ConsensusDriver genes (Bailey et al. 2018)
were shown as a heatmap. The Pan-Cancer Driver score was gener-
ated for each of the 426 ERGs using a ranking method that ac-
counts for SNAs, CNAs, and RNA expression aberrations within
each cancer type and across multiple cancer types (the script pro-
vided on GitHub: https://github.com/IARCbioinfo/EPIDRIVE
R2020 and as Supplemental Code). First, in the SNA and CNA
data, we focused on ERGs that had a SNA or CNA (sharing the
same direction) in at least 5% of samples in any cancer type.
Then, for each gene, we counted the number of cancer types in
which that gene had a SNA or CNA; the number of cancer types
was used as a primary rankingmethod, and the percentage of sam-
ples showing alterations was used as the secondary ranking for
genes having identical primary ranks. The gene with the lowest
rank was given a score of 1, the second rank a score of 2, and so
on. Genes (n=x) with equal ranks “y” (based on both the primary
and secondary methods) were all assigned the same ranking score
“y”; a subsequent gene with rank “y+ 1”was then assigned a rank-
ing score of “y +x.” Two rankings were obtained, one for SNA and,
independently, another for CNA. For expression data, we used
both the Z-score and log10FC data and similarly calculated the
ranking by counting for each gene the number of cancer types in
which that gene had a |Z-score| > 2 or |log10FC| > 2 (and then using
a secondary ranking based on the exact proportion of samples
with |Z-score| > 2 or on the exact values of |log10FC|). Two rankings
were obtained, one for Z-score data and one for log10FC data. The
resulting four rankings were combined into one, such that SNA
and CNA rankings each had a weight of 1, whereas Z-score and
log10FC each had a weight of 0.5 (because both Z-score and log10-
FC reflect expression aberration).

Hallmarks of cancer enrichment of ERGs

To investigatewhether deregulated ERGs are enriched in pathways
affecting the 10 hallmarks of cancer (Hanahan and Weinberg
2011), an analysis was done separately for all ERGs or for genetical-
ly altered ERGs (by SNAs and independently by CNAs). For each
cancer type, we included only genes with CNA>1% or SNA>1%
across samples within a given cancer type. Then, for each cancer
type, we calculated the enrichment of its genetically deregulated
genes in every hallmark using the Fisher’s exact test and further ad-
justed for multiple testing using the Bonferroni correction.

Generation of cell clones stably expressing Cas9

A549 Vim RFP cells (ATCC CCL-185EMT) and MCF10A cells
(ATCC CRL-10317) were cultured according to the recommenda-
tion by ATCC. To generate stably expressing Cas9 cell lines,
A549 Vim RFP and MCF10A cells were transfected with lentiviral
particles containing Cas9 nuclease (GeneCopoeia 217LPP-CP-
LVC9NU-01-100-C) and Lenti-Cas9-2A-Blast plasmid (Addgene
73310), respectively, at a multiplicity of infection (MOI) of
5. Briefly, cells were cultured for 5 h in cell culture media supple-
mented with 8 µg/mL of polybrene. Spinoculation was then ap-
plied at 800g for 90 min at 37°C. At 48 h after transfection, 500
µg/mL G418 (cells transfected with 217LPP-CP-LVC9NU-01-100-
C) or 10 µg/mL blasticidin (cells transfected with Lenti-2A-Cas9-
blast) were used for positive selection of Cas9-transduced cells.
For each cell type, we then generated single clones stably express-
ingCas9 using cloning rings or serial dilutions followed by cultures

of single cell. The expression of Cas9 protein in individual cell
clones was determined by western blot analysis using Anti-
CRISPR-Cas9 antibody (Abcam 7A9-3A3). A549 Vim RFP Cas9
clone R6 and MCF10A Cas9 clones 2 and 11 were used for the
CRISPR-Cas9 library screenings.

Construction of the CRISPR-Cas9 sgRNA library and titration

We generated a CRISPR library comprising 1649 different gRNAs
targeting 426 human ERGs. Each candidate gene was targeted by
1–4 sgRNA (Supplemental Table S7). Lentiviral plasmids contain-
ing sgRNAs were obtained in bacterial glycerol stock from a com-
mercial source (Thermo Fisher Scientific). We pooled and
amplified together 10 µL of glycerol stock of each plasmid gRNA
to obtain a homogeneous representation of the library, followed
byDNA extraction usingMaxi prep (Qiagen). The librarywas pack-
aged in human embryonic kidney HEK293T cells using a third-
generation lentivirus expression system consisting of the mixture
of 20 µg of the transfer vector consisting of the pool of sgRNAs len-
tiviral plasmid constructs (20 μg), 12.5 μg of the packaging plasmid
I pMDLg/pRRE (Addgene 12251), 7.5 μg of the packaging
plasmid II pRSV-Rev (Addgene 12253), and 7.5 μg of envelope plas-
mid VSV-G - pMD2.G (Addgene 12259) in Opti-MEMdiluent. The
library lentiviral particles were produced using the polyethyleni-
mine method (Tebu-Bio). Two collected harvests were pooled to-
gether and concentrated using Lenti Concentrator (OriGene)
according to themanufacturer’s instructions. The resulting lentivi-
rus CRISPR library was aliquoted and stored at −80°C. The virus ti-
ter and optimal transduction efficiency (considered to be 40%) of
the lentivirus library were determined by colony formation assay
in A549 Vim Cas9 cells.

Evaluation of sgRNAs representation in the generated library

To evaluate the relative representation of sgRNAs in the library, we
performed deep sequencing usingMiSeq (Illumina) (Supplemental
Fig. S8). Briefly, we designed primers (forward, CGATACAAGGCT
GTTAGAGAGATA; reverse, GTTGCTATTATGTCTACTATTCTTT
CCC) to obtain a 430-bp amplicon of plasmid DNA containing
the sgRNA sequences. We followed the suggestion of Illumina to
have an amplicon length of >300 bp for the targeting sequencing,
using the Nextera XT DNA Sample Preparation Kit (Illumina) ac-
cording to the manufacturer’s instructions. A single gRNA of the
AKAP1 genewas chosen from the candidate gene list to be evaluat-
ed as a positive control for library distribution. Targeted sequenc-
ing of the pooled library and a single gRNA of the AKAP1 gene
was performed using the MiSeq Reagent Kit v2 (500 cycles,
Illumina) according to the manufacturer’s instructions. The
FastQC generated from MiSeq was analyzed in Galaxy using the
BLASTN tool (2.5.0+ Package: blast 2.5.0). The sgRNAs were
mapped against all sgRNA sequences present in the custom-
made CRISPR library. The representation of genes in the pooled li-
brary was calculated relative to the abundance of gRNA for each
gene (Supplemental Fig. S8).

CRISPR-Cas9 library screening for epidrivers of epithelial-to-

mesenchymal transition

A549 Vim RFP Cas9 cells were transduced with the lentivirus
CRISPR library at a MOI of 0.3. For a negative control, we used
the nontargeting sgRNA LentiArray CRISPR Negative Control
Lentivirus (Thermo Fisher Scientific). The baseline time point
(day 0) was designated as 4 d after puromycin selection (the time
point when untransduced A549 Vim RFP Cas9 cells were dead).
The library was applied in two technical duplicates and in two in-
dependent experiments. During cell passaging, ∼2×106 cells were
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maintained in culture to achieve on average 1000-fold coverage of
all 1649 sgRNAs in the library. We isolated the EMT population at
days 14, 21, and 28 using FACS sorting (S3e, Bio-Rad) for RFP
(Vimentin)-positive cells (Vimentin positive [VIM+]).

Validation of the isolated EMT population

RNA of control A549 Vim RFP Cas9 cells and the sorted VIM+ cells
(from all time points) were extracted using the AllPrep DNA/RNA
Mini Kit (Qiagen). To validate the EMT transition in VIM+ cells,
mRNA expression levels of several EMT markers were analyzed
by quantitative RT-PCR. Cadherin 1/cadherin 2 ratio and expres-
sion levels of SNAI1 (also known as SNAIL) and ZEB2 were deter-
mined and confirmed the EMT state of VIM+ cells (Supplemental
Fig. S16). Fluorescence microscopy was used to verify RFP Vimen-
tin-positive (red) cells (Supplemental Fig. S17) in VIM+ sorted cells
compared to the parental cell lines. For additional validation of the
isolated EMT population, intensity levels of the epithelial marker
EPCAM (Fig. 5E; Supplemental Fig. S9) and the mesenchymal
marker cadherin 2 (Fig. 5F) were determined using flow cytometry
(S3e, Bio-Rad) using EPCAM-APC antibody (Miltenyi Biotec 130-
111-000) and cadherin 2 antibody (R&D systems IC1388P).

CRISPR-Cas9 library screening for epidrivers of cell proliferation

A549VimCas9 Clone R6 andMCF10ACas9 Clone 2 and Clone 11
cells were transduced with the lentiviral CRISPR library of 1649
sgRNAs (MOI 0.3 and 0.1, respectively) and maintained in culture
for several passages. Cells were collected at two different time
points per cell line throughout their culture. The A549 cells were
collected at day 0 (the day following the end of puromycin selec-
tion, early time point) and day 14 (late time point). Because the
proliferation rate ofMCF10A cells is lower than A549, we collected
MCF10A cells at later passages. Two independent clones express-
ing Cas9 were used for MCF10A: Clone 2 and Clone 11 that were
collected at early time points (days 13 and 15, respectively) and lat-
er time points (days 31 and 53, respectively) following transduc-
tion and puromycin selection. To achieve 1000-fold coverage of
all sgRNAs, ∼2×106 cells were kept in culture at each passage,
and 2 ×106 were collected at each time point.

Identification of enriched and depleted sgRNAs and their

associated candidate epidrivers

To identify the enriched and depleted sgRNAs in the CRISPR-Cas9
screens, genomicDNAwas isolated from2×106 cells of each of the
cell populations analyzed (VIM+ cells and transduced parental cell
lines at different time points) using AllPrep DNA/RNA Mini Kit.
DNA was subsequently subjected to PCR to amplify the same re-
gion as that used for the validation of library representation (see
above), containing sgRNA sequences using NEBNext High-
Fidelity 2X PCR Master Mix (Illumina). PCR products were used
for library preparation using the Nextera XT DNA Sample
Preparation Kit or NexteraDNA Flex library Prep (Illumina) accord-
ing to the manufacturer’s instructions and sequenced on an
Illumina MiSeq platform. The FastQC data generated by MiSeq
were first analyzed in Galaxy using the BLASTN tool (2.5.0+
Package: blast 2.5.0). To obtain read counts, we performed map-
ping of sgRNA against all sgRNA sequences present in the cus-
tom-made CRISPR library. To identify the enriched and depleted
sgRNAs in EMT epidriver screening, we performed paired analysis
comparing the sorted VIM+ populations at different time points
(days 14, 21, and 28) with cells collected at day 0. The differential
sgRNA abundance of the read counts was analyzed using
CRISPRAnalyzeR software (DKFZ, Version: 1.50) (Winter et al.
2016). The list of enriched and depleted sgRNAs for each time

point was defined by hit candidate overlapping the list of hit can-
didates identified by DESeq2 (Love et al. 2014) and edgeR
(Robinson et al. 2010; McCarthy et al. 2012) analyses (two inde-
pendent analysis methods) with statistically significant changes
of 0.001 and 0.01, respectively. The EMT candidate genes were
identified as the genes commonly associated with enriched or de-
pleted sgRNAs across different time points (days 14, 21, and 28)
(Fig. 5G). Significantly enriched and depleted sgRNAs in the
screening for epidrivers of cell proliferation were analyzed by
paired analyses comparing sgRNAs detected at late time points
with sgRNAs at early time point for each cell type using edgeR
and/or DESeq2 statistical analyses methods in CRISPRAnalyzeR.
Statistical significance was set at P<0.001 and P<0.01 for
DESeq2 and edgeR, respectively.

Generation of single targeted knockout clones for EMT-identified

epidrivers candidates

A549 Vim RFP Cas9 clone R6 was transfected with a pool of four
sgRNAs targeting the genes of interests: EP400, MBD5, ARID1B,
orKAT2B. Sequences of sgRNAs used are available in Supplemental
Table S7. Transfection was performed using Xfect Transfection Re-
agent (Takara Bio) and 2 µg of pooled sgRNAs according to the
manufacturer’s instructions. Cells were subjected to puromycin
(1 µg/mL) selection 36 h after transfection. After antibiotic selec-
tion, single clones were generated from the heterogeneous popula-
tion of transfected resistant cells by amplification of single cell
sorted by flow cytometry (FACSAria). To validate the alterations
in the generated single clones, we designed PCR primer amplifying
the regions surrounding the Cas9 cutting sites for each of the tar-
geted genes. Targeted regions were amplified from genomic DNA
extracted from the generated single clones, and PCR products
were sequenced (Sanger sequencing) (Supplemental Fig. S18; Sup-
plemental Table S8). Several alignment tools were used to analyse
the sequencing data (CRISPR-ID: http://crispid.gbiomed.kuleuven
.be; DSDecodeM: http://skl.scau.edu.cn/dsdecode; and https://
blast.ncbi.nlm.nih.gov/Blast.cgi).

Quantitative RT-PCR

Total RNA extraction was performed by using AllPrep DNA/RNA
Mini Kit (Qiagen) according to the manufacturer’s protocol using
primers shown in Supplemental Table S8.

Scratch wound healing assay

A549 Vim Cas9 R6 parental cell clone and all generated A549
single targeted knockout clones were analyzed by scratch wound
healing assay using a standard protocol. Briefly, cells were plated
in 12-well plates (2 × 105 cells/well); after reaching 90%–100%con-
fluence (∼24 h after plating), two scratches per well were per-
formed (in the form of a cross) using a 200-μL tip. Experiments
were performed in duplicates. To measure cell migration and
wound healing capacity, four different pictures were taken per
well using a Zeiss TELAVAL 31 microscope and a Nikon D40 cam-
era, both at 0-h (time of scratch) and 24-h time points. Closure of
the wound by cell migration was calculated by comparing the
scratched areas at both time points, using the ImageJ software (ver-
sion 1.52b).

Transwell migration assay

The migratory properties of A549 Vim Cas9 R6 parental cell clone
and all generated A549 single targeted knockout clones were ana-
lyzed by transwellmigration assay. Experimentswere performed in
duplicates for each clone using cell culture polycarbonate 8-µm
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inserts (Millicell) in 24-well plated (corning). Briefly, 1 × 104 cells
in 300 µL of serum free F-12K medium were added to the upper
part of cell inserts. To stimulate themigration, 500 µL of F-12Kme-
dium containing FBS were added to the lower part of the inserts.
Cells were incubated for 13 h at 37°C and 5% CO2. Thirteen hours
is an insufficient time for A549 Vim Cas9 R6 parental cells to mi-
grate. After incubation, the medium was carefully aspirated from
the inside of the insert. The interior of the inserts was then gently
swabbed with cotton-tipped swabs to remove nonmigratory cells.
To stain migratory cells, the insert was transferred to a clean well
containing 400 µL of crystal violet Cell Stain Solution and incubat-
ed for 20 min. After 2× washes with PBS, inserts were air dried and
images taken by Zeiss TELAVAL 31 microscope and Nikon D40
camera.

Assessing disruption of EMT-specific driver candidates in clinical

samples and pathway enrichment

To assess the disruption of EMT-specific driver candidates identi-
fied in the CRISPR-Cas9 screen in clinical samples, we analyzed
the TCGA data using the Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov/). We divided samples into nonme-
tastatic (M0) and metastatic (M1) subsets based on the American
Joint Committee on Cancermetastasis stage code. For more robust
analysis, we further selected samples based on tumor stage using
the American Joint Committee on Cancer neoplasm disease stage
code. Only stage I and IVwere considered to beM0 andM1, respec-
tively.Overall, we collected 873M0 and 371M1 cases across 21 dif-
ferent cancer types available in TCGA (Supplemental Table S9).
Based on these data sets, we calculated themean percentage ofmu-
tations of each of the EMT-specific ERGs in the M1 versus M0
subsets.

We performed the pathway enrichment analyses using bioin-
formatics mapping tools of different databases, including the NCI-
Nature 2016, Panther 2016, KEGG 2016, and Reactome 2016 data-
bases. We used Enrichr (Kuleshov et al. 2016) score of each data-
base to define the pathway enrichment of EMT-specific
epidrivers. The network of EMT-specific ERGs was constructed
with the GeneMANIA package (https://genemania.org/) (Warde-
Farley et al. 2010).

Data access

All raw sequencing data generated in this study have been depos-
ited in the NCBI BioProject database (https://www.ncbi.nlm.nih
.gov/bioproject/) under accession number: PRJNA655831. The
scripts used to generate Driver Scores were provided on GitHub
(https://github.com/IARCbioinfo/EPIDRIVER2020) and as
Supplemental Code.
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