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ABSTRACT

Summary: Tag sequencing using high-throughput sequencing
technologies are now regularly employed to identify specific
sequence features, such as transcription factor binding sites (ChIP-
seq) or regions of open chromatin (DNase-seq). To intuitively
summarize and display individual sequence data as an accurate and
interpretable signal, we developed F-Seq, a software package that
generates a continuous tag sequence density estimation allowing
identification of biologically meaningful sites whose output can be
displayed directly in the UCSC Genome Browser.

Availability: The software is written in the Java language and is
available on all major computing platforms for download at http://
www.genome.duke.edu/labs/furey/software/fseq.

Contact: terry.furey@duke.edu

1 INTRODUCTION

High-throughput sequencing technologies that generate short
sequence reads can be used to identify specific genomic features,
such as transcription factor binding sites (Johnson et al., 2007;
Robertson et al., 2007) and regions of open chromatin (Boyle et al.,
2008) at a genome-wide level. In general, locations of biologically
relevant features are defined by the presence of an enrichment of
mapped sequence reads. To date, there is no standard means to
summarize and visually display these data in an intuitive way. As the
use of high-throughput sequencing becomes more prevalent, there
is a growing need for a method to efficiently identify statistically
significant genomic features based on sequence tags.

Published research using high-throughput sequencing data have
employed histograms to calculate regions of dense sequence reads
and make calls on sites of interest (Johnson et al., 2007; Robertson
et al., 2007). Histograms are a non-parametric density estimator
where the region covered is divided into equal-sized bins whose
height is represented by the count of hits within that bin. These
methods can be problematic as histograms are not smooth and can
be strongly affected by the start/end points of the bins and the width
of the bins (Fig. 1A and B).

To counteract bin boundary effects, one can instead calculate a
kernel density estimate centered at each sequence allowing these
estimates to overlap (Fig. 1D) (Parzen, 1962). Using a smooth kernel
such as a Gaussian generates a smooth signal. This method does not
alleviate the problem of bin width (or in the case of kernel density
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estimation, bandwidth) (Fig. 1C). Determination of an optimal
bandwidth can present a problem, but this can be overcome by using
the argument that minimizes the asymptotic mean integrated squared
error (or other minimization techniques). However, the sparsity
of data and size of whole-genomic sequences does not allow for
estimating bandwidth with this method. Therefore, we suggest the
use of a bandwidth based on the size of the feature being identified.

Although histogram methods have provided usable results, the
dependency of resolution on bin size and the lack of statistical
rigor in the treatment of the data begs for a new approach. We
have developed an algorithm that uses kernel density estimation that
can provide both a discrete and continuous probability landscape
to better display genomic features of interest across the genome.
These kernel density estimation-based probabilities, calculated at
each base, are directly proportional to the probability of seeing a
sequence read at that location.

2 F-SEQ DENSITY ESTIMATION

To generate the kernel density estimation, we consider the problem where
we are given n sample points along a chromosome of length L. Our goal is to
locate regions with high sample density. If we assume the points {x;}_, are
sampled as x; K p(x), then an estimate of this probability density function
(pdf) will provide a significance measure for high density regions. We use
the univariate kernel density estimation (kde) to infer the pdf, written as
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where b is a bandwidth parameter controlling the smoothness of the density
estimates, and K() is a Gaussian kernel function with mean 0 and variance 1.
Instead of explicitly setting b, a user provides a feature length parameter
(default=600) which controls the sharpness of the pdf estimate. Larger
features will naturally lead to smoother density estimates.

Computing the density at each point in the chromosome using all n points
is computationally expensive and exceeds the precision available to common
computing platforms. We therefore compute a default window size w as a
function of the bandwidth parameter b and the Gaussian kernel such that
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We expect that window sizes for typical bandwidth settings will be on the
order of a few thousand, significantly less than the many millions of bases
available.

We also compute a threshold level for evaluating the significance of
density regions using the following background model:

e~ 23 > min(floating point).

(1) Compute an average number of features for window w as n,, =nw/L.
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Fig. 1. Examples of histogram and density estimation properties. Blue dots
represent sample positions being analyzed. (A, B) Locations of the bins used
in histograms can cause data to look unimodal (A) or bimodal (B) depending
on their starting positions (1.5 and 1.75, respectively). (C) Bandwidth affects
the density generated in the same way as changing the size of bins. Over (red,
dashed line) and under (green, dotted line) smoothed data can obscure the
actual signal (black, solid line). (D) Example of how distributions over each
point are combined to create the final distribution. Each of the samples are
represented by Gaussian distributions which are summed to create the final
density estimation.

(2) Calculate the kernel density at a fixed point, x., within the window
given a random and uniform distribution of the n,, features.

(3) Repeat step 2 k times to obtain a distribution of the kernel density
estimates for x.. For large k the kdes become normally distributed.

(4) The threshold is s SDs above the mean of this normal distribution.

Larger values of s reduce the false discovery rate and provide a natural
statistical interpretation to the veracity of these density regions.

F-Seq takes an input a BED format file (http://genome.ucsc.edu/FAQ/FAQ
format#format1) containing aligned sequence tags. Since calculation of
kernel density estimation requires a point measure for each sequence, we use
the estimated center of the DNA fragment being sequenced. In many cases,
such as from ChIP-seq protocols, the aligned sequence represents only the
5" end of a longer fragment and therefore should be extended to the average
fragment size in the experiment. In the case of DNase-Seq protocols where
the 5 end of the sequence represents the point of enrichment, the alignment
should be shortened to 1bp in length. A perl script has been included to
perform this task.

Output files can be created either as a continuous probability wiggle format
(http://genome.ucsc.edu/goldenPath/help/wiggle.html) or as a discrete-
scored regions BED format. The discrete regions are those where the
continuous probability is above the threshold s SDs above the background
mean. These output files are ready for immediate import into the UCSC
Genome Browser (Kent et al., 2002) (http://genome.ucsc.edu).

3 EXAMPLE APPLICATIONS
3.1 DNase I hypersensitive sites (DNase-seq)

To demonstrate that our algorithm can perform at or above
previously demonstrated methods, we applied it to high-throughput
data from DNase I hypersensitive sites (Boyle et al., 2008). This set
consisted of 12619 784 uniquely aligned sequences that should be
over-represented at hypersensitive sites. To compare F-Seq with
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Fig. 2. View of 10 kb region of Chromosome 8 shows an accurate duplication
of windowing technique in STAT1 data (Robertson et al., 2007). Note that
the histogram generated sites from Robertson ez al. only display sites above
a cutoff.

window-based clustering methods, we used a set of 287 DNasel
HS sites and 321 DNasel-resistant sites. This set of data showed
that F-Seq outperformed window clustering with an area under the
receiver operator characteristic (ROC) curve of 0.946 versus 0.914.

3.2 Chromatin immunoprecipitation (ChIP-seq)

As most current applications of this technology are using chromatin
immunoprecipitation samples for sequencing, we also wish to
demonstrate the applicability of our algorithm to these data (Fig. 2).
For our comparison we used 8 679 818 unique sequence reads from
interferon-y stimulated HeLa S3 cells (Robertson et al., 2007).
Spearman correlation of our peaks with the peaks reported in the
article was 0.917 and distance to the list of 28 known motifs
which were identified using the windowing method was slightly
improved (on average 2 bp closer). There is a broad range of peak
sizes resulting from these experiments that may require different
bandwidth settings. If warranted, multiple bandwidth settings may
be used to elucidate both the large and fine structure of the data.
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