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Abstract
Existingmethods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or struc-
ture of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the
evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at
sites within or near T-cell epitopes can be used to enhance epitope identification.We have developed a mutation–selection
model of T-cell epitope evolution that allows the human leukocyte antigen (HLA) genotype of the host to influence the evolu-
tionary process. This is one of the first examples of the incorporation of environmentalparameters into a phylogeneticmodel
and has many other potential applications where the selection pressures exerted on an organism can be related directly to
environmental factors.We combine this novel evolutionarymodel with a hiddenMarkovmodel to identify contiguous amino
acid positions that appear to evolve under immune pressure in the presence of specific host immune alleles and that there-
fore represent potential epitopes. This phylogenetic hidden Markov model provides a rigorous probabilistic framework that
can be combined with sequence or structural information to improve epitope prediction. As a demonstration, we apply the
model to a data set of HIV-1 protein-coding sequences and host HLA genotypes.
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Introduction
An effective cellular immune response depends on the pre-
sentation and recognition of foreign peptides called epi-
topes. Antigens fromendogenouspathogens, suchas a virus,
are degraded by the proteosome within the cytoplasm and
transported to the endoplasmic reticulum (ER) by the trans-
porter associated with processing. In the lumen of the ER,
the peptide fragments undergo N-terminal trimming be-
fore attaching to human leukocyte antigen (HLA) class I
molecules for delivery to the cell surface and presenta-
tion to cytotoxic T lymphocytes (CTLs). The subsequent
binding of the epitope/HLA class I complex to the T-cell re-
ceptor and CD8 coreceptor on a CTL induces clonal expan-
sion and the release of cytotoxins that lyse the virus-infected
cell (Vyas et al. 2008). Mutations of amino acid residues in
or around epitopes may inhibit any of these stages in the
antigen processing pathway, enabling viral escape from the
immune response. This is particularly evident in rapidly
evolving viruses, such as theHIV that undergoes error-prone
reverse transcription before integration as a provirus in the
host’s DNA.

The genes encoding HLA molecules are highly polymor-
phic with distinct alleles having different peptide-binding
domains. HLA class I molecules are capable of presenting
peptide sequences of 8–11 amino acids with different
HLA alleles having distinct peptide-binding preferences.
The antigenic peptides that are ultimately presented to
CTLs therefore differ between individuals with different
sets of HLA alleles. Consequently, viral escape from CTL

recognition will depend on the HLA genotype of the host
and is thus said to be “HLA restricted.” Individuals express-
ing a common HLA allele will have the potential to present
a common set of epitopes and thus to harbor similar escape
variants of the virus. Indeed, several studies have reported
robust correlations between polymorphisms within or near
HIV epitopes and the HLA genotype of the host (Brumme
et al. 2008; Carlson and Brumme 2008; Navis et al. 2008;
Peters et al. 2008; Kawashima et al. 2009; Rousseau et al.
2008). These studies highlight the important role of the cel-
lular immune response in driving HIV evolution at sites in
and around HLA class I epitopes, resulting in adaptation
of the virus to HLA alleles both at the level of individual-
infected hosts and at the population level.

Accurate prediction of CTL epitopes is a key goal in
immunoinformatics (Yu et al. 2002; Flower 2003; Larsen
et al. 2005). Common approaches to this problem include
motif-based methods (Schuler et al. 2007), structure-based
methods (Rognan et al. 1999; Brusicet al. 2004), and
machine-learning algorithms (Nielsen et al. 2003; Zhao et al.
2003; Yanover and Hertz 2005; Heckerman et al. 2006).
However, none of the tools proposed thus far consider
immune-mediated evolution as a distinguishing feature of
epitopes. Here, we develop a mutation–selectionmodel of
viral escape from host CTL responses, which is applicable
when viral-coding sequence data as well as host HLA geno-
typedata are available. For an alignment ofHIV-1 sequences
of the same subtype, we assume that there is a single amino
acid at each site, which is fittest in the absence of a CTL
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response targeting the site. We refer to this residue as the
wild-type amino acid and approximate it with the most
common amino acid observed at a site in the alignment.
Versions of this assumption are commonly applied to dis-
tinguish immune escape and reversion mutations in HIV-
1 (see, e.g., Goonetilleke et al. 2009). In the presence of an
immune response targeting a specific site, selective pres-
sure for immune escape can cause a reduction in the fre-
quency of the wild-type amino acid. When a site is known
to be within a CTL epitope bound by a specific HLA al-
lele, we find that allowing the frequency of the wild-type
amino acid to depend on whether or not the allele is ex-
pressed in the host often provides a much better descrip-
tion of the data. When it is not known whether a site is
within an epitope for a particular HLA allele, comparison
of the fit of a model that allows the wild-type amino acid
frequency to depend on the presence of the allele (the epi-
topemodel) to the fit of amodel that ignores HLA genotype
(thenonepitopemodel) can provide evidence that the site is
within or close to an epitope. A contiguous set of sites favor-
ing the epitopemodel provide stronger evidence for an epi-
tope. We show that this evidence can be combined using a
phylogenetic hiddenMarkov model (phylo-HMM) tomake
probabilistic epitope predictions based on sequence evolu-
tion. Evolutionary information provides a means of epitope
prediction, which is orthogonal to existing sequence- and
structure-based methods. We demonstrate how this infor-
mation can be integrated with other prediction methods
within the phylo-HMM framework, taking a method based
on anchor residue motifs as an example.

Materials and Methods

Data
We analyzed a multiple alignment of 506 HIV-1 subtype
C Gag p17 and p24 sequences from a Durban, South
Africa cohort, contributed to the Los AlamosHIVMolecular
Immunology Database by Rousseau et al. (2008). The se-
quences and HLA genotypes of the subjects were deter-
mined as described in Rousseau et al. (2008). The data
utilized in this study correspond to HXB2 Gag positions 1–
358, excluding 16 amino acid sites at the end of p17 (posi-
tions 112–127) that appeared to be misaligned (most sites
containedmore than 90% gaps). Two HIV-1 subtype A and
subtype B sequences as well as an intersubtype recombi-
nant were removed from the original data set. The align-
ment was screened for intrasubtype recombination with
GARD (Kosakovsky Pond et al. 2006), but we were un-
able to detect departures from the star phylogeny within
estimated recombination breakpoints due to the large
number of taxa relative to the number of codon sites
between breakpoints. Consequently, we do not account
for intrasubtype recombination in our analyses, although
different phylogenies across the alignment could be accom-
modated straightforwardly in principle. HLA-binding mo-
tifs and lists of optimally defined epitopes were obtained
from the Los Alamos HIV Molecular Immunology Database
(http://www.hiv.lanl.gov/content/immunology).

Model of Immune Escape
We take account of immune-mediated selection pressure
by developing a codon substitutionmodel with site-specific
equilibrium frequencies that reflect the dependence of the
wild-type amino acid at a site on the HLA genotype of the
host. Our model is based on that of Halpern and Bruno
(1998) in which differences in the fitness of codons aremod-
eled in terms of site-specific codon equilibrium frequencies.
In this model, the instantaneous rate of substitution from
codon I to codon J , where we require that I and J are both
sense codons, is defined as follows:

qIJ =

µk
ij ln

(
νJµ

k
ji

νIµ
k
ij

)

1− νIµk
ij

νJµ
k
ji

, (1)

where νJ is the equilibrium frequency of codon J at a par-
ticular site in the alignment, µk

ij is the mutation rate from
nucleotide i to nucleotide j in the k th codon position, and
ln{(νJµk

ji )/(νIµ
k
ij )}/{1−(νIµk

ij )/(νJµ
k
ji )} is proportional

to the fixation probability of the mutation (Halpern and
Bruno 1998). In our case, we wish to have this fixation prob-
ability depend on the HLA genotype of the infected host at
a given pointon the viral phylogenywhenever the mutation
involves the replacement of a wild-type amino acid with
a non–wild type residue (escape mutation) or vice versa
(reversion mutation). In order to achieve this, we param-
eterize the site-specific codon equilibrium frequencies in
terms of the equilibrium frequency of the wild-type residue,
γ , at a site and define

νJ =

⎧⎨
⎩

γπJ∑
X∈W πX

if J ∈ W ,

(1−γ)πJ
1−∑X∈W πX

if J /∈ W ,
(2)

where W represents the set of codons that encode the
wild-type amino acid and πJ is the equilibrium frequency
of codon J estimated empirically from the entire align-
ment as described in Kosakovsky Pond and Muse (2005).
An increase in the equilibrium frequency of the wild-type
residue, γ , therefore translates into an increase in the
equilibrium frequencies, νJ∈W , of codons that encode the
wild-type residue. The factors involving the πJ parameters
ensure that the effects of codon usage bias, estimated across
the whole alignment, are retained in the model. To al-
low γ to depend on the HLA genotype of the host, we
set γ = p0γ0 + p1γ1 with p0 + p1 = 1, where
p0 (p1) denotes the probability that a specific HLA allele
is absent (present) in the host, and γ0 (γ1) represents
the equilibrium frequency of the wild-type residue given
that the HLA allele is absent (present). We make the
simplifying assumption that the presence (p1 = 1) or
absence (p0 = 1) of a specific HLA allele during the entire
period represented by a branch on the phylogeny is dictated
by the HLA genotype of the host at the tip of that branch.
When it is unknown whether or not the HLA allele is ex-
pressed in the host at a vertex in the phylogeny, such as at
all ancestral nodes, we set p0 and p1 equal to the propor-
tion of HLA-genotyped individuals in the study for which
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the particular HLA allele is absent and present, respectively.
We also constrain γ0 � γ1 because HLA-mediated selec-
tion pressure is expected to increase the frequency of escape
variants over wild-type amino acids.

We parameterize the mutation rate µk
ij according to

the MG94×HKY85 Dual GDD 3×3 model of Kosakovsky
Pond and Muse (2005) and use an F3×4 estimator for πJ .
Substituting these parameters into equation (1) yields the
following:

qIJ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πk
j α synonymous transversion,

κπk
j α synonymous transition,

πk
j β × ln(ζ)

1−ζ−1 transversion, I /∈ W , J ∈ W ,

πk
j β × ln(ζ−1)

1−ζ transversion, I ∈ W , J /∈ W ,

πk
j β other nonsynonymous

transversion,

κπk
j β × ln(ζ)

1−ζ−1 transition, I /∈ W , J ∈ W ,

κπk
j β × ln(ζ−1)

1−ζ transition, I ∈ W , J /∈ W ,

κπk
j β other nonsynonymous

transition,

0 >1 nucleotide difference,
(3)

where πk
j denotes the equilibrium frequency of target

nucleotide j in codon position k , κ is the transi-
tion/transversion rate ratio, α is the synonymous sub-
stitution rate, β is the nonsynonymous substitution rate,
and ζ = {γ/(1 − γ)}{(1 − ∑X∈W πX )/

∑
X∈W πX}.

Notice that the factors involving γ only appear in the
instantaneous rate matrix for substitutions that result in
the replacement of a wild-type residue with a non–wild
type residue or vice versa. Consequently, the selective
influence of the host’s HLA genotype is limited to these
substitutions only as desired.

Equation (3) defines a time-reversible substitution pro-
cess for each branch in the phylogeny. However, the equilib-
rium frequencies, and hence the instantaneous rate matrix
describing this model, will differ from branch to branch de-
pending onwhether a specifiedHLA allele is present,absent,
or unknown along that branch. Consequently, the substi-
tution process is not time reversible when considered over
the entire tree and the location of the root node and the
initial codon frequencies must therefore be specified. The
problem of identifying the root node is greatly simplified in
our case if we assume that the initial codon frequencies are
given by equation (2) with an indeterminateHLA genotype.
Because the HLA genotypes of donors are always unknown,
the subprocess along all interior branches is time reversible
and hence any interior node other than the most recent
common ancestors of the leaf nodesmay be selected to root
the tree. Indeed, the root of our HIV-1 subtype C phylogeny
did fall within this region of the tree when the two subtype
A and subtype B sequences in the original alignment were
used as outgroups for tree construction.

Let ψψψ′ denote all the parameters except γ and γ0 in
the codon substitution process defined by equation (3).
Because γ1 is defined in terms of γ and γ0, it is ignored
here. The site likelihood p(X�|ψψψ′, γ ,γ0) at column 	 in an
alignment Xmay then be computed for any parameter val-
ues in {(γ ,γ0) : 0 � γ � γ0 � 1} and nonnegative real-
valued branch lengths along a phylogeny using Felsenstein’s
pruning algorithm (Felsenstein 1981). We adopt a random
effects approach with respect to the parameters γ and γ0
and integrate them out of the site likelihood to obtain

pE (X�|ψψψ′)
=

∫
γ

∫
γ0

p(X�|ψψψ′ , γ ,γ0)p(γ0|γ , ξξξ0)p(γ|ξξξ) dγ0 dγ , (4)

where p(γ0|γ , ξξξ0) and p(γ|ξξξ) denote prior distributions
on γ0 and γ with hyperparameters ξξξ0 and ξξξ, respectively.
The subscript E in the likelihood pE (X�|ψψψ′) refers to the
epitope state and is introduced here to highlight the fact
that this site likelihoodwas computed by allowing the equi-
librium frequency of the wild-type amino acid to depend
on the HLA genotype of the host, as would be expected in
epitope regions of the viral genome. In nonepitope regions,
the absence ofHLA-mediated selective pressure implies that
γ = γ0 = γ1 and site likelihoods may therefore be com-
puted as

pN (X�|ψψψ′) =
∫
γ

p(X�|ψψψ′ , γ)p(γ|ξξξ)dγ . (5)

This is equivalent to equation (4) with p(γ0|γ , ξξξ0) = 1 if
γ0 = γ and p(γ0|γ , ξξξ0) = 0 otherwise. A comparison of
pE(X�|ψψψ′) and pN (X�|ψψψ′) over a region of the viral genome
will reveal localized sets of sites that evolve under immune
pressure and are thus indicative of CTL epitopes.We train a
hidden Markov model with the state emission probabilities
given by equations (4) and (5) and hence are able to infer
the epitope and nonepitope states taking account of all the
information available across the alignment.

Phylogenetic HiddenMarkov Model
A phylo-HMM is defined as the four-tuple θθθ = (S,ψψψ, A, b)
consisting of a set of M hidden states S = {S1, . . . , SM}
with associated phylogenetic models ψψψ = {ψψψy : y ∈ S},
a state transition probability matrix A = {ayz} for y , z ∈ S

and a vector of initial state probabilities b = (bS1 , . . . , bSM )
(Siepel and Haussler 2005). Here, all hidden states share
a common phylogenetic model and differ only in the
constraints imposed on the parameters γ and γ0 in
the computation of the state emission probabilities. This
continuous-time Markov stochastic process is defined by
an instantaneous codon substitution rate matrix Q with en-
tries given by equation (3), codon equilibrium frequencies
given by equation (2) and a binary tree topology with a
corresponding set of branch lengths. The constraints on γ
and γ0 determine whether evolution in a particular state is
immune mediated or not.

Letφφφ = (φ1, . . . ,φL ) denote a path through the phylo-
HMM with φ� ∈ S for 1 � 	 � L in an alignment X with L
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codon sites. The joint probability of the alignment and the
path is

p(X,φφφ|θθθ) = bφ1pφ1(X1|ψψψ′)
L∏
�=2

aφ�−1 ,φ�pφ�(X�|ψψψ′).

The emission probability pφ�(X�|ψψψ′) is given by equation (4)
if φ� corresponds to the epitope state and equation (5) if
it corresponds to the nonepitope state. The likelihood of
the alignment p(X|θθθ) = ∑φφφ p(X,φφφ|θθθ) may be computed
with the forward algorithm, whereas the maximum likeli-
hood path φφφML = argmaxφφφp(X,φφφ|θθθ) may be obtained via
Viterbi decoding. The forward–backward algorithmmay be
used to obtain posterior state probabilities p(φ� = y |X, θθθ)
for all 	 and y (Rabiner 1989).

Two-State Epitope Model
Wefirst consider amodel with S = {E ,N}where E denotes
an epitope state and N denotes a nonepitope state. The
emission probabilities for the epitopeandnonepitope states
are given by equations (4) and (5), respectively. To compute
these probabilities, we define p(γ|ξξξ) as a beta distribution
on [0, 1] and p(γ0|γ , ξξξ0) as a beta distribution with sup-
port [γ , min(γ/p̂0, 1)], where p̂0 is an empirical estimate of
the proportion of individuals who do not express the HLA
allele under consideration. The support of p(γ0|γ , ξξξ0) en-
sures that 0 � γ1 � γ � γ0 � 1. In order to allevi-
ate the computational burden of numerical integration,we
utilize discretized versions of these distributions that allows
the double integration to be approximated by summation.
For each γ ∈ {0.05 + 0.15i : i = 1, . . . , 5}, we compute
the likelihoodp(X�|ψψψ′ , γ ,γ0) at seven equally spaced values
of γ0 in the interval [γ ,min(γ/p̂0, 1)] for the epitope state.
A better approximation to the integrationmay be attained
with a finer discretization over the (γ ,γ0) space, particu-
larly near the support boundaries when the beta densities
are convex; however, our experience suggests that the incre-
mental gain in predictive accuracy is not worth the increase
in computational time needed to calculate the likelihood
function for the additional (γ ,γ0) pairs at every site. Given
estimates of the hyperparameters ξξξ and ξξξ0, the density of
each (γ ,γ0) pair is computed and normalized to obtain
its joint probability. The probability pE (X�|ψψψ′) of the epi-
tope state emitting alignment column X� is then calculated
as the sum of the conditional probabilities p(X�|ψψψ′ , γ ,γ0)
weighted by the joint probabilities of γ and γ0. The emis-
sion probability pN (X�|ψψψ′) for the nonepitope state is com-
puted analogously with respect to the discretized marginal
distribution on γ . This model is illustrated in figure 1A .

Epitope Model with Duration
The two-state model ignores several known sequence and
structural features of epitopes. The requirement that an
epitope be between 8 and 11 amino acids in length in or-
der to bind to an HLA class I molecule is perhaps the sim-
plest constraint that is not considered in the two-state
model. We incorporate this restriction by defining a phylo-
HMM with duration (phylo-HMMwD) on the state space

FIG. 1. (A ) Two-state epitope model. (B ) Phylo-HMMwD+M for
HLA-B*57. Modifications to the phylo-HMMwD are indicated with
dashed lines.

S = {E1, . . . , E11,N}, where Ei denotes the i th amino
acid in the epitope state for i = 1, . . . , 11. The architec-
ture of this model is illustrated with solid nodes and edges
in figure 1B . The phylo-HMMwD provides the foundation
for incorporating other spatial features relevant to epi-
tope prediction. In what follows, we show how to integrate
motif-based prediction with sequence evolution within this
framework.

Phylo-HMMwD Integrated with Motif-Based
Prediction
Motif-basedmethods of epitope prediction exploit the fact
that the binding affinity of an antigenic peptide and HLA
molecule is critically dependent on a few anchor residues
in the peptide sequence. For example, ligands of HLA-B*57
molecules typically have the form X[ATS]XXXXXX[FW],
where the amino acids in square brackets indicate dominant
anchor residues andX denotes an indeterminate amino acid
(Marsh et al. 2000). The region between the two anchors
is of variable length and affects the conformational struc-
ture of the bound peptide-HLA complex (Stewart-Jones
et al. 2005). We demonstrate how to extend our phylo-
HMMwD to incorporate motif-based epitope prediction
using HLA-B*57 as an example. We include the anchor mo-
tif in the model by replacing states E2 and E11 with anchor
states A1 and A2 in figure 1B . Because anchor motifs are
HLA specific, the architecture of the graphical model de-
scribing the sequence of hidden states will differ between
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HLA alleles. Epitope prediction may also be informed by
processing escape mutations that have been reported
in the N-terminal flanking regions of some epitopes
(Draenert et al. 2004). We therefore introduce three op-
tional flanking states F1, F2, and F3 prior to entry into the
first epitope state E1 in figure 1B . We will refer to thismodel
as a phylo-HMMwD+M, where the suffix “+M” indicates the
combining of a phylo-HMMwD with motif-based epitope
prediction.

To take account of the anchor motifs, we define an in-
dicator variable 1�i (r � λ), or 1�i for short, which equals
one if the proportion r of observed amino acids correspond-
ing to anchor residue i at site 	 is greater than or equal to
a predefined threshold λ and zero otherwise. In the case of
HLA-B*57, for example, 1�1 indicates whether the propor-
tion of sequences with Ala, Thr, or Ser at site 	 exceeds λ.
The indicator variable 1�2 is similarly defined with respect
to Phe and Trp. The probability of emitting column X� un-
der the i th anchor state is then
pAi
(X�|ψψψ′) =

∑
j∈{0,1}

pAi
(X�|1�i = j ,ψψψ′)pAi

(1�i = j |ψψψ′)

= pAi
(X�|1�i = 1,ψψψ′)

because pAi
(1�i = 0|ψψψ′) = 0 and pAi

(1�i = 1|ψψψ′) = 1.
Setting pAi

(X�|1�i = 1,ψψψ′) = pE (X�|1�i = 1,ψψψ′), we ob-
tain

pAi
(X�|ψψψ′) =

{
pE (X�|ψψψ′)

pE (1�i=1|ψψψ′) if 1�i = 1

0 otherwise,

because pE (X�|1�i = 0,ψψψ′) = 0 when 1�i = 1 and thus
pE (X�|ψψψ′) = pE (X�|1�i = 1,ψψψ′)pE (1�i = 1|ψψψ′). The
probability pE (X�|ψψψ′) is given by equation (4) and we ap-
proximate pE (1�i = 1|ψψψ′) with the proportion of align-
ment sites at which 1�i = 1. Note that if λ = 0, 1�i = 1
at all sites and the anchor residues will not inform epitope
prediction. Larger values ofλwill result in anchor state emis-
sion probabilities of zero at some sites and thereby restrict
epitope predictions to those regions where the anchor mo-
tifs are observed in at least some of the aligned sequences.
In our analyses, we setλ = 0.3 andwill therefore not detect
epitopes when the anchor residues are only present in less
than 30% of sequences. It is worth noting that at almost 90%
of the sites in our alignment, the most common amino acid
occurred at a frequency greater than 80% andour results are
consequently robust to the choice of λ.

Implementation
Given an inferred topology (see below) and assuming F3×4
codon equilibrium frequencies, all other mutational param-
eters in equation (3) and the branch lengths were esti-
mated by maximum likelihood in HyPhy (Kosakovsky Pond
et al. 2005) under a standardMG94×HKY85Dual GDD3×3
model of codon substitution (i.e., without the factor involv-
ing ζ in equation (3)). Site likelihoods were then computed
under the Halpern–Bruno model defined by equation (3)
for discrete values of γ and γ0 given the previously inferred
mutational parameters and branch lengths. The hyperpa-
rameters of the prior distributions on γ and γ0 and the

transition probabilities between hidden states were opti-
mizedwith the Baum–Welch algorithm implemented in the
R Language and Environment for Statistical Computing
(R Development Core Team 2009). The initial state prob-
abilitieswere constrained such that the Viterbi path always
begins in the nonepitope state. The computer code is freely
available from the corresponding author.

In order to determine the extent to which our results
depend on the inferred phylogeny, we estimated several
maximum likelihood topologies using PhyML (Guindon and
Gascuel 2003) and GARLI (Zwickl 2006). Fifteen trees were
estimated with different starting topologies in PhyML by
specifying a general time reversible model of nucleotide
substitution with variable substitution rates modeled by a
four-category discrete gamma distribution with unit mean.
Branch swaps were achieved by subtree pruning and regraft-
ing and nearest neighbor interchange. A further 20 trees
were inferred with GARLI under a GY94×HKY85 codon
substitutionmodel with nonsynonymous rates drawn from
a three-category general discrete distribution. We trained
our phylo-HMMs using several of the highest scoring
topologies and did not find any substantive differences in
our results. The phylogeny ultimately used here was re-
solved in PhyML and had the highest likelihood score com-
puted in HyPhy under the MG94×HKY85 Dual GDD 3×3
model of codon substitution.

Results
We applied ourmodels to amultiple alignment of 506HIV-1
subtype C Gag p17 and p24 sequences described in Materi-
als and Methods. All amino acid positions discussed below
correspond to those of the HXB2 reference strain.

Predicted HLA-B*57-restricted epitopes
Webegin by considering the specific case of HIV-1 evolution
in the context of the HLA-B*57 allele for which immune-
mediated escape and compensatory mutations have been
extensively documented. Twenty-six of the 502 HLA-typed
individuals in this study were HLA-B*57 positive (HLA-
B*57+). The majority (15/26) of these individuals expressed
the HLA-B*5703 molecule as expected in African popula-
tions (Cao et al. 2004), whereas 7 expressed HLA-B*5702,
and the remainder were typed at two-digit resolution only.
Molecular differences between HLA-B*57 alleles do not,
however, significantly affect peptide-binding affinity and
we therefore expect a considerable overlap in their bound
peptide repertoires (Stewart-Jones et al. 2005), although dif-
ferential T-cell receptor recruitment may result in subtype-
specific escape (Yu et al. 2007).

A comparison of the integrated site likelihoods of the
HLA-B*57-restricted epitopemodel and nonepitopemodel
is presented in figure 2. For each site in Gag p17 andp24, we
computed the Bayes factor

B =
pE (X�|ψψψ′)
pN (X�|ψψψ′)

assuming flat priors on γ and γ0 given γ and plotted
2 ln(B ), which is on the same scale as the likelihood ratio
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FIG. 2. Bayes factors comparing the HLA-B*57-restricted epitope model to the nonepitope model at each site in HIV-1 Gag p17 and p24. Shaded
regions indicate the degree of evidence in favor of the epitope model: white indicates negligible evidence, light gray indicates positive evidence,
intermediate gray indicates strong evidence, and dark gray indicates definitive evidence (Kass and Raftery 1995). Prominent escape mutations
known to be associated with the HLA-B*57 allele are annotated. Black dots indicate sites with a significant (q < 0.2) association between host
HLA and HIV mutations as determined by the phylogenetically correctedmethod described in Bhattacharya et al. (2007).

test statistic (Kass and Raftery 1995). The results of the two-
state phylo-HMM and phylo-HMMwD+M are illustrated in
figure 3 for a region of the p24 protein known to contain im-
munodominant HLA-B*57-restricted epitopes. The results
for the entire Gag p17 and p24 region are given in supple-
mentary figures S1 and S2, SupplementaryMaterial online.

Strong HLA-B*57-mediated selection pressure has been
described in and around three peptides in the Gag p24 cap-
sid region (Chopera et al. 2008;Crawford et al. 2009), namely
ISW9 (147ISPRTLNAW155), TW10 (240TSTLQEQIAW249), and
KF11 (162KAFSPEVIPMF172) (anchor residues are under-
scored). Escape from ISW9 occurs first during acute HIV-
1 subtype C infection in HLA-B*57+ African populations
(Crawford et al. 2009). The processing escape mutation
A146P is often observed in the N-terminal flanking posi-
tion of this epitope and prevents ER aminopeptidase I from
cleaving an N-extended peptide to an optimal size for bind-
ing to the HLA-B*57 molecule (Draenert et al. 2004). A fur-
ther escape substitution of Ile for Leu at site 147 has also
been described (Draenert et al. 2004; Peters et al. 2008).
Figure 2 shows strong evidence in support of the epitope
model at position146 andpositive evidence at position 147.
The two-state phylo-HMMcaptures both escapemutations
with sharp peaks in the posterior probability of the epi-
tope state at sites 146 and 147 in figure 3. Viterbi decod-

ing of the phylo-HMMwD+M correctly predicts the ISW9
epitope.

Two escape sites at positions 242 and 247 within the
TW10 epitope are identified by large Bayes factors in
figure 2 and high posterior probabilities in figure 3. The for-
mer position corresponds to the well-known T242N muta-
tion observed in almost all HLA-B*57+ individuals (Brumme
et al. 2008), whereas a mutation from Ile to Val at the lat-
ter position appears to be specific to HLA-B*57+ individ-
uals infected with HIV-1 subtype C (Crawford et al. 2009).
The T242N mutation disrupts critical interactions with the
host protein cyclophilin A (CypA) resulting in a 10-fold re-
duction in viral replicative capacity (Borghans et al. 2007).
This fitness loss may be partially restored by compensatory
substitutions, particularly in or near the CypA-binding loop
upstream of the TW10 epitope (Brockman et al. 2007). In-
deed, figure 3 indicates some, albeit weaker, evidence in
favor of the epitope state at sites corresponding to the pre-
viously described H219Q and M228I/L compensatory mu-
tations within this region.

The KF11 epitope is immunodominant during chronic
infection (Leslie et al. 2005). Escape mutations have been
described at positions 163 and 165 within this epitope, al-
though their prevalence depends on the HIV-1 subtype and
the specific HLA-B*57 allele, with more frequent escape

FIG. 3. Posterior probabilities of the epitope state for HLA-B*57 in HIV-1 Gag p24 based on the two-state epitope model. Gray-shaded regions
indicate epitopes predicted by Viterbi decoding of the phylo-HMMwD+M with the posterior probability of each epitope given on the top right-
hand corner. Predicted anchors are shaded in dark grey and flanking regions are shaded in light gray. Black dots indicate epitopes predicted by
Viterbi decoding of the two-statemodel. The best defined or “A-list” epitopes described in Yusim et al. (2009) are indicated with white text against
a black background.
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observed in clade C sequences in the context ofHLA-B*5703
(Yu et al. 2007). It is therefore not surprising that our two-
state phylo-HMM predicts both these mutations. Indeed,
the Bayes factors too favor the epitopemodel at these posi-
tions. Amutation fromAla toGly at position 163 occurs first
in HLA-B*57+ individuals and inhibits intracellular process-
ing of the epitope precursor but compromises viral fitness
substantially (Leslie et al. 2005). This fitness cost is partially
restored by a compensatory substitution of Ser for Asn at
position 165, which may explain the lower Bayes factor and
posterior escape probability at this site relative to position
163.

Finally, a further B*57-restricted epitope QW9
(308QATQDVKNW316) has also been mapped to the
p24 capsid protein (Stewart-Jones et al. 2005). Two mu-
tations within this epitope, namely S310T and E312D,
have been described (Navis et al. 2007). However, these
mutations represent the most common variant of QW9 in
HIV-1 subtype C and do not appear to be the result of CTL
escape (Currier et al. 2005). Correspondingly, we too do
not find any evidence of escape at these or any other sites
within the QW9 epitope.

Epitope Predictions for Other HLA Alleles
We used our phylo-HMMs to predict epitopes for a fur-
ther 31 HLA alleles that were observed at relativelyhigh fre-
quencies and for which anchor motifs were available in the
Los Alamos HIV Molecular Immunology Database. For each
HLA allele, the phylo-HMMwD+M was defined to accom-
modate epitopes of 8 to 11 amino acids in length with an
N-terminal flanking region of 3 amino acids. Full plots of the
epitopes predicted in HIV-1 Gag p17 and p24 are provided
as supplementary figures S1 and S2, Supplementary Mate-
rial online, for all the HLAmolecules considered. The anchor
motifs used for each allele are given in supplementary table
S1, SupplementaryMaterial online.

Overall, Viterbi decoding revealed 81 and 65 epi-
topes across all HLA alleles in the phylo-HMMwD and
phylo-HMMwD+M, respectively, compared with 191
nonoverlapping epitopes identified by simply counting the
number of segments with appropriately spaced anchor
residues present in at least 30% of sequences (see sup-
plementary table S2, Supplementary Material online, for
details). The results clearly indicate that the number of
potential epitopes based solely on anchor motifs is much
larger than that predicted by either phylo-HMM consid-
ering evolutionary information. Indeed, the phylo-HMMs
limit the set of predictions to only those epitopes, which
exhibit HLA allele-dependent immune escape. We also
examined the proportion of predicted epitopes, which
overlap with known epitopes documented in Yusim et al.
(2009) for each of the three methods but did not find
any notable differences (anchor motifs only, 0.33; phylo-
HMMwD, 0.26; and phylo-HMMwD+M, 0.37). However,
predicted epitopes that are unknown are not necessarily
false positives, and, in fact, these are more likely to be valid
epitopes under the phylo-HMMwD+M where predictions
satisfy anchor motifs and exhibit immune-mediated escape

patterns. Moreover, we envisage that our model be com-
bined with additional sequence and structural information
so as to further reduce the number of false positives that
may occur.

Many well-known epitopes do not conform to the doc-
umented HLA-binding motifs and will be missed by the
phylo-HMMwD+M. For example, none of the known HLA-
B*5802-restricted epitopes in HIV-1 Gag p17 and p24 doc-
umented in Yusim et al. (2009) contain the anchor motif
X[ST]XXX[R]XX[F] suitable for binding to an HLA-B*5802
molecule (Marsh et al. 2000; Schuler et al. 2007). The
two-state epitope model and phylo-HMMwD are likely to
be more useful in such cases where there may be uncer-
tainty regarding the binding motif. For example, the pos-
terior probabilities of the two-state model for HLA-C*04
clearly indicate strong immune pressure within the known
HLA-C*04-restricted epitope QW9 (308QATQDVKNW316),
even though this epitope is undetected by the phylo-
HMMwD+M, which specifies a Tyr, Phe, or Pro B-pocket
anchor residue and a Leu, Phe, or Met F-pocket anchor
residue.

Discussion
Pathogens, such as HIV-1, adapt to common immune
responses in host populations (Kawashima et al. 2009)
and to the immune repertoire of specific infected hosts
(Bhattacharya et al. 2007). This phenomenon has attracted
substantial interest in the HIV-1 field, partly because it pro-
vides insights into the future trajectory of the pandemic but
also because the interplay between the immune response
and the evolving virus is an essential component of HIV-
1 disease dynamics. In this work, we have developed the
first mutation–selection model of CTL escape, incorporat-
ing host HLA information explicitly into the evolutionary
model. We can then make use of model comparison tech-
niques to identify sites within the virus that are correlated
with host HLA alleles. Amino acid positions that support
the model of epitope evolution are consistent with viral
polymorphisms that have been reported as associated with
the host HLA genotype. Because CTLs recognize linear epi-
topes, we can incorporate this model into a phylo-HMM to
predict epitopes on the basis of patterns of evolution at
contiguous amino acid positions. Indeed, the possibility of
combining evidence from evolutionary models over con-
tiguous sites makes the problem of predicting linear epi-
topes a natural application of phylo-HMMs.

Current methods for predicting T-cell epitopesare based
on the characteristics of individual amino acid sequences
that affect peptide processing in the endogenous pathway
or binding by HLA molecules. As described above, epitopes
are also associated with characteristic patterns of evolution
and we demonstrate here that the phylo-HMM framework
allows us to integrate this evolutionary evidence into an ex-
isting sequence-based strategy to enhance epitope predic-
tion. In doing so, we shift the focus from the prediction of
epitopes in individual sequences to the prediction of epi-
topes that tend to occur in a set of viruses circulating in
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a host population for which HLA data are available. Our
approach is unlikely to identify all the potential epitopes
in a given sequence; rather, it is designed to identify epi-
topes that are associated with consistent patterns of im-
mune escape and reversion. This is the case for many
well-studied and important epitopes in HIV-1. Epitopes that
exhibit consistent patterns of immune escape and rever-
sion are significant because they frequently correspond to
immune responses for which there are a limited number
of possible escape pathways and for which escape mu-
tations incur a fitness cost, such that they tend to re-
vert upon transmission to a host lacking the required HLA
allele.

The evolutionary models are fitted separately for each
HLA allele, followed by decoding of the phylo-HMM to
predict the corresponding epitopes. However, HLA alle-
les do not occur independently of one another. Instead,
it is possible for different HLA alleles to cooccur more of-
ten than would be expected by chance, either as a result
of linkage disequilibrium or population structure. To iden-
tify HLA alleles that cooccur, we carried out Bonferroni-
corrected Fisher’s exact tests (supplementary table S3,
Supplementary Material online) and subsequently exam-
ined the epitope predictions of the associated alleles to
see if we could identify false positives resulting from link-
age. In several cases, common peaks in the posterior
probabilities of the epitope state based on the two-state
epitope model are observed for HLA alleles, which exhibit
significant linkage disequilibrium (see, e.g., the p17 region
in supplementary figure S1, Supplementary Material on-
line, for HLA-B*4201 andHLA-C*1701). Undocumented epi-
topes predicted by the phylo-HMMwD+M and presented
by such HLA molecules were screened and highlighted as
potentially spurious where appropriate. However, in most
cases, the specification of HLA specific–binding motifs
in the phylo-HMMwD+M eliminates these potential false
positives.

The characteristic pattern of HLA-associated evolution
provides a basis for epitope prediction, which is orthogo-
nal to the characteristics of individual sequences. As a result,
it is possible to combine this with any existing sequence-
or structure-based epitope prediction strategy. We demon-
strated this using the example of motif-based epitope
prediction. Because the sequence motifs associated with
HLA binding have a low-information content, an epitope
prediction method that considers motifs exclusively has a
very high false positive rate. Combining the phylo-HMM
with motif-based prediction, we were able to substantially
reduce the number of predicted epitopes.We argue that the
resulting predictions are the most relevant because they are
associated with a shared pattern of immune escape and re-
version across different infections. The combination of the
phylo-HMM with motif-based prediction also provided a
fully probabilistic approach to epitopeprediction and is eas-
ily interpretable. For example, we can calculate the poste-
rior probability of an epitope at each amino acid site using
the forward–backward algorithm, which is accurate given
the explicit assumptions of the model. Consequently, we

present the phylo-HMM as a general epitope prediction
framework, which may be readily adapted to combine evo-
lutionary evidence of an epitopewith any other epitope pre-
diction method.

Supplementary Material
Supplementary figures S1 and S2 and tables S1, S2, and
S3 are available at Molecular Biology and Evolution online
(http://www.mbe.oxfordjournals.org/).
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