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,is paper presents the recognition for WHO classification of acute lymphoblastic leukaemia (ALL) subtypes. ,e two ALL
subtypes considered are T-lymphoblastic leukaemia (pre-T) and B-lymphoblastic leukaemia (pre-B). ,ey exhibit various
characteristics which make it difficult to distinguish between subtypes from their mature cells, lymphocytes. In a common
approach, handcrafted features must be well designed for this complex domain-specific problem. With deep learning approach,
handcrafted feature engineering can be eliminated because a deep learning method can automate this task through the multilayer
architecture of a convolutional neural network (CNN). In this work, we implement a CNN classifier to explore the feasibility of
deep learning approach to identify lymphocytes and ALL subtypes, and this approach is benchmarked against a dominant
approach of support vector machines (SVMs) applying handcrafted feature engineering. Additionally, two traditional machine
learning classifiers, multilayer perceptron (MLP), and random forest are also applied for the comparison. ,e experiments show
that our CNN classifier delivers better performance to identify normal lymphocytes and pre-B cells. ,is shows a great potential
for image classification with no requirement of multiple preprocessing steps from feature engineering.

1. Introduction

Acute lymphoblastic leukaemia (ALL) is an acute malig-
nancy of white blood cells, causing over production of
immature lymphocytes, known as lymphoblasts, in the bone
marrow. ,e disease progresses rapidly and inhibits the
production of normal cells causing death among children
and young adults. ALL is a heterogeneous disease, meaning
that distinct treatments are required for different groups of
patients according to subtypes of the leukaemia. Individual
ALL subtypes response differently to particular chemo-
therapy. ,erefore, subtype recognition provides essential
prognostic information for a treatment planning.

Considering WHO classification, ALL subtypes can be
subdivided as T-lymphoblastic leukaemia (pre-T), B-lym-
phoblastic leukaemia (pre-B), and mature-B lymphoblastic
leukaemia (mature-B) [1]. ,e identification of the subtypes

requires a multiparametric approach, including morphol-
ogy, immunophenotype, cytogenetic, and molecular find-
ings. Despite having advanced techniques, a morphological
examination of blood smear samples is still a procedure for
initial screening. ,e morphological examination can be
assisted by computer-based systems. ,ere have been
growing interests in developing tools using image analysis
and pattern recognition methods for quantification and
identification of leukocytes [2–5]. ,ey could bring the
efficacy to the analysis in terms of time and accuracy and
assist pathologists in studying different patterns or cells from
microscopic images. Since this system requires only images
not blood samples, it offers low-cost methods and enables
historical data records for future used in remote diagnostic
systems.

,e morphology of lymphocytes and ALL subtypes
exhibits large variation among cells in the same class. At the
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same time, they show many characteristics which resemble
cells belonging to different families. Some examples are
shown in Table 1 which presents five samples of blood
microscopic images of normal lymphocytes acquired from
Labati et al. [6] and pre-T and pre-B lymphoblasts from the
American Society of Hematology (ASH) image bank [7].
Morphologically, lymphocytes present a compact nucleus
with smooth boundary, blue-purple nucleus color, and low
nucleus/cytoplasm (N/C) ratios [6, 8]. Instead, lymphoblasts
exhibit irregularities with rough nucleus boundary, sparse
red-purple nucleus color, and high N/C ratios [6, 8].
Considering ALL subtypes based on WHO classification,
pre-T and pre-B lymphoblasts have the following
characteristics.

Pre-T cells vary considerably from small blasts with very
condensed nuclear chromatin and indistinct nucleoli to
larger blasts with finely dispersed chromatin and prominent
nucleoli [1]. ,e sparse amount of cytoplasm is commonly
presented. Some cytoplasmic granulation is frequently
found, look like grains of dust in most cases and occasionally
exhibits visible large granules [9]. Nuclei range from round
to irregular to convoluted. Some characteristics, such as
cleaved nuclei, cytoplasmic protrusion, or hand-mirror
form, are also presented [7].

Pre-B cells exhibit various characteristics from small-sized
cell with scant cytoplasm, condensed nuclear chromatin, and
inconspicuous nucleoli to medium-sized cell with moderate
amounts of light blue cytoplasm, occasionally, finely dispersed
nuclear chromatin, and relatively prominent nucleoli [1].
Most have a high N/C ratio. Other characteristics, such as
elongated form, hand-mirror form, round or irregular nuclear
contour, are occasionally presented [7].

,e automated cell recognition of these subtypes has to
handle this complex problem. A dominant approach is
hand-crafted feature engineering with classification algo-
rithms such as SVM, kNN, and MLP. For this approach,
features are first extracted using image processing tech-
niques and domain knowledge, and the combination of
useful features is selected as input for the classification al-
gorithms. ,is approach has some disadvantages, conse-
quence of hand-crafted feature engineering. First, the
approach may require domain knowledge expertise in de-
termining useful features. Second, it relies on image pro-
cessing techniques in extracting useful features without
introducing additional bias and error. ,ird, feature ex-
traction operations are difficult to automate and possibly
time-consuming.

Our deep learning approach implements a convolutional
neural network which directly takes in pixel’s values from
images and slowly constructs useful features through the use
of multilayer architecture. ,ese features are then used to
recognize the patterns relevant to the classification problem.
Another consideration is the size of data set. ,e number of
data is limited in many real-world problems, as also shown
in our problem. From this requirement, we utilize appro-
priate data augmentation techniques to increase the number
of input images for training.

Our study aims to apply a deep learning approach for
developing a recognition of lymphocytes and ALL subtypes

including pre-T and pre-B cells from blood microscopic
images. We omit mature-B since it is in rare cases compared
to the other two subtypes. To assess the performance of our
deep learning approach, we compare the prediction accuracy
and sensitivity of our CNN classifier with SVM classifier
employing hand-crafted feature engineering. To ensure a fair
comparison, the SVM classifier is enhanced with feature
selection and GA-based parameters optimization. In addi-
tion, two traditional machine learning classifiers, MLP and
random forest, are also considered to realize where our CNN
approach can be situated among other machine learning
methods.

2. Related Work

,e analysis of hematological images is generally divided into
four major steps consisting of image preprocessing, seg-
mentation, feature extraction and selection, and classification.
A considerable amount of works has been focused on leu-
kocytes segmentation [10–16]. For example, Mohapatra et al.
[14] have proposed the segmentation method using color-
based clustering to obtain nucleus region and cytoplasm area
from stained blood smear images. SVM classifiers are applied
with relevant features and gain satisfactory results.

,e automated classification of different types of white
blood cells has been demonstrated in [17, 18]. In [17],
Osowski and Markiewicz have presented fully automatic
system able to recognize 17 classes of myelogenous leu-
kaemia from images of bone marrow aspirate. Cells are
segmented using watershed algorithm combined with
region-growing and edge detection techniques. 117 de-
scriptive features have been generated and selected using
linear SVM. ,is algorithm has been improved by Osowski
et al. [18]. ,e latter work has presented feature selection
using genetic algorithms for feature selection along with
SVM learning algorithm. ,e algorithm increases accuracy
of the recognition by more than 25%.

Reta et al. [19] have proposed the method to categorize
the two types of leukaemia, ALL and acute myeloid leu-
kaemia (AML).,e segmentation of blood cells is performed
using contextual color and texture information to identify
nucleus and cytoplasm region as well as to separate over-
lapped blood cells. ,e morphological, statistical, texture,
size ratio, and eigen values features are extracted after
segmentation to be used by various machine learning
classifiers available in Weka.

Recently, deep learning techniques become promising
choices for medical image analysis. For example, works in
[20–22], convolutional neural networks have been applied as
a methodology in microscopic analysis. Song et al. [20] have
used deep learning method based on a superpixel and
convolutional neural network to detect the cytoplasm region
in cervical cancer cell segmentation. ,e CNN approach is
compared to different algorithms which are backward
propagation neural network (BPNN), probabilistic neural
networks (PNN), support vector machine (SVM), and
learning vector quantization (LVQ) algorithms. CNN is
superior to other algorithms and produces an accuracy of
94.50% for nucleus region detection. For cytoplasmic and
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nucleus segmentation, CNN outperforms all three state-of-
the-art methods as measured by F-measure, precision, and
recall.

Zhao et al. [21] have proposed an automatic detection of
white blood cells (WBCs) from peripheral blood images and
classification of five types of WBCs: eosinophil, basophil,
neutrophil, monocyte, and lymphocyte. Eosinophil and
basophil from other WBCs are first classified by SVM with a
granularity feature. Other three types are then recognized
using convolutional neural network to extract features, and
random forest uses these features to classify those WBCs.

Litjens et al. [22] have introduced deep learning as a
technique to improve the objectivity and efficiency of his-
topathologic slide analysis. Convolutional neural networks
are trained in two experiments which are prostate cancer
identification in biopsy specimens and breast cancer me-
tastasis detection in sentinel lymph nodes. ,ey show that
this system holds great promise to reduce the workload of
pathologists with increasing objectivity of diagnoses.

3. Materials and Methods

Blood microscopic images are acquired from two different
collections. ,e first collection comprises normal white
blood cells obtained from Labati et al. [6]. We acquire 93
color images, each containing single normal WBC. ,e
second collection is composed of ALL subtypes: pre-T and
pre-B cells from ASH image bank [7]. In the entire blood
smear images, a single pre-T or pre-B cell is manually
cropped from the whole scene. Each image contains a single
cell and is rescaled to equal size of 256× 256 pixels. In the
conventional approaches, we need to define region of in-
terest (ROI) from the background. Manual segmentation is
performed to mask the whole cell region and the nucleus
area. ,en, the masks of nucleus and cytoplasm can be
defined and stored as contour labels of the object.

In this work, a convolutional neural network applied for
an image classification problem is called ConVNet. ,e

ConVNet method directly uses RGB values of the cell images
for the learning procedure which automatically extracts
image features through a multilayer architecture. For the
dominant approach, feature values are extracted from the
object information of the image using image processing
techniques. We conduct these values into the imple-
mentation of SVM with GA-based feature selection and
parameters optimization, namely, SVM-GA. ,ese same
feature values are also employed by the standard approaches
of MLP and random forest. Further details of the proposed
approach and implementation of the classifiers used in this
work are presented in the following sections.

4. Classification of ALL Using ConVNet

4.1. Convolutional Neural Networks. Convolutional neural
networks have shown success in image classification [23–
25]. ,e strength of a CNN lies on its ability to employ a
multilayer architecture to automatically extract high-level
features through a series of convolutional, nonlinear
transformation, downsampling (pooling), and fully con-
nected layers of the network.

To train a CNN for image classification, first the network
architecture must be designed. ,is task is to determine the
types, number, and order of layers in the network. ,e
designed network, given a set of 2D images along with their
corresponding class labels, attempts to find features useful
for distinguishing the classes. A CNN employs a learning
method that consists of two repeated and alternated passes,
naming feedforward and backward pass.

A typical CNN’s feedforward pass performs two major
tasks. ,e first task is feature extraction via the use of
multiple convolutional feature extraction (CFE) layers. For
this task, an image is passed throughmultiple CFE layers in a
serial manner. A CFE layer consists of three sublayers: a
convolutional sublayer, followed by a nonlinear trans-
formation sublayer, and then by a pooling sublayer. Each
CFE layer takes features from the previous layer and

Table 1: Sample images of the considered white blood cells: lymmphocyte, pre-T, and pre-B lymphoblasts.

Lymphocyte

Pre-B

Pre-T
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constructs higher-level features. ,is process often repeats
many times in order to eventually extract high-level features
from the image. ,ese features then become input for the
fully connected layers in the second task of a feedforward
pass, which performs classification of the input image and
obtains some error.

In a backward pass, the error obtained from a feed-
forward pass propagates backward to adjust the weights in
the convolutional sublayers, and therefore, they can better
extract features relevant to the classification problem. ,e
same error is also used to find proper weights for the fully
connected layers.

4.2. Architecture of ConVNet. ,e overall architecture of
ConVNet used in this study is shown in Figure 1. ,e
network consists of seven layers, excluding the input layer.
,e input layer takes in a 256× 256 RGB color image when
each color channel is processed separately.

,e first, second, and third layers of ConVNet are CFE
layers.,e first and second CFE layer each applies 32 of 3× 3
filters to an image in the convolutional sublayer. ,e image’s
border is padded with 0 to maintain the image size of 256.
,e nonlinear transformation sublayer employs the ReLU
activation function. ,e max pooling sublayer applies a 2× 2
filter to the image which results in reducing the image size to
its half. ,e third CFE layer has similar structure to the first
one, except the number of filters is 64. At this point,
ConVNet extracts 64 features, each represented by a 32× 32
array for each color channel.

,e fourth layer is a flatten layer. ,e flatten layer
transforms a multidimensional array into one-dimensional
array by simply concatenating the entries of the multidi-
mensional array together. ,e output of this flatten layer is a
one-dimensional array of size 65536. ,e fifth layer is a fully
connected artificial neural network (ANN) with the ReLU
activation function that maps 65536 input values to 64
output values. ,e sixth layer is a dropout layer. 50 percent
of the input values coming into this layer are dropped to zero
to reduce the problem of overfitting. ,e seventh layer is a
fully connected ANN with the sigmoid activation function
that maps 64 input values to 3 class labels.

4.3. Procedure of ConVNet. ,e overall procedure of image
classification using ConVNet is presented in Figure 2. Since a
large amount of data is essential in achieving high perfor-
mance for CNN, we utilize data augmentation techniques to
increase the number of images in the training set from 121 to
2420 images. ,e operations used for data augmentation are
horizontal flip, shearing within 0.2 radians in the counter-
clockwise direction and zooming between 0.8 and 1.2.

First, we train ConVNet using the data in training set to
find appropriated filters’ weights in the three convolutional
sublayers and the weights that yield minimum error in the
two fully connected layers. Next, we evaluate ConVNet using
the data in the validation set to obtain validation error and
cross-entropy loss. We then train ConVNet again using a
new training set created from data augmentation of the
original 121 training images. We repeat the training of

ConVNet in this same procedure until we complete 50
epochs. Last, we evaluate the performance of ConVNet using
data in the test set.

4.4. Time-Complexity of ConVNet. ,e time-complexity of
ConVNet includes the time costs for the three CFE layers:
the flatten layer, the dropout layer, and the two fully con-
nected layers. For both training and testing, the time costs
for the CFE layers dominate the overall complexity. Fur-
thermore, for each CFE layer, the time cost for a con-
volutional sublayer succeeds the time cost for a nonlinear
transformation and a max pooling sublayers combined.

In general, the total time-complexity of all convolutional
sublayers can be written as follows [26]:

O 
d

l�1
nl−1 · s

2
l · nl · m

2
l

⎛⎝ ⎞⎠, (1)

where l is the index of a convolutional sublayer, d is the
number of convolutional sublayers, nl is the number of filters
in the lth layer, sl is the spatial size (length) of the filter in the
lth layer, and ml is the spatial size of the output feature map
in the lth layer.

For ConVNet, which consists of three convolutional
sublayers, the time-complexity can be estimated by calcu-
lating the total number of convolutional operations per-
formed (per image) in a single feedforward or backward pass
(as shown in Table 2).

In terms of the difference between training and testing
times per image, training takes three times as long as testing
since it requires both feedforward and backward passes
while testing only performs a feedforward pass [26]. ,e
classification step operates in the same manner as testing;
therefore, it includes only the time for one feedforward pass.

5. Feature Extraction for SVM-GA, MLP, and
Random Forest

To facilitate the process of cell recognition, we need nu-
merical feature values imitating the details of characteristics
presenting best correlated within the same class and en-
hancing the differences for cell images belonging to different
classes. ,ese detailed values can be used to detect variations
in shape, cell size, granulation, intensity, color, etc. ,e
segmented nucleus and cytoplasm of each individual cell
image are described by various numerical values repre-
senting features from three main groups: geometrical, tex-
tural, and color features. All features are presented in
Table 3. ,e 46 features are generated for classification and
summarized as follows.

(i) ,e geometrical feature is used to describe the dif-
ferences of the structure, shape, and size of leukocyte
as geometry. ,e geometrical feature extraction is
mainly based on a region-based and a contour-based
approach. In the region-based approach, each cell
image is first converted to a binary image, and then,
the features 1–7 are extracted from cell geometry.
Features 1–5 are adopted from Mohapatra et al. [8].
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Figure 1: Architecture of ConVNet.,e CNN consists of seven layers. Layers 1, 2, and 3 implement feature extraction of cell images. Layer 4
transforms 64 extracted features into one-dimensional array of size 65536. Layer 5 maps 65536 inputs into 64 outputs. Layer 6 drops 50
percent of the 64 inputs at random. Layer 7 performs classification of 3 types of ALL subtypes.
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Figure 2: Image classification using ConVNet.
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Features 6 and 7 are newly presented in this work,
and they can be defined as follows.
Feature 6 is the measurement of symmetry by folding
a nucleus shape with respect to a line of symmetry
referred to the nucleus major axis. ,e numerical
value of shape symmetry can be defined as

shape symmetry �
part1
part2

, (2)

where part1 is the overlapping area between two sep-
arated parts with respect to the line of symmetry and

part2 is the largest area between two separated parts.
,erefore, the nucleus shape is more symmetry when
the value is closer to 1.
Feature 7 is to measure how a cellular presents the
hand-mirror shape. Hand-mirror cell (HMC) lym-
phoid leukaemia is an unusual variant of ALL, in which
the lymphoblasts manifest distinctive hand-mirror
morphologic features. As shown in Figure 3, the
proportion a + c/b + c is used to identify how the cell is
close to a pre-B cell or pre-T cell. ,e distances a and b

are the semimajor axis and the semiminor axis of nu-
cleus, respectively. c is the maximum distance from the
center of the nucleus to the hand-mirror part of the cell.

Table 3: Summary of features extracted using image processing.

No. Feature ROI Type Description

1 N/C ratio Cellular

Geometric

Ratio of number of pixels in nucleus to those in
cytoplasm

2 Form factor Nucleus Ratio of number of pixels in nucleus to its perimeter
3 Roundness Nucleus Measurement of how nucleus shape is close to a circle
4 Eccentricity Nucleus Ratio of major axis to minor axis
5 Compactness Nucleus Degree to which a shape is compact

6 Symmetry Nucleus Ratio between two parts around the nucleus major
axis

7 Hand-mirror Cellular Measurement of how the hand-mirror part of the cell
forms

8 Fractal geometry Nucleus Degree to which the nucleus boundary is irregular by
calculating Hausdorff dimension

9–11 Contour Nucleus
Variance, skewness, and kurtosis of distances
between centroid and contour points along the

nucleus boundary

12 Fractal geometry Cellular Degree to which the cellular boundary is irregular by
calculating Hausdorff dimension

13–15 Contour Cellular
Variance, skewness, and kurtosis of distances
between centroid and contour points along the

cellular boundary
16–18 Haar wavelet Nucleus

Texture

Mean of An, Hn, and Vn

19–21 Haar wavelet Nucleus Variance of An, Hn, and Vn

22–26 Haralick Nucleus Contrast, correlation, homogeneity, energy, and
entropy of Haralick’s texture feature values

27–34 Fourier descriptors Nucleus

Mean, standard deviation, skewness, and kurtosis of
the frequency components obtained from discrete

forward (27–30) and inverse (31–34) Fourier
transforms

35–37 Color in RGB Nucleus

Color

Mean color intensity of red, green, and blue in a
nucleus area

38–40 Color in HSV Nucleus Mean color intensity of hue, saturation, and value in a
nucleus area

41–43 Color in RGB Cytoplasm Mean color intensity of red, green, and blue in a
cytoplasm area

44–46 Color in HSV Cytoplasm Mean color intensity of hue, saturation, and value in a
cytoplasm area

Table 2: ConVNet’s total convolutional operations.

l nl−1 sl nl ml Number of convolutional operations in the lth layer

1 1 3 32 256 1 × 32 × 32 × 2562 � 18, 874, 368
2 32 3 32 128 32 × 32 × 32 × 1282 � 150, 994, 944
3 32 3 64 64 32 × 32 × 64 × 642 � 75, 497, 472
Total convolutional operations 245, 366, 784
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Features 8–15 are based on a contour-based approach
where the nucleus and cellular boundary roughness
are measured using two quantitative methods: fractal
geometry and contour characteristics. ,ese features
are adopted from Mohapatra et al. [8].

(ii) Textural features provide essential properties that
reflect the organization of the cellular surface.
Nuclear chromatin patterns, granulation, and cell
smoothness are essential diagnostic descriptors to
differentiate cells among different types. Each cell
image is first converted to a grayscale image.
,ereafter, the methods based on the Haar wavelet
transformation [27] in features 16–21, Haralick’s
texture [28] in features 22–26, and Fourier de-
scriptors [29] in features 27–34 are applied to detect
the textural transformations. ,e Fourier de-
scriptors are obtained from the two-dimensional
discrete forward and inverse Fourier transforms in
features 27–30 and 31–34, respectively.

(iii) ,e color appearance is an important characteristic
that is used to examine the abnormality of lym-
phocytes since normal and malignant cells have
different staining capacity and granulation. Exces-
sive staining capacity of nuclei normally appears in
chromatin abnormality, and variation in color in-
tensity usually presents due to the existence of
granules. ,e color variation can be measured as
mean color intensity in RGB and HSV color space.
,ese features are calculated from nucleus region
(35–40) and cytoplasm (41–46).

6. Classification of ALL Using SVM with GA-
Based Parameters Optimization

6.1. Support Vector Machines for Classification. Support
vector machines (SVMs) are based on the concept of de-
cision planes that define decision boundaries and perform
classification tasks by constructing hyperplanes in a mul-
tidimensional space [30]. To construct an optimal

hyperplane, SVM employs an iterative training algorithm
which is used to minimize an error function described in the
following equation:

1
2

w
T
w + C 

N

i�1
εi, (3)

subject to the constraints yi(wTφ(xi) + b)≥ 1− εi and
εi ≥ 0, i � 1, 2, . . . , N, where C is the penalty parameter, w is
the vector of coefficients, b is a constant, and εi represents the
parameter for handling input data i. ,e index i labels the N

training cases, yi ∈ −1, 1{ } represents the class label, and xi

represents the independent variable. ,e kernel φ is used to
transform data from the input space to the feature space.

One important choice when using SVMs is the selection
of an appropriate kernel function that is needed for effi-
ciently handling nonlinearly separable data sets. ,e radial
basis function (RBF) kernel is often chosen for this purpose
[31, 32], but it has a drawback that all input features are
considered equally important when computing similarities
between two feature vectors. ,erefore, to make optimal use
of SVMs with RBF kernels, preprocessing of the input
features is important when one wants to achieve the highest
possible accuracy. ,e RBF kernel on two samples xi and xj

is defined in the following equation:

K xi, xj  ≈ φ xi( 
Tφ xj  � exp −c x− x′

����
����
2

 , (4)

where c is the gamma parameter.
,e behavior of the model depends on both parameters

C and c. ,e parameter C actually determines how much
penalty should be given for misclassification. ,e parameter
c can be seen as the inverse of the radius of influence of
samples selected by the model as support vectors. As the c

increases, the support vector has less wide-spread influence
which makes the algorithm try harder to avoid mis-
classifying training data and leads to overfitting.

6.2. GA-Based Feature Selection and Parameters
Optimization. From the aforementioned considerations of
feature selection and parameter tuning, we adopt the GA
approach fromHuang andWang [33] for these optimization
tasks. For the chromosome encoding in this work, a string of
binary values is used to define three parts: C, c, and the
feature mask f. In Figure 4, g1, g2, and g3 define bit strings
of C, c, and f, respectively. ,e lengths of each part are
nC, nc, and nf, which have the number of bits depending on
the size of parameters used by the kernel function and the
number of features from data set. C and c parts in the bit
strings in Figure 4 must be decoded from binary to decimal
by the following equation[33]:

P � Pmin +
Pmax −Pmin

2l − 1
× d, (5)

where Pmax and Pmin are the maximum and the minimum
values of the parameter, d is decimal value of bit string, and l

is the length of bit string.
,eGA operators used in our approach are reproduction

or selection by roulette wheel mechanism, single-point

Figure 3: Identification of hand-mirror morphology measured by
the proportion a + c/b + c.
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crossover, andmutation using bit alteration. Two parents are
first selected by selection operator for reproduction. Based
on a random probability of crossover pc, if crossover occurs,
a position x of the string with size l is randomly chosen, and
alleles at position x to l are exchanged from one parent to the
other. If no crossover occurs, the parents are directly copied
to the new population. Different from Huang and Wang
[33], we consider the string of the parameters (C and c) part
and the feature mask part differently since they have dif-
ferent meanings. ,e first part will be converted to decimal
value, and the second part of the feature mask will be used
directly. ,erefore, the crossover operator performs for each
part separately.

Apart from the crossover operator, the mutation oper-
ator is used to perturb bit value with a low probability to
maintain genetic diversity. Each bit of an individual can be
reversed from 0 to 1 or 1 to 0 with probability pm. ,is
applies for all individuals which are placed in the new
population.

,e overall procedure of the SVM classifiers with GA-
based feature selection and parameters optimization is
presented in Figure 5. In the SVM learning, GA operations
are used to adjust proper parameters. After the trained SVM
classifier is obtained in each round, the validation data with
selected feature subset and parameters are tested by the SVM
classifier. Each chromosome is evaluated according to the
average classification accuracy obtained from the validation
data. ,e optimized parameters (C and c) and the feature
subset are finally obtained for the final SVM classifier which
is evaluated using data in the test set.

7. Experiments

,e original data set contains 363 images. ,ere are two
types of the data set, one is the cell images for ConVNet and
the other is the feature values extracted from the corre-
sponding cell images for SVM-GA,MLP, and random forest.
Both types of data are divided into training, validation, and
testing data. Each set contains 31 normal cell images, 45 pre-
T cell images, and 45 pre-B cell images. Samples from the
data set are randomly selected with ten different seeds to
generate ten different combinations for both types of data.

Training and validation data are used for building the
models and testing data are for evaluating the classifiers’
performance.

,e quality of models is evaluated by accuracy and
sensitivity. With n number of classes, there is a confusion
matrix consisting of the elements Cij. ,e diagonal entries
Cii represent the numbers of correctly recognized classes.
Typically, the accuracy A can be defined in the following
equation:

A �


n
i�1Cii


n
i�1

n
i�1Cij

. (6)

Sensitivity Si for class i measures the ratio of the number
of patterns that are correctly recognized in class i to the total
number of patterns in class i, defined in the following
equation [34]:

Si �
Cii


n
j�1Cij

. (7)

Parameter settings for all four approaches are summa-
rized in Table 4.

8. Results and Discussion

In the SVM-GA approach, the first task is to obtain an SVM
classifier for a binary classification of normal lymphocytes
and lymphoblast cells. ,e second SVM model is produced
to distinguish pre-T and pre-B cells. ,erefore, the SVM
models with the selected feature subsets and the optimized
parameters are used to classify three classes of cells:
normal lymphocytes, pre-T, and pre-B cells. If the testing
data are identified as normal, then the result is obtained.
Otherwise, the testing data are further identified if it is pre-T
or pre-B cells.

To evaluate the performance of our deep learning ap-
proach, we compare ConVNet with the dominant approach
of SVM-GA and two traditional machine learning methods,
namely, MLP and random forest. Table 5 depicts the ac-
curacy results obtained from these approaches taking ten test
sets and shows the average with standard deviation over the
ten performance estimates. Considering the average accu-
racy, the two traditional approaches cannot achieve the
accuracy above 80% while ConVNet and SVM-GA yield the
average accuracy above 80% and produce comparable results
with the difference on a very small margin. From the ten set
runs, most of the results obtained by both ConVNet and
SVM-GA are above 80% and have the number approxi-
mately ranging from 78–86%.

To explore the sensitivity according to each class, Table 6
depicts the comparative results of the sensitivity according to
each class over ten test sets between ConVNet and SVM-GA,
and Table 7 displays the comparative sensitivity results
between MLP and random forest. Starting from the iden-
tification of normal lymphocytes, ConVNet, MLP, and
random forest provide comparable high average sensitivity
of almost 100%. ,ese three methods clearly outperform
SVM-GA which can only achieve less than 95% sensitivity in
identifying normal lymphocytes.

g1

An example of chromosome transformation

g11 g1nc g21 g31g2nγ g3nf

C

C

… … …

γ

γ

f

f

g2 g3

1101…1011

dγ = 44590 1: inclusive
0: exclusivePγ = 0.340

dc = 55195
Pc = 0.421

1010…1110 0111…0111

Figure 4: ,e locus of chromosome consists of three parts: C, c,
and the features mask f.
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Comparing two subtypes, ConVnet, MLP, and random
forest produce similar results in identifying pre-Tcells with
68–70% sensitivity; however, SVM-GA is able to obtain
higher sensitivity of 75%. For the classification of pre-
B cells, ConVNet and SVM-GA deliver the sensitivity
above 80% which is higher than those from MLP and
random forest.

Considering the variances in the sensitivity measure-
ments for all approaches, ConVNet produces lower standard
deviations for lymphocyte and pre-B classifications. MLP
and random forest generate high variances over ten test runs
for pre-T and pre-B identifications whereas SVM-GA pro-
duces the highest variances among all four approaches for all
three types of cell image classification. ,is behavior may be
the indication of overfitting.

,e final results are drawn from the confusion matrix
from the two best classifiers, ConVNet and SVM-GA, to

reveal how the classifiers identify the testing data. ,e
matrixes are chosen from the worst and best results of the
accuracy depicted in Tables 8 and 9, respectively. ,e results
show the relative misclassification between pre-T and pre-
B cells. ,is is due to the high similarity of these two classes.

9. Conclusions

In this work, we present a deep learning approach to rec-
ognize normal lymphocytes and ALL subtypes defined by
WHO classification. We implement a CNN, namely, Con-
VNet, which directly takes raw images and automatically
discovers useful features through a series of multilayer ar-
chitecture. ,e performance of our deep learning model is
evaluated against a dominant approach of SVM classifier,
namely, SVM-GA, and two traditional machine learning
approaches including MLP and random forest.

Feature extraction

Feature matrixes

Feature bits Select feature subset

Training set with
selected feature subset

Validation set with
selected feature subset

SVM training

Parameter bits

GA operation

011...101

111...101

110...100

010...110

010...111 100...111

...

Population

SVM classifier

Fitness evaluation

Yes
Terminate?NoGenetic operators

Convert bit string of
C and γ to decimal values

Optimized c, γ,
and feature subset

C, γ

SVM classifier

Model evaluation

Accuracy

Training set
(121)

Validation set
(121)

Test set
(121)

Cell images

Figure 5: Feature selection and parameters optimization using the GA-based technique from [33].
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In terms of prediction accuracy, the deep learning ap-
proach of ConVNet and the dominant approach of SVM-
GA are able to clearly outperform the two traditional

approaches of MLP and random forest. In fact, the average
accuracy of ConVNet and SVM-GA is comparable. How-
ever, when the sensitivity which measures the accuracy

Table 4: Summary of parameter settings for the ConVNet, SVM-GA, MLP, and random forest.

Methods Parameters Setting

ConVNet

Filter size (convolutional layer) 3× 3
Filter size (max pooling layer) 2× 2

Batch size 121
Epoch 50

Learning rate 0.001

SVM-GA

Population size 100
Number of generations 100
Probability of crossover 0.80
Probability of mutation 0.06

Rate of elitism 0.05
nC, nc 20

nf 42

MLP

Number of hidden layers 1
Number of neurons in hidden layer 69

Activation function Logistic
Batch size 121
Epoch 10000

Learning rate 0.001
Momentum 0.7

Random forest Number of classifiers 100
Maximum depth 2

Table 5: Accuracy of ConVNet, SVM-GA, MLP, and random forest to identify lymphocytes, pre-T, and pre-B cells over ten test sets.

Test set ConVNet SVM-GA MLP Random forest
1 82.64 81.82 74.38 78.51
2 80.17 80.99 75.21 72.73
3 85.12 80.17 75.21 79.34
4 80.17 80.17 76.86 80.99
5 78.51 79.34 76.03 78.51
6 78.51 81.82 73.55 76.86
7 83.47 80.99 78.51 79.34
8 85.95 81.82 81.82 80.99
9 83.47 86.78 76.03 79.34
10 79.34 82.64 73.55 77.69
Average 81.74± 2.74 81.65± 2.05 76.12± 2.51 78.43± 2.38

Table 6: Sensitivity of ConVNet and SVM-GA to identify ALL subtypes over ten test sets.

Test set
ConVNet SVM-GA

Lymphocyte Pre-T Pre-B Lymphocyte Pre-T Pre-B
1 100.00 71.11 82.22 100.00 77.78 73.33
2 100.00 66.67 80.00 93.55 80.00 73.33
3 100.00 75.56 84.44 93.55 66.67 84.44
4 100.00 64.44 82.22 100.00 77.78 73.33
5 100.00 62.22 80.00 90.32 60.00 91.11
6 100.00 57.78 84.44 83.87 80.00 82.22
7 100.00 80.00 75.56 96.77 75.56 75.56
8 100.00 82.22 80.00 90.32 77.78 80.00
9 96.77 71.43 80.00 96.77 84.44 82.22
10 100.00 57.78 86.67 100.00 68.89 84.44
Average 99.68± 1.02 68.92± 8.65 81.56± 3.15 94.52± 5.28 74.89± 7.41 80.00± 6.02
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according to a particular class has been explored, we observe
a clearer picture of the two classifiers’ performance. Con-
VNet performs better in detecting normal lymphocytes and
slightly better in detecting pre-B cells. Regarding the clas-
sification of pre-T cells, neither classifiers can deliver good
results above 80% accuracy. Although SVM-GA demon-
strates its ability to detect pre-Tcells better than ConVNet, it
may have suffered from overfitting, as suggested by its
consistently high variances.

For the problem of recognizing lymphoblast cells, a deep
learning approach of CNN is superior to MLP and random
forest in all three classes, and it is able to outperform the
dominant approach of SVM classifier employing GA-based
parameters optimization for two out of the three classes.
Taking into consideration that a CNN method requires no
hand-crafted feature engineering, which is an error-prone

and possibly time-consuming preprocessing step, this deep
learning approach demonstrates a great potential for lym-
phoblast cell image classification.

Data Availability

,e microscopic images are acquired from two different
collections [6, 7].,e images have been rescaled to equal size
of 256× 256 pixels, and each contains a single cell.,e image
data used in this work are available at http://mcs.sat.psu.ac.
th/dataset/dataset.zip.

Additional Points

Hardware and Software. ,e computer used for our ex-
periments is a Mac Pro configured with 3.7GHz, Quad-Core
Intel Xeon E5, 12GB DDR3 and GPU AMD FirePro D300
2048MB, running Mac OS X 10.11.6. ,e implementation is
with python 2.7.12, Keras 1.2.2, and scikit-learn 0.19.2.
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