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Catalytic graphitization opens a route to prepare graphitic carbon under fairly mild
conditions. Biomass has been identified as a potentially attractive precursor for
graphitic carbon materials. In this work, corn starch was used as carbon source to
prepare hollow graphitic carbon microspheres by pyrolysis after mixing impregnation with
nitrate salts, and the surface of these carbon microspheres is covered with controllable
pores structure. Under optimal synthesis conditions, the prepared carbon microspheres
show a uniform pore size distribution and high degree of graphitization. When tested as
electrode materials for supercapacitor with organic electrolyte, the electrode exhibited a
superior specific capacitance of 144.8 F g−1 at a current density of 0.1 A g−1, as well as
large power density and a capacitance retention rate of 93.5% after 1,000 cycles in
galvanostatic charge/discharge test at 1.0 A g−1. The synthesis extends use of the
renewable nature resources and sheds light on developing new routes to design
graphitic carbon microspheres.
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INTRODUCTION

Supercapacitors, as a kind of promising energy storage device with high power density and long
service life, have excited great interest owing to their potential application in portable electronics and
electric vehicles (Qin et al., 2021; Reece et al., 2020; Yang L et al., 2021; Zhu et al., 2019). Based on
different energy storage mechanisms, supercapacitors are mainly divided into two categories: faradic
pseudocapacitors, in which transition metal oxides and conducting polymers are used as active
materials, and electrical double-layer capacitors (EDLCs), in which carbon-based materials are often
used as active materials (Adhikari et al., 2020; Liu T et al., 2020; Say et al., 2020). The energy storage
mechanism of EDLCs depends on the attraction of positive and negative charges at the interface of
electrode and electrolyte, enabling high power density and ultralong cycling life of EDLCs
(Fleischmann et al., 2020; Pai et al., 2021; Pourhosseini et al., 2021). Activated carbons (ACs)
are the most commonly used electrode material for EDLCs (Zhang et al., 2015; Zhang et al., 2018;
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Zhang et al., 2019), which possess high surface area, good
electrochemical stability, and affordable cost (Heidarinejad
et al., 2020; Lv et al., 2021; Wu et al., 2021).

However, high resistance of ACs increases internal resistance
and reduces specific capacitance at high current density of
supercapacitors (Li et al., 2021; Zhang et al., 2021; Fan et al.,
2021). In addition, the high resistance easily cause heat generation.
Graphitization can improve conductivity of ACs to a certain extent
but requires harsh experimental conditions which hamper large-
scale preparation (Jiang et al., 2020; Jiang et al., 2021a). Hence, it is
necessary to keep working to search sustainable methods suitable
for large-scale production. Catalytic graphitization opens a route to
prepare graphitic carbon under fairly mild conditions. The
conversion temperature of amorphous carbonaceous materials
to graphitic carbon can be reduced to less than 800°C (Jiang
et al., 2021b; Lam et al., 2021; Yang L et al., 2021). A variety of
transitionmetal catalysts are commonly used, includingNi (Yang L
et al., 2021), Co (Liu T et al., 2020), and Fe (Semeniuk et al., 2021).
The carbon source is pyrolyzed after mixing and impregnating
transition metal salts.

Biosource-derived carbon precursors are attractive and widely
used in fabrication of ACs electrodes, due to environment,
sustainability, and cost concerns (Liu Z. et al., 2020; Ait et al.,
2021; Baig et al., 2021; Raj et al., 2021; Wang et al., 2021). For
example, as a typical low-cost and renewable biomass material,
various starches have been applied widely in the preparation of
porous carbon materials by enzymatic hydrolysis (Wang et al.,
2020; Yin et al., 2020). Herein, we proposed a facile approach to
fabricate graphitic porous carbon microsphere utilizing corn
starch as carbon precursor by pyrolysis after mixing and
impregnating Ni(CH3COO)2 as graphitization catalyst. The
surface of hollow spherical particles is covered with pores
increasing ion transferring as well as the enhanced electrical
conductivity improves the rate capability. When tested as
electrode materials for supercapacitor with organic electrolyte,
the electrode exhibits a superior specific capacitance of
144.8 F g−1 at 0.1 A g−1 and good large power density and a
capacitance retention rate of 93.5% after 1,000 cycles at
1.0 A g−1. In addition, the simple synthesis method develops a
new route to prepare graphitic carbon microspheres.

EXPERIMENTAL SECTION

Material Synthesis
The suspension of corn starch (100 g) mixed with 100 ml
Ni(CH3COO)2 solution (0.1 mol L−1) was stirred for 10 h and
freeze-dried for 24 h. The dried mixture was then heated at 210°C
for 20 h and carbonized at 450°C for 3 h. The KOH saturated
solution was added by a stoichiometric proportion of 5: 1 to mix
the starch-derived carbon. The mixture was transferred to nickel
crucible and activated at 850°C for 2 h under Ar atmosphere with
a heating rate of 5°C min−1. The product was firstly impregnated
in 0.1 M HCl and then washed by distilled water. The final
product is marked as Ni-AC. The contrast sample signed as
AC was prepared through the same experiment process to the Ni-
AC, but the Ni(CH3COO)2 was not added.

Materials Characterization
The morphology of the as-prepared Ni-AC and AC was observed
by field emission scanning electron microscopy (SEM, Philips,
FEI Quanta 200FEG). The component of carbon materials was
measured by energy dispersive X-ray spectroscopy (EDS, EDAX
JENSIS60S). The analysis of phase composition was investigated
by powder X-ray diffraction (XRD, Rigaku, D/max 2500 v/pc)
with Cu-Ka1 radiation. The Nitrogen adsorption/desorption
isotherms and pore size distribution were tested by an
automatic volumetric sorption analyzer at 77 K (Micromeritics,
SA3100, United States).

Electrochemical Testing
The product powder was mixed with binders carboxymethyl
cellulose (CMC), polymerized styrene butadiene rubber (SBR),
and conductive agents SP, which were dispersed in aqueous
solvent with a weight ratio (activated materials: CMC: SP: SBR
= 81: 6: 10: 3). The stirred slurry was pasted onto Al foil and dried
at 80°C in vacuum. The electrode film was punched in a specified
diameter of 18 mm. The foil was equipped into a button battery
model (CR 2032), in which the electrolyte is 1 mol L−1 C2H5)
4NBF4/PC and the separator is organic special diaphragm (NKK,
4020).

The electrochemical tests were carried out in a three-electrode
cell on an IM6 electrochemical workstation (Zahner-Elektrik,
Germany). Cyclic Voltammetry (CV) was scanned from 20 to
200 mV s−1, and the voltage window is between 0 and 2.7 V in a
two-electrode cell. Galvanostatic charge-discharge tests were
performed with the current densities at 0.1, 0.5, and 1.0 A g−1

on LAND system (CT 2001A, China). Electrochemical
impedance spectra (EIS) were acquired from 10 to 1 MHz
with an open circuit at an amplitude of 5 mV.

RESULTS AND DISCUSSION

Figures 1A,B show the SEM images of the carbonized precursor
of the prepared Ni-AC, the precursor presents a similar spherical
shape with a particle size of 5–10 μm. Some hemispherical
particles indicate that these spherical particles have a hollow
structure. The tiny Ni-containing particles are dispersed
uniformly on the surface from Figure 1B. The content of the
Ni element in the Ni-AC composite is 0.13% by the ICP analysis.
After activation, both of the prepared active carbon products keep
the original spherical shape of the precursor as well as the particle
size, as shown in Figures 1C,E. The spherical shape can increase
the tap density and lead to an enhanced volumetric capacity
(Marriam et al., 2020). Moreover, the good liquidity of spherical
materials is in propitious to preparing electrode (Ge et al., 2021;
Xie et al., 2021). After activation, both the particles of the two
samples keep spherical shape and size as shown in Figures 1C,D.
However, some detailed morphology difference can be observed
in the larger magnification of Figures 1D,F. Many holes and pits
appear on surface of the Ni-AC while a smooth surface is left for
the AC sample carbonized without Ni(CH3COO)2. It can be
inferred that these surface defects are left by the dissolution of the
tiny Ni-containing particles. The size of the Ni particles is less
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than 5 nm measured in the provided TEM images
(Figures 1G,H).

EDS mapping images show that the Ni element is uniformly
distributed throughout the entire surface of the spheres,

suggesting the tiny particles are Ni-containing composite,
usually nickel carbide reduced from Ni(CH3COO)2
(Figure 2A). Figure 2B shows the XRD patterns of the final
products. The diffraction peaks at 2θ = 24° for both the Ni-AC

FIGURE 1 | The SEM of carbonized precursor (A,B), AC (B,D) and Ni-AC (E,F), and the TEM of the Ni-AC (G,H).

FIGURE 2 | EDS spectrum andmapping of the carbonized precursor with Ni(CH3COO)2 (A), XRD patterns and Raman spectra (B), nitrogen adsorption/desorption
isotherms (C), and pore size distribution curves (D) of the Ni-AC and AC.

Frontiers in Chemistry | www.frontiersin.org March 2022 | Volume 10 | Article 8283813

Zhang et al. Nickel Acetate-Assisted Graphitizatized ACs

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


and AC corresponding to the pattern of graphite. The Ni-AC has
a sharper diffraction peak, while the corresponding ID/IG value in
Raman spectra is 1.50 which is less than that of the AC (1.55).
These results reveal a higher degree of graphitization of the Ni-
AC due to the addition of Ni element playing a role in catalyzing
graphitization. The detailed pore textural characteristics of the
samples were analyzed by Nitrogen sorption technique. The
adsorption/desorption isotherms plots and pore size
distribution are shown in Figures 2C,D. Both the two samples
present typical characteristics of ACs. In addition, the curve of the
Ni-AC exhibits a significant hysteresis loop, indicating many
mesopores are dominated in the pores. The catalytic role of
Ni(CH3COO)2 improves the graphitization reaction and
creates micropores, which facilitate mobility of electrolyte ions,
leading to an excellent charge/discharge rate capability (Liu T
et al., 2020; Pang et al., 2020). Moreover, the Ni-AC spheres have
a narrow distribution at approximately 25 nm, meaning the Ni-
AC has uniform pore size distribution compared to the AC with a
broad size distribution at around 5–50 nm. The BET surface areas
of the AC and Ni-AC are 1912 and 1775 m2/g, respectively. Some
results reveled the electrode materials would maximize inner
quality if the pore size distribution is closed to the size of
electrolyte molecules, and more larger or smaller pores would
cause a significant drop in capacitance (Zhang et al., 2008).

Figures 3A,B show the CV curves of the Ni-AC and AC,
respectively. The curves of the Ni-AC show a typical double-layer
capacitance behavior and are of good rectangular shapes even at
high scanning ratios, suggesting the sample is absolutely capable
to capacitor materials. The specific capacitance is estimated by the
following equation: C=I/r, where I is current density and r is
potential scan. The specific capacitance of the Ni-AC can reach
110 F g−1 at 20 mV s−1. As the scanning ratio increases to
200 mV s−1, the capacitance decreases only 9%, while the AC
lefts 18.97%. It is the interface rather than in the bulk that take
place in charges collection for EDLC, so the interface between the
electrode and the electrolyte plays a pillar role in the capability.
Meanwhile, the charges collection induces only physical
absorption instead of occurring faradic effects, and this kind
of adsorption performance means no redox peaks on CV curves.
Obviously, both the curves in Figures 3A,B have no redox peaks,

meaning that the two materials perform physical absorption. The
curve shapes of the Ni-AC electrode exhibit less shape change
than the AC with the scan rate increasing, suggesting smaller
polarization associated with higher conductivity due to improved
graphitization degree.

Galvanostatic charge-discharge curves the Ni-AC and AC
electrodes at various current densities as depicted in Figures
4A–C. The specific capacitance was calculated according to
the following equation: C=I/(ΔV/Δt), where I and ΔV/Δt are
current density and discharge slope after IR drop,
respectively. The specific capacitance of the Ni-AC is 145,
127, and 121 F g−1 at 0.1, 0.5, and 1 A g−1, while the AC
delivers 124, 118, and 110 F g−1 at the same current
densities. The galvanostatic charge-discharge curves of the
Ni-AC maintain a good isosceles triangle even at a high
current density of 1 A g−1. All the results indicate that the
Ni-AC has good capacitance behavior and endures high
current charge-discharge capability associated with a
uniformed mesopores distribution. Generally, the specific
capacitance is in opposite proportion to the increasing
current density due to IR drop, which is mostly caused by
higher resistance of ion transfer. The IR drop depends on the
overall resistance of a cell, determined from the voltage
decrease at the start of the galvanostatic discharge curves
(Teng et al., 2001). As shown in Figure 4D, the amplitude of
IR drop for both electrodes raises along with current density
increasing. The IR drop of the Ni-AC is lower than that of the
AC at the same currents, illustrating the ion-transfer
resistance of the AC electrode is higher than that of the
Ni-AC electrode. This conclusion can also be confirmed by
the Nyquist plots of the electrodes, as shown in Figure 4E.
Both the Nyquist plots of the two electrodes contain one
semicircle in high frequency region corresponding to charge
transform resistance at electrolyte/electrode interface and an
upward line in low frequency region associated with ion
diffusion in electrolyte (Adhikari et al., 2020; Gurten and
Aktas, 2020; Pang and Wang, 2021). The Ni-AC electrode has
smaller charge transferring resistance than that of the AC,
which contributes to the enhanced graphitization degree
boosting conductivity. Slightly, there is no big difference

FIGURE 3 | The CV curves of Ni-AC (A) and AC (B) in different scan rates.
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between the Ni-AC electrode and AC electrode, confirming
both electrodes have low electrolyte ion diffusion resistance
and ideal capacitor behavior. Figure 4F shows the cycle
performance of the Ni-AC and AC electrodes. The
capacitance of the Ni-AC is almost unchanged along with
the increasing cycle number, while the AC capacitance
retention shows a downward tendency. After calculation,
the capacitance retention of the Ni-AC is up to 93.5%,
much higher than that of the AC electrode (76.4%) after
1,000 cycles, indicating that the Ni-AC electrodes have a
better cycle performance and stability.

CONCLUSION

Catalytic graphitization of corn starch derived carbon
microspheres was achieved under Ni(CH3COO)2 using nitrate

salts as catalyst. In the prepared graphitic hollow carbon
microspheres in this work, corn starch shows porous structure
on the surface. The active carbons are of well-developed
mesoporous structure, uniformed pore size distribution, and a
high level of graphitization, which sufficiently improve the
capacity performance and rate capability in supercapacitor.
Under optimal synthesis conditions, the electrochemical
investigations of electrode are of 114 F g−1 capacitance, good
capacitance behavior, low level of ion-transfer resistance, and
good cycle stability.
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