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Abstract

Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our
understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale,
neurocomputational models have already started to uncover how the human connectome constrains the coordination of
brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a
new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record
simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that
behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of
such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain
synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting
brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human
connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate
dynamical couplings with others.
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Introduction

What causes the propensity of human brains to generate

dynamical couplings is still currently an intriguing question. One

candidate explanation could be related to connectivity properties

of the brain. In an attempt to explore this hypothesis, the aim of

the present study was to compare simulated interacting brains to

real brains of interacting partners. The modern scientific panoply

gathering together connectomics with hyperscanning techniques

makes now such an attempt available. The question of an intrinsic

relationship between structure and dynamics however is not new.

In complex systems research, the complementariness between

structure and dynamics has been a long lasting topic. Indeed,

while structure shapes the dynamics by providing constraints,

dynamics modifies the structure itself by adding plasticity. In

cognitive sciences, the coordination dynamics of brain and

behavior has been an early feature of experimental and theoretical

work [1,2]. Recently, the structure,function coupling has

attracted the attention of neuroscientists, insofar as both structure

and dynamics contribute to the evolution of the nervous system via

their mutual coordination [3,4]. Complex network theory [5,6]

combined with the increasing amount of data gathered by

structural and functional neuroimaging techniques [7,8] is well

represented by the field of connectomics [9,10] which has been

devoted to reconstruct the whole nervous system network with

histological and more recently neuroimaging techniques such as

Diffusion Tensor Imaging (DTI). Various studies in this nascent

domain have revealed complex network topology in the physical

scaffolding of the brain [11,12].

Thus on one hand, neuroimaging techniques can give access to

brain networks as well as to brain dynamics, and on another hand,

neurocomputational approaches provide tools that allow combin-

ing the two data sources and investigating their complementari-

ness. As an example, the ‘‘Virtual Brain’’ approach [13,14], offers

a test bed for theoretical models inherited from experimental

observation. Recent works have illustrated the predictive power of

such approach by simulating the anti-correlated BOLD functional

network [15] and the multistable attractor landscape [16] observed

during resting state.

Despite the growing interest for whole-brain simulation, these

techniques have only been applied so far to the comparison with

isolated brains. To-date however, comparisons can be lead

between simulated interacting brains and real brains recorded

during an ongoing interaction. Hyperscanning techniques allow

such dual recordings [17,18]. Pioneer works in fMRI have

demonstrated that inter-brain relationships appear between brain

activity of subjects immersed in the same perceptual context [19]

or engaged in an economical game [20]. Later explorations have

extended these observations to social communication [21,22].

Hyperscanning-EEG have opened the explorations to the

millisecond time-scale [23,24]. This is particularly worthy since

neural synchronizations have been proposed as a plausible

mechanism for a large-scale integration of cognitive information

in the brain [25,26]. Recently, our team has demonstrated with
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EEG-hyperscanning that neural synchronizations can also be

observed between the brains of two persons engaged in a

reciprocal social interaction [27]. Our objective in the present

paper was to investigate the effect of the individual anatomical

connectivity on the inter-individual functional connectivity. The

main issue was to quantify to what extent inter-individual

synchronizations are related to the anatomical and functional

similarity of the two brains in interaction. Within this framework,

we designed whole brain numerical simulations combining a

connectome dataset [28,29] with a revisited version of the

Kuramoto model of weakly coupled oscillators. The model was

first validated at the intra-individual level via a forward modeling

and a statistical comparison with real resting state data. Then, we

created simulated inter-individual interactions between pairs of

virtual brains. The simulation used an artificial sensorimotor

coupling by linking the motor regions of each brain with the visual

regions of the other [30]. This simulation allows quantify the

influence of brain anatomy on the dynamical similarity of the two

brains and evaluate its potential role in the emergence of inter-

subject sensorimotor couplings.

Materials and Methods

Experimental Data
The experimental data used in this paper are taken from our

former study about inter-brain synchronizations [27] where 18

participants paired as 9 dyads were recorded simultaneously with

dual-video and dual-EEG setups while they were engaged in

spontaneous imitation of hand movements.

Apparatus and setting. The experiment was conducted in

two separate laboratory rooms. The design and equipment were

similar to the double-video system designed by Nadel and

colleagues for their developmental studies of sensitivity to social

contingency in infants [31], except that a dual EEG recording

system was added to the setup (Fig. 1A).

Protocol. The protocol was composed of different conditions.

Here, we used the control condition where subjects were asked to

rest without seeing each other, and the spontaneous imitation

condition where subjects were able to see each-other’s hands and

moved their hands freely. In this second condition, the instruction

was to continuously move the hands and imitate the other at will.

All the movements were bi-manual and intransitive (meaningless

gestures). Each session would begin with a 15 seconds long resting

state recording followed by 15 seconds where subjects started to

move their hands without seeing each-others, and then a

spontaneous imitative interaction of 90 seconds. Behavior during

spontaneous imitation was controlled by a frame-by-frame video

analysis. The subjects had to move continuously their hands and

adopted a balanced repartition of the roles (model or imitator)

during their interaction. It assessed that subjects moved contin-

uously their hands and adopt a balanced repartition of the roles

(model or imitator) during their interaction (See [27] for details).

Recordings. The simultaneous neural activities of the two

subjects were recorded with a dual-EEG recording system. This

system was composed of two Acticap helmets with 32 active

electrodes each. The ground electrode was placed on the right

shoulder of the subjects and the reference was fixed on the nasion.

The impedances were maintained below 10 kV. Data acquisition

was performed using a 64-channels Brainamp MR amplifier from

the Brain Products Company (Germany). Signals were analog

filtered between 0.16 Hz and 250 Hz, amplified and digitalized at

500 Hz with a 16-bit vertical resolution in the range of +/

23.2 mV. Spatial positions of the electrodes were recorded with a

Polhemus system for all subjects.

Pre-processing. Four electrodes were excluded from the

analysis because of too low signal to noise ratio. The correction

of eye blink artifacts in the remaining EEG data was performed

using a classical Principal Component Analysis (PCA) filtering

algorithm [32]. We used 800 ms windows with 400 ms of

overlap. EEG signals were then controlled visually in order to

discard periods with remaining artifacts. These were excluded

from the analysis and, in order to avoid border artifacts induced

by their suppression, we smoothed the joints by a convolution

with a half-Hanning window. This operation may impact low-

frequency part of the signal but the spectral characteristics of

the contamination have no overlap with the frequency bands

investigated here.

Figure 1. Experimental and simulation setups. (A) Apparatus and
experimental setting of the double video system and dual-EEG
recording [27]. (B) Right and Top views of the pair of virtual brains.
Each weighted network represents the 90 brain regions and their
average anatomical connectivity. Arrows indicate the directed coupling
from the motor to visual.
doi:10.1371/journal.pone.0036414.g001
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Computational Model
Structural connectivity. In order to represent the two brains

of the virtual partners we used two connectomes (Fig. 1B). We took

the connectivity matrix obtained as described in [28,29]. The

elements of this matrix describe the probabilities of connection

between the 90 regions of the Tzourio-Mazoyer (TZ) brain atlas

[33]. This matrix of anatomical connectivity (Fig. S1D) was

generated by averaging Diffusion Magnetic Resonance Imaging

(DW-MRI) data over 20 participants. As these probabilities are

related to the density of fibers, they represent an approximation of

the connection strength between each pair of brain regions.

Each matrix (See Fig. S1D) was embedded as a spatial weighted

and non-oriented graph were the positions in the Montreal

Neurological Institute (MNI) coordinates of each region were

taken as the barycentre of all the voxels of the region in the

Automated Anatomical Labeling (AAL) atlas [33] (See Fig. S1 A,

B & C).

Shuffled intra-individual versions of the connectome were

created by permuting the connectivity matrix while keeping it

symmetric and with zeros over the diagonal.

Dynamical modeling. The dynamical model is adapted

from the multiple oscillators model of Kuramoto [34] which is the

most common model in the study of synchronization phenomenon

in physics [35]. Furthermore, this model is thought to be a

plausible approximation of neurobiological oscillating processes

[36–38], specifically when the couplings between oscillators are

extracted from real anatomical connectivity data [15,39]. Here

each brain region was represented as an oscillator in the gamma

frequency band since this rhythm has been associated with the

local processing of information at small scale [40,41] and with the

integration of neural information at large scale [25,42].

The model equations read as:

Lwi(t)

Lt
~vizCintra

X

j=i

Wi,j sin (wi(t){wj(t{tij))zn(t) ð1Þ

where wi(t) stands for the phase of the ith oscillator at the time t, vi

is the natural frequency of the ith oscillator taken randomly from a

normal distribution centered on 40 Hz and with a standard

deviation of 8 Hz; Cintra is a control parameter related to the

scaling of the global anatomical connectivity (Cintra[ 0,1½ �); ti,j is

the propagation delay between the ith region and the jth region

based on Euclidean distance between the two nodes multiplied by

a standard axonal velocity of 1.65 m.s21 [43]; n(t) is a dynamical

random perturbation such that Sn(t)T~0 and

Sn(t)n(t0)T~2Dd(t{t0) with d the Dirac function. In the present

work D is considered equal to 0.1; and Wi,j is the coupling

parameter between the ith and jth regions based on the connectivity

dataset. The simulations were run over 5000 samples using the

Euler technique at a sampling frequency of 500 Hz, i.e. dt = 0.02.

They were initialized with random phases. The 1000 first

transitory samples were discarded from the analysis.

Modeling sensorimotor coupling. In order to model the

two virtual partners, we created a 180-squared matrix W with two

blocks of 90 Regions Of Interest (ROI) for each virtual brain (See

Fig. S1D). Thus, region 91 corresponds to region 1 of brain 2. W

also integrates inter-individual coupling elements between the

motor regions of each partner and the visual regions of the other,

and vice-versa, thus simulating the sensorimotor coupling at play

during a behavioral interaction [30]. The selected motor regions

were left and right paracentral lobules (TZ nu: 69, 70), left and

right post-central areas (TZ nu: 57, 58), left and right parietal areas

(TZ nu: 59, 60, 61, 62) and left and right precuneus (TZ nu: 67,

68). The selected visual regions were left and right calcarine areas

(TZ nu: 43, 44), left and right cuneus (TZ nu: 45, 46) and left and

right occipital areas (TZ nu: 49, 50, 51, 52, 53, 54).

The W matrix was modified as follows:

Vi[ 57,58,59,60,61,62,69,70f g,

Vj[ 43,44,45,46,49,50,51,52,53,54f g,

Wi,jz90~Wiz90,j~
SCT
100

Cinter

ð2Þ

where SCT is equal to the average coupling parameter of the

connectivity dataset.

Cinter is thus similar to the previous mentioned scaling

parameter Cintra but is related to the intensity of informational

influence existing in reality between the agent’s action and the

partner’s action perception (Cinter[ 0,1½ �). Here we assumed that

the main part of the sensorimotor stream of information is

conveyed through the agent motor areas to the observer’s visual

areas. The delay for this inter-individual coupling was taken as null

since the causal influence of the behavioral interaction is mediated

by photons through the dual-video system. Brain-muscles and

retina-brain delays were not taken into account in the present

study. Additionally, we did not simulate other mechanisms

potentially at play in the sensorimotor coupling such as those

linked to the proprioceptive representation of own movement by

each partner.

To assess the role of anatomical individual connectivity on inter-

subject interactions, we added two types of simulations using

shuffled versions of the connectome: one where paired brains

shared the same shuffled connectome, and the other where each

brain had a different shuffled version. This aimed at quantifying

the effect of the anatomical structure at both intra- and inter-

individual levels.

Numerical simulations. The different simulations were

generated for Cintra[ 0,1½ � (step = 0.01) and

Cinter[ 0,10{4,10{3,10{2,10{1,1
� �

. All simulations used different

sets of pulsations for the two virtual brains (i.e. the vi in Equ. 1)

and the initial state of phases was taken from a uniform random

distribution between 2p and +p.

Programming was done with Matlab (RC2009b, The Math-

Works). The Graphical Processing Unit (GPU) implementation

used the GPUmat toolbox (http://gp-you.org/) for the imple-

mentation on GPU.

Forward Model
In order to compare real and simulated EEG data, we

computed with the Brainstorm Matlab toolbox [44] a forward

model with the overlapping sphere technique. The model was

done on the anatomical MNI template Colin27 [45] after

repositioning the electrodes according to the average spatial

positions across real subjects recorded with a Polhemus system. It

gave us a gain matrix G referring to the virtual EEG signal that

could be observed at the scalp level in function of the activity of the

cortical sources.

Thus we obtained EEG = G*S, where G stands for the gain

matrix of the forward model and S for cortical source signals.

Cortical sources are modeled as 10000 elementary dipoles located

at the vertices of the cortical mesh surface, pointing outward the

surface (i.e. G[M10000,28 Rð Þ and S[M10000,4000 Rð Þ). The signal for

each source k is obtained by applying a cosinus function to the

phases of the nearest region i of the TZ atlas localized in the MNI

space: sk(t)~ cos (wi(t)).

Modeling Intra- and Inter-Brain Synchronizations
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Dynamical Measurements
Synchronization is usually measured in Kuramoto systems with

the order parameter. Its value quantifies the phase coherence

across oscillators at a given point in time. It vanishes when their

phases are uniformly distributed and converges to 1 when they

become aligned. Here we computed the time-averaged order

parameter of each virtual brain following the formula:

vrw~
1

T

XT

t~1

1

N
D
XN

k~1

exp (iwk(t))D ð3Þ

where k is the region of the considered virtual brain, N = 90

regions and T = 4000 samples = 8s.

The EEG dynamics was then quantified with the Phase Locking

Value (PLV) which provides a frequency-specific synchronization

measure between two signals across time [46] and is commonly

used in EEG/MEG studies [25]. Similarly to the order parameter,

PLV is null when phases’ differences between two signals are

uniformly distributed over time and approaches 1 when they

become constant. After a band pass filtering of the scalp signal in

the gamma range between 32 and 48 Hz, we applied a Hilbert

transform to extract the instantaneous phase w of each signal. The

PLV formula for two channel p and q is given by:

PLVp,q~
1

T
D
XT

t~1

e
i wp(t){wq(t)
� �

D ð4Þ

where T is the number of samples considered in each time window

and | | the absolute value. PLV matrices were generated by

averaging 10 non-overlapping 800 ms windows.

In the following, we will use PLV when the two electrodes are

taken from the same subject and h-PLV (or hyper-PLV) when the

two electrodes belong each to a different subject.

Similarity with Real Data
The dissimilarity distances between simulated and real data

were calculated with the Mahalanobis distance [47] for PLV and

h-PLV matrices respectively (See Fig. 2 for average matrices and

distributions).

This distance is defined with the formula:

d(Msim,Mreal)
2~SMsim{MrealTtS{1SMsim{MrealT ð5Þ

where the 18 rows of Msim and Mreal matrices represents all

simulated/real subjects and the 784 columns are the PLV/h-PLV

values for all pairs of electrodes; SMsim{MrealT is the average

difference between the two populations and S represents their

pooled covariance matrix. This distance thus takes into account

first and second order statistical parameters of the data. Via the

comparison between the simulations with real anatomy and their

shuffled versions, we aimed at emphasizing the area of the

parameter space where the model expressed the most realistic

dynamics.

We first sought the best fitting area of our model at the intra-

individual level by setting Cinter = 0 and compared PLV matrices

with those of the real resting state condition. We also found the

best fitting region at the inter-individual level by comparing both

PLV and h-PLV matrices with those of the behavioral interaction

condition.

For clarity, all the different steps of the above procedure are

represented in the flowchart shown in Fig. 3.

Results

The results section is composed of two main parts. The intra-

brain part tests the effect of the strength of the anatomical coupling

on the oscillatory activity within each of the two separated virtual

brains. This intra-brain analysis aims at finding the more realistic

interval of the modeled parameter space before moving at the

inter-brain level. The inter-brain part tests the effect of the real

anatomical structure on the sensorimotor coupling between two

virtual interacting partners.

1. Anatomical Influence on the Intra-individual
Functional Connectivity

For no anatomical coupling (Cintra = 0), all oscillators were

independent and the same distribution of frequency was observed

at both ROIs and scalp levels. Then, while the strength of the

anatomical connectivity increased, clustering was observed

between ROIs.

As expected, a phase transition was then assessed at the ROIs

level by a change on the order parameter while the anatomical

strength increased (Fig. 4A). This transition occurred lately and

sharply for the shuffled versions of the connectome (Fig. 5A). In all

cases, the transition was characterized by an increase of the

average PLV values in the gamma band (Fig. 5B). The two

shuffling strategies did not make any differences at the intra-

individual level. They both showed a weaker increase in the

average PLV values than the real connectome.

During this transition, intermediate beta rhythms peaks

(between 21 Hz and 34 Hz) first appeared transiently around

Cintra = 0.45 (Fig. 5D). Then, an alpha-like low frequency rhythm

appeared and shrank the gamma rhythms (Fig. 4 and Video S1).

The period of this emergent rhythm was linked to the axonal

velocity and to the size of the connectome (Fig. S2). The observed

proportionality suggests that the period of this low-frequency

rhythm corresponds to the average back and forth propagation

time across the connectome.

A similar transition phenomenon was observed at the scalp level

(Fig. 6A): PLV collapsed after the transition in the gamma

frequency band and increased in the alpha frequency band

(Fig. 6B).

We compared the simulated EEG signals with those of real

resting state data (Cinter = 0). The dissimilarity distance between

simulated and real resting data was reached in an interval of the

later part of this phase transition. In this interval

(Cintra[ 0:45,0:8½ �), the distances obtained for the simulations with

the real connectome were smaller than those obtained with the

shuffled versions of the connectome (Fig. 7).

2. Anatomical Influence on the Inter-individual
Functional Connectivity

In the simulated resting state (Cinter = 0), the h-PLV between the

two virtual brains were not null and these ‘‘residual synchroniza-

tions’’ increased as a function of the strength of the anatomical

connectivity before the phase transition and then collapsed for

Cintra = 0.45 as for the PLV (Fig. S3). After the phase transition -

i.e. the area matching at best the real data (Fig. 7) - the average h-

PLV increased as the strength of the artificial sensorimotor

coupling Cinter was incremented between the two virtual partners

(Fig. 8A). It is worth noticing that simulations with different

shuffled versions of the connectome did not show this effect.

Nevertheless, the average h-PLV was slightly higher for virtual

brains sharing the same shuffled version of the connectome than

for those with different shuffled versions. For a given Cinter value,

the anatomical connectivity (i.e. real or shuffled anatomy)

Modeling Intra- and Inter-Brain Synchronizations
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appeared to have a stronger effect on h-PLV than the similarity

between the connectivity of the two virtual brains (Fig. 8B).

Discussion

Research has already demonstrated that the biological structure

of the human brain offers a rich panel of dynamical states with

global efficiency [48] and information processing enhancement

[49]. Here, we focused on how the anatomical structure of the

brain facilitates the internal processing of cognitive information

and the ability to generate inter-individual coupling via perception

and action [50–52]. More precisely, we aimed at investigating the

influence of the anatomical connectivity on neural synchroniza-

tions at both intra- and inter-individual levels. We created a

biophysical model integrating a real anatomical connectivity

dataset based on the 90 ROIs atlas of Tzourio-Mazoyer [33].

These ROIs represent the structural level of the dynamical

modeling based on the Kuramoto’s weakly coupled oscillators.

The current study integrates realistic couplings based on the

anatomical connectivity and delay proportional to the average

spatial distances between ROIs and axonal velocity. The

frequencies of the oscillators were fixed in the gamma band

(between 32 and 48 Hz) as this brain rhythm is related to a neural

processing at the local level [53,54] and is correlated with the

hemodynamic signal [55]. A recent model suggests that the

spontaneous local gamma oscillations could also enhance a neural

network selectivity and responsiveness to external inputs [56].

Furthermore, long range gamma phase synchronization has been

proposed as a plausible mechanism for large-scale integration of

neural information at the individual level [42] and were also

observed in our former hyperscanning study between two brains

[27]. As these recordings were at the scalp level, we applied a

forward model to our brain simulation to create virtual EEG

recordings compared to real EEG resting state data.

In order to quantify the inter-brain effect of the real anatomical

structure, we used two different shuffling strategies on the

connectome. The first strategy was to generate for each simulation

a new shuffled version and use it on each pair of virtual partners.

This allowed quantify the impact of simultaneously sharing

anatomical structure and internal dynamics. The second strategy

was to take a different shuffling for the two-paired virtual brains

and thus measure the residual synchronization due to the sole

similarity of internal dynamics.

1. Intra-individual Dynamics
The first part of our analysis focused on the individual brain

where we tuned the gain of the anatomical connectivity (Cintra) in

order to fit the model with the real resting state data. At the level of

the sources (ROIs), the order parameter gives access to a coarse

synthesis of the dynamics by quantifying the spatial coherence of

all oscillators. Two main states were observed by varying the

anatomical coupling strength: firstly, the oscillators kept their high

frequency and tended progressively to form clusters as the

anatomical connectivity increased, secondly, a global coherent

oscillatory state appeared in the low frequency band.

Interestingly, the transition between these two states was

different in the real and in the shuffled cases (See Fig. 5): with

the same structural connectivity strength, the real connectome

Figure 2. Real and simulated functional data. PLV matrices for real (A) and simulated (B) data and related histogram (C). h-PLV matrix for real (D)
and simulated (E) data and related histogram (F). PLV and h-PLV are computed for the gamma band and averaged across either the 9 pairs of real
subjects during resting state condition or 9 pairs of simulated subjects with Cintra = 0.49 and Cinter = 0. It can be seen from this example that PLV and
h-PLV exhibit different distributions. Notice that the difference of the dynamics between the partners gives an asymmetry in the h-PLV matrix.
doi:10.1371/journal.pone.0036414.g002

Modeling Intra- and Inter-Brain Synchronizations
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was more efficient to synchronize the oscillators than the

shuffled versions. This is consistent with past results pointing out

the structural efficiency of small-world network to synchronize

large number of oscillators [57–60]. However, the transition

between the two dynamical states (desynchronized and synchro-

nized) was also larger in the real anatomical case (see related

Cintra intervals in Fig. 5A). The shape of the curve not only

confirms that the structure of the brain allows a faster transition

to coherent state, probably thanks to its ‘‘small-worldness’’

[4,61], but it also suggests that the dynamics is relatively robust

to structural fluctuations.

Computational models show a similar effect of the delay in

enhancing both synchronization [62] and stability of the dynamics

despite the existence of perturbations created by the environment

[63]. A recent study by Perez and collaborators [64] has shown

that the combination of a real network topology and of delays of

axonal conduction creates a coherent spiking dynamics. Here, we

observed this phenomenon after the phase transition interval

where the dynamics converged to a very stable 8 Hz limit cycle

similar to the alpha rhythm typically observed in electrophysio-

logical studies. Consistent with previous findings about time delay

in the Kuramoto model [65], this low-frequency rhythm

corresponds to the average back and forth propagation across

the whole connectome (Fig. S2). Such result suggests an effect of

the global anatomical structure (connectivity) of the brain on the

generation of neural rhythms.

In order to calibrate our model, we then used the

Mahalanobis distance to quantify the dissimilarity between the

PLV observed in real EEG data during resting state, and those

reconstructed after forward modeling during a virtual resting

state (Cinter = 0). A striking result was that the best fitting point

(where the Mahalanobis distance reaches its minimum) occurred

only for the simulations with the real connectome and was at

the transition discussed above. In this interval (Cintra[ 0:45,0:8½ �),
the real anatomical connectivity of the human brain enhances

synchronization in high frequency band and makes emerge

intrinsic rhythms in the low frequency band. The emergence of

alpha-like oscillations disrupts the synchronized patterns in the

gamma band. This state makes possible a mechanism of active

desynchronization observed more than ten years ago by

Rodriguez and colleagues [66] and interpreted as an ‘‘active

uncoupling of the neural assemblies, necessary to proceed from

one cognitive state to another’’. Using a similar neurocomputa-

tional approach, a recent study has shown that the cortical

activity at rest exhibits multistability. It has also explicitly

demonstrated that the related attractor landscape is encoded in

Figure 3. Procedure Flowchart illustrating the different steps of the
simulations and their comparisons with the real EEG data.
doi:10.1371/journal.pone.0036414.g003

Figure 4. Example of simulation with variation of the Cintra control parameter over time. (A) Timecourses of all ROIs instantaneous
frequency. (B) Related timecourse of the Cintra parameter.
doi:10.1371/journal.pone.0036414.g004
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the neuroanatomical connectivity [16]. Interestingly, the authors

emphasized that such phenomenon has also been reported with

a biophysical corticothalamic model of alpha rhythm during rest

[67]. Our results converge with these findings and points out a

direct link between alpha rhythm frequency and the spatial

embeddedness of the connectomes.

2. Inter-individual Dynamics
In the second part of the study we focused on the inter-

individual synchronizations. We aimed at quantifying the

synchronization that could be observed in the absence of any

inter-individual interaction. These inter-brain ‘‘residual synchro-

nizations’’ are the consequences of the similarities between the two

individual brains - either real or simulated - at both structural and

dynamical levels. When we compared the simulations using the

real connectome to the simulations using the two shuffled

strategies, we observed the facilitating role of the real anatomical

connectivity in these ‘‘residual synchronizations’’. Indeed, while

the strength of the connectivity (Cintra) increased, real versions of

the connectomes tended to synchronize more than the shuffled

versions. This suggests a potential dynamical property of

the topological brain structure to facilitate inter-individual

‘‘residual synchronizations’’ and thus may partly account for our

propensity to generate dynamical couplings with others. Interest-

ingly, if the connectomes were shuffled, the fact that the two

networks share or not the same structure had no apparent

influence. There was nevertheless in both cases weak residual

synchronizations caused by the dynamical similarity of all the

oscillators (See Fig. 8).

Finally, we looked at the effect of sensorimotor coupling on the

inter-brain synchronization. We focused on the best fitting region

of the model and increased progressively the coupling between

visual regions of each virtual brain with motor regions of the other.

The effect of this coupling on the inter-brain synchronization was

Figure 5. Influence of the global anatomical connectivity strength on the model’s dynamics. (A) Average order parameter across the 90
ROIs. Influence of the global anatomical connectivity strength at the ROIs level. Results are averaged across 18 simulations with Cinter = 0. Areas stand
for the standard error. Blue: real connectivity. Green: identic shuffled connectivity for the two virtual brains in same dyads. Red: different shuffled
connectivity for all virtual brains. (B) Average PLV in the gamma band between all the ROIs inside each virtual brain. (C) Example of simulated EEG
signals. (D) Power spectrum for each EEG signals of C.
doi:10.1371/journal.pone.0036414.g005
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Figure 6. Influence of the global anatomical connectivity strength on intra-brain synchronization. Average PLV across all pairs of
electrodes inside each simulated subject helmet for the gamma (A) and alpha (B) frequency bands. The decrease of PLV after Cintra = 0.7 for the alpha
band seems caused by fluctuations of the mean low-frequency rhythm peak at strong anatomical coupling.
doi:10.1371/journal.pone.0036414.g006

Figure 7. Mahalanobis distances between simulated and real resting state data based on PLV matrices in the gamma band.
doi:10.1371/journal.pone.0036414.g007
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maximal for the real connectivity compared to shuffled versions

(Fig. 8A). However, it appeared that this effect was absent outside

the best fitting interval (Fig. S3A). Before the transition, the

internal coupling is probably not sufficient to spread the

information from the visual area to the remaining part of the

virtual brain. After the transition, the h-PLV in the gamma band

vanished despite a strong inter-individual coupling. Simultaneous-

ly, we observed the increase of h-PLV in the alpha rhythm (Fig.

S3). Interestingly, the intra-individual synchronies within each

virtual brain remain insensitive to the sensorimotor coupling

between them (Fig. S3).

As already proposed, the anatomical functional similarity across

humans could explain a tendency to enter in synchronization

while immersed in the same perceptual context [68] or while doing

the same perceptual-motor task [23]. Our results suggest that the

similarity of endogenous dynamics (here the distribution of the

frequency of the oscillators) altogether with the similarity of

anatomical structure support this effect. They also suggest that the

anatomical connectivity of the human brain enhances similarities

in the neural dynamics and thus, it could facilitate the creation of a

sensorimotor coupling between individuals. These results thus

encourage to investigate further inter-brain relationships while

drawing a distinction between the ‘‘residual synchronizations’’ due

to the sharing of phylogenetic information and common cultural

knowledge [51], and the synchronizations related to the brain-to-

brain coupling created by the exchange of information through the

environment [52]. These two phenomena are not independent

and a promising endeavor will be the investigation of their causal

relationships.

Figure 8. Influence of the anatomical connectivity on inter-brain synchronization. (A) Average response of the artificial sensorimotor
coupling strength on h-PLV across the best fitting area (Cintra between 0.5 and 0.6). (B) Effect of the anatomical topology and similarity on the
normalized h-PLV for Cinter = 0.01. Each point is computed for a normalized linear combination of the three cases: same real anatomy, same shuffled
version and different shuffled versions.
doi:10.1371/journal.pone.0036414.g008
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3. Conclusion
To conclude, the nascent social neuroscience could be taken as

a new theoretical and experimental workspace in the study of

complex systems coupling [69]. Previous studies have already

demonstrated the theoretical possibility for dynamical modeling of

complex social behavior [70] and sensorimotor coupling in agents

[71]. In parallel, neurobiological models have also been proposed

to adopt a dynamical and developmental account of socio-

cognitive functions at the neural level [72,73]. The hyperscanning

technique starts to provide evidence of the relationships between

neural dynamics and social coordination dynamics [74]. Our

findings encourage the development of a computational social

neuroscience through the extension of existent models at an inter-

individual level. It could provide new insights about the

neurobiological mechanisms underlying social cognition and

related pathologies. Indeed, while individual brain simulations

are starting to provide new paths for the understanding of brain

lesions [39], growing number of studies describe structural and

functional differences in autism [75–77] and schizophrenia

[78,79]. Inter-individual neurocomputational models combined

with hyperscanning experiments may help in the future to

approach these cases of self-other dysfunction.

Supporting Information

Figure S1 The connectome. (A) Rear view. (B) Right view.

(C) Top view. (D) Connectivity matrix and legend.

(TIF)

Figure S2 Analysis of the relationship between the low-

frequency rhythms observed after the transition produced by

increasing the Cintra control parameter and the axonal velocity.

(TIF)

Figure S3 Evolution of the inter-brain synchronization over the

whole control parameters space in the gamma (A) and alpha (B)

frequency bands. The white line delimits the zone where the

Mahalanobis distance to real data, computed with PLV and h-

PLV matrices in the gamma band, is inferior in the real anatomy

than for same shuffled version.

(TIF)

Video S1 Example of simulation where Cintra varies continu-

ously across time. Selected signals at both sources and scalp level

are represented with their power-spectrum. The bottom part

shows the non-linear evolution of the main frequency peak

expressed in the signals versus Cintra.

(MOV)
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