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The recent emergence of the Middle East respiratory syndrome

(MERS)-CoV, a close relative of the Severe Acute respiratory

syndrome (SARS)-CoV, both of which caused a lethal respiratory

infection in humans, reinforces the need for further

understanding of coronavirus pathogenesis and the host immune

response. These viruses have evolved diverse strategies to

evade and block host immune responses, facilitating infection

and transmission. Pathogenesis following infection with these

viruses is characterized by a marked delay in the induction of

Type I interferon (IFN I) and, subsequently, by a poor adaptive

immune response. Therapies that expedite IFN I induction as well

as interventions that antagonize immunoevasive virus proteins

are thus promising candidates for immune modulation.
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Introduction
While most CoVs cause the common cold in humans,

infection with two recently emerged CoVs, SARS-CoV

and MERS-CoV, resulted in more severe pulmonary

disease with alarmingly high case fatality rates [1].

SARS-CoV first emerged in Guangdong province of

China in the winter of 2002 [2]. With a high rate of

nosocomial transmission to healthcare professionals com-

bined with a lack of precedence for a CoV outbreak,

SARS-CoV spread across 29 countries infecting more than

8000 humans and resulting in a staggering 774 deaths

(�10%) [3]. MERS-CoV was first reported in Saudi Arabia

a decade later in June 2012 [4��]. Cases were also detected

in other parts of the Middle East including Jordan, Qatar,

Oman and the United Arab Emirates. Virus was spread by

travelers from the Arabian peninsula to Europe, Africa
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and other regions of Asia including, most recently, the

Republic of Korea, infecting a total of 1626 people, with

a case fatality rate of 36.0%, as of January 11,

2015 [5,6��,7��,8]. Both of these outbreaks were notably

characterized by an age-dependent increase in morbidity

and mortality. Thus, during the SARS epidemic no

patients under the age of 24 years died, while mortality

was more than 50% in those over 65 years of age [9].

Similarly, MERS also has a similar age-dependent pat-

tern with elderly patients showing signs of more severe

disease. MERS tends to be most severe in patients with

co-morbidities such as diabetes, chronic pulmonary

disease and renal disease [10]. While no more SARS

cases were reported since 2004, new MERS cases con-

tinue to appear. The respiratory route of transmission of

MERS-CoV combined with the geographical location of

its persistence makes MERS a serious public health

threat that if not curtailed, has the potential to develop

as a major epidemic in the years to come. Although no

MERS cases have been associated with the Hajj and

Umrah pilgrimages, such large gatherings make this a

potentially major problem [1]. In spite of the efforts by

researchers across the globe, no effective drug treat-

ments or vaccines have been formulated to control SARS

or MERS. In this review we summarize the similarities

and differences between SARS and MERS-CoV with an

emphasis on the key features of the host immune re-

sponse and tactics used by the viruses to evade the

immune response.

Virology and transmission
Coronaviruses are enveloped RNA viruses that fall under

the Nidovirus superfamily (Figures 1 and 2). With a

positive-sense single-stranded RNA genome of 31 kb,

coronaviruses contain the largest RNA genome identified

to date [11]. Both SARS and MERS-CoVs are betacor-

onaviruses, belonging to lineages b and c respectively.

They share similar genomic structures with multiple open

reading frames (ORFs). While the genes required for viral

RNA replication are located on the 50-terminal two thirds

of the genome, those that encode the structural proteins

are located on the 30 end [11]. Other genes, which encode

accessory proteins not required for virus replication and

viability, are distributed throughout the structural genes.

MERS-CoV has five different accessory proteins while

SARS-CoV has eight of them (Figure 1) [12��]. Some of

these genes including some of the non-structural proteins

encoded at the 50 end of the genome are involved in

induction and modulation of innate immune responses in

the host (humans).
www.sciencedirect.com
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Genome organization of CoVs. Organization of genes and ORFs in the genome of SARS-CoV (a) and MERS-CoV (b) is illustrated. The 50 2/3 of

the genome is comprised ORF1a and ORF1b, which code for various non-structural proteins, many of which are involved in virus replication [11].

The 30 1/3 of the genome encodes for structural proteins: spike (S), envelope (E), matrix (M) and nucleocapsid (N). Interspersed between these

structural proteins are accessory proteins: SARS-CoV has 8 accessory proteins and MERS-CoV has 5. These include SARS-CoV ORF 6 and

MERS-CoV ORF 4a and ORF 4b, with well-described roles in immune evasion. Not drawn to scale.
The initiation of infection by CoVs begins with entry into

host cells. Being close relatives in the phylogenetic tree, it

may not be surprising that both SARS-CoV and MERS-

CoV utilize large ectopeptidases on the surface of the host
Figure 2
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Structure of CoV virion. Schematic representation of the structure of

the CoV virion is shown, with structural proteins S, M, E and N

marked.
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cell to gain entry; SARS-CoV binds to angiotensin con-

verting enzyme 2 (ACE-2) and MERS-CoV attaches to

dipeptidyl peptidase 4 (DPP4) [13,14]. While it has been

shown that the spike (S) glycoprotein of SARS-CoV

underwent extensive mutation in the region that binds

to ACE2 [15], facilitating species to species transmission,

the glycoprotein of MERS-CoV has not undergone sub-

stantial change in the DPP4-binding region during pas-

sage in humans [16��,17]. The absence of any mutation in

DPP4-binding region suggests that receptor binding is

not the rate-limiting step in virus transmission and hu-

man adaptation. After binding to their respective recep-

tors, proteolytic cleavage of the S protein results in virus-

cell fusion and release of genomic RNA into the cytosol

of the host cell. Following the release of RNA, the virus

undergoes transcription and replication on rearranged

host membranes, including double-membrane vesicles

(DMVs) [18]. Newly synthesized RNA is encapsidated

within the nucleocapsid protein and then buds into

vesicles derived from the endoplasmic reticulum-golgi

intermediate compartment (ERGIC) for further assem-

bly into new virions. These vesicles are eventually

transported to the cell surface to be released outside

the cell.

Seroprevalence studies strongly support the notion that

camels are one, if not the only, reservoir of MERS-CoV

[17,19,20,21,22��,23]. Transmission from camels to

humans is likely, although not all MERS patients have

a history of direct camel exposure [24]. This could mean

that other means of indirect transmission like consump-

tion of camel milk or meat or transfer from an intermedi-

ate host to humans contribute to spread [20].
Current Opinion in Virology 2016, 16:70–76
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Immune response to coronaviruses
All successful viruses have devised strategies to evade

immune recognition by the host. These include mecha-

nisms that are both active and passive. Common strate-

gies are to delay the induction of the IFN response, block

IFN signaling or counter the action of downstream effec-

tor molecules. Coronavirus RNA is not recognized in

several cell types, partly because double stranded

RNA, which is a potent inducer of IFN is shielded from

recognition by intracellular helical sensors, such as RIG-I

and MDA5, by containment in membranous structures,

such as double membrane vesicles (DMVs) during repli-

cation [25,26]. Also viral proteins nsp1, nsp3, nsp16, N

protein, SARS-CoV ORF6 and ORF3b and MERS-CoV

4a and 4b inhibit IFN induction or signaling (Figure 3).

Nsp1 inhibits IFN signaling in SARS-CoV infected cells

by inhibiting phosphorylation of STAT1 as well as by

promoting host gene mRNA degradation [12��]. Nsp1

also inhibits host gene expression by binding to the 40S
Figure 3
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ribosomal subunit and by inactivating the translation

activity of the ribosomes. Nsp3 through its papain-like

protease (PLP) domain inhibits IFN I production by

deubiquitinating IRF3 and prevents its nuclear translo-

cation [27]. PLP physically interacts with TRAF3, TBK1,

IKKe, STING and IRF3, and inhibits phosphorylation

and dimerization of IRF3 inhibiting IFN expression [28].

Nsp16, by effecting 20-O methylation, renders viral RNA

indistinguishable from host cell RNA [29,30]. N protein

inhibits activator protein 1 (AP1) signaling and protein

kinase R (PKR) function as well as nuclear factor-kB

(NFkB) activation [12��]. The ORF6 protein inhibits

IFN signaling by binding to karyopherin-a2, which pre-

vents nuclear translocation of proteins containing classical

nuclear import signals, including STAT1, crucial for IFN

signaling [31]. MERS-CoV accessory protein ORF4a

antagonizes IFN induction through MDA5 by sequestrat-

ing viral dsRNA and preventing it from binding to MDA5

[32,33,34��]. MERS-CoV also encodes accessory protein
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ORF4b, which has been shown to localize to the nucleus

and inhibit IFN I synthesis and NFkB signaling pathways

[27].

Further insights into the immune response against

MERS-CoV are hindered by the absence of a good animal

model that recapitulates the human disease. Mouse

DPP4 does not support MERS-CoV replication but mice

are susceptible if hDPP4 is supplied exogenously using a

replication deficient adeno-virus expressing hDPP4

(Ad5-hDPP4) or if mice are transgenic or ‘knocked-in’

for hDPP4 [35,36�,37]. Use of Ad5-hDPP4 transduction

allows genetically deficient mice to be infected without

additional crossing. MERS-CoV infection of transduced

Ad5-hDPP4 demonstrated the need for IFN I induction

for protection and showed that virus-specific T cells were

required for MERS-CoV clearance. Rabbits, macaques

and marmosets can also be infected with MERS-CoV

although these animals develop few signs of clinical

disease (rabbits, macaques) or are difficult to obtain

(marmosets) [38–41]. Rabbits and macaques may be

useful for study of mild human disease but not for

understanding pathogenesis in severely ill patients.

The anti-virus T cell response is critical for virus clear-

ance. The T cell response is initiated by the uptake of

viral antigen (Ag) by respiratory dendritic cells (rDC) and

rDC migration to draining lymph nodes (DLN), where

they prime naı̈ve virus specific T cells. Following prim-

ing, naı̈ve T cell undergo activation and clonal prolifera-

tion, which then migrate from the DLN to the site of

infection (lungs). At this site, they secrete various anti-

viral chemokines, cytokines and cytotoxic molecules that

can directly or indirectly inhibit viral replication. Severely

ill MERS and SARS patients exhibited severe leukopenia

with marked lymphopenia, impaired activation of T cells

and poor anti-virus antibody responses contributing to

delayed kinetics of virus clearance [9,42]. In addition, an

effective T cell response is required to shut off the initial

cytokine response. Thus, severe SARS was also charac-

terized by prolonged cytokine and interferon expression,

contributing to a ‘cytokine storm’ in these patients.

Studies of virus-specific CD4 and CD8 T cells in patients

recovered from SARS identified several immunogenic

epitopes localized to the spike (S) and nucleocapsid

(N) proteins [43]. However no information is available

yet regarding the T cell epitopes recognized in MERS-

CoV-infected patients.

As in many viral infections, development of neutralizing

antibodies is required to prevent infection after secondary

exposure to the pathogen. The anti-SARS-CoV antibody

response appeared to be transient, with antibodies not

detected 6 years after infection. In contrast, T cell

responses were still detectable [44]. The transient nature

of the antibody response raises concerns that SARS

recovered patients, if reinfected, would not be protected
www.sciencedirect.com 
from severe disease. Of note, none of these studies

examined the mucosal antibody response, which may

be very important for protection.

Mouse and macaque models of SARS infection have

provided a wealth of knowledge regarding the immune

response against CoV in general and SARS-CoV in par-

ticular. Human strains of SARS-CoV infect macaques and

mice but generally do not cause significant clinical disease

[45]. However, upon mouse adaptation, the virus causes

severe disease, characterized by a lethal respiratory in-

fection [46]. In some strains, young (6–10 week) mice are

completely resistant to disease, remaining without signs

of disease even in the absence of Type 1 interferon

signaling, while others are highly sensitive[31]. Aged

mice of all strains are susceptible to disease, mimicking

the age-dependent susceptibility observed in humans.

SARS-CoV-infected mice have been useful for identify-

ing host genes important in pathogenesis. Studies with

mouse adapted SARS-CoV showed that more severe

disease was characterized by inefficient immune activa-

tion, such as reduced expression of MHCII, CD86, ac-

companied by poor CD4 and CD8 T cell responses.

Reversing inefficient activation of innate immune cells

in mice using TLR ligands such as poly I-C or by

depleting inhibitory alveolar macrophages using clodro-

nate liposomes rescued mice from lethal disease [47].

These interventions resulted in enhanced migration of

dendritic cells to draining lymph nodes and consequent

development of a protective T cell response and en-

hanced kinetics of virus clearance. Experiments with

macaques also showed that aged macaques developed a

robust, but dysregulated host innate response against

SARS-CoV compared to young animals and this correlat-

ed with worse outcomes after infection [48].

Another study showed that age-dependent increases in

the levels of a prostaglandin, PGD2, in the lungs of aged

mice inhibited rDC migration to DLN, which in turn

impeded virus-specific T cell responses, rendering aged

mice susceptible to severe SARS-CoV infection [49�].
Blockade of PGD2 signaling through its receptor, DP1,

resulted in enhanced rDC migration to DLN and virus-

specific T cell responses. Given the propensity of MERS-

CoV to cause severe disease in aged individuals, it is

likely that PGD2 has a similar role in the context of

MERS-CoV infections.

Delayed immune activation was also observed in SARS-

CoV-infected human macrophages and dendritic cells,

suggesting that the virus is able to evade the immune

response. Further SARS-CoV only abortively infects DCs

and macrophages [9]. In contrast, MERS-CoV produc-

tively infects human macrophages [50]. Notably, MERS-

CoV additionally infects activated T cells, which may

contribute to disease severity [51]. Similar effects occur in

infected airway epithelial cells, the first target cell for
Current Opinion in Virology 2016, 16:70–76



74 Viral immunology
SARS-CoV and MERS-CoV replication. One study com-

pared infection of human epithelial Calu-3 2B4 cells with

MERS-CoV and SARS-CoV, highlighting and contrasting

the potential antiviral mechanisms mounted by the host

against the two viruses. Infection of these cells induced

activation of several RNA sensors at approximately the

same time post infection. However the IFN response was

slightly delayed in cells infected with SARS-CoV com-

pared to MERS-CoV. Additionally, a notable difference

was the specific down regulation of the antigen presenta-

tion pathway after MERS-CoV infection, which was

upregulated after SARS-CoV infection [52]. Thus, al-

though these two viruses are closely related to one anoth-

er and both elicit delayed immune responses, they induce

a significantly different host transcriptional response,

suggesting that ‘MERS is not SARS’.

Conclusions
The ease with which SARS-CoV and MERS-CoV, as well

as other respiratory coronaviruses such as HCoV-OC43

[53,54,16��] crossed species to infect humans make it all

the more likely that serious CoV outbreaks will continue

to emerge. Fittingly, exactly a decade after SARS, MERS

emerged with an even higher mortality rate. Three years

after the emergence of MERS, the lack of detailed

information about the human disease and of a broadly

useful animal model has hindered progress in understand-

ing MERS-CoV disease and immune responses. The

recent outbreak in South Korea with over 180 cases

emphasizes the importance of instituting proper infection

control measures, especially in hospital settings and in

developing vaccines and drugs to counter the virus.
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