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Simple Summary: Autophagy is a self-eating mechanism that is involved in the degradation of
organelles and cellular materials. It is initiated by intracellular and extracellular stress stimuli. In
the context of tumor development, microenvironmental hypoxic stress regulates autophagy that, in
turn, promotes cancer-cell death or cancer-cell survival. Autophagy functions and shares molecular
players with other cell-death promoting pathways such as apoptosis. Here, we discuss the spatial and
temporal control of autophagy that could result in opposing cellular outcomes. We also address the
role of immune cells polarization in this context. This knowledge is essential for efficiently targeting
autophagy in conjunction with immunotherapy for improved cancer treatment.

Abstract: Programmed cell death or type I apoptosis has been extensively studied and its contribution
to the pathogenesis of disease is well established. However, autophagy functions together with
apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction
process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive
for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by
inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy
reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts
as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent
manner. We also shed light on the relationship between autophagy and immune response in this
complex regulation. A better understanding of the autophagy mechanisms and pathways will
undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer
immunotherapies.

Keywords: hypoxia; apoptosis; inflammation; cell survival; stemness; tumor resistance

1. Introduction

Cell fate decisions of whether to live or to die are tightly regulated by a complex
system of balanced signaling pathways and these decisions correlate directly with health
and disease. Cells need to cope with a multitude of variable intracellular and environmental
stress stimuli, responses to which, are linked to cytoprotection or cytotoxicity. In this regard,
the tumor microenvironment (TME), including deprivation of adequate oxygen supply,
namely hypoxia, plays an important role [1,2]. Compared to normal cells, cancer cells
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may adapt faster to microenvironmental modifications, i.e., by activating multiple stress
response pathways, and circumventing anti-proliferative signals and cell death inducing
signals. In response to hypoxia, cells activate the transcription factor hypoxia-inducible
factor-1α (HIF-1α) that, in turn, activates numerous hypoxia inducible genes and thus
promotes angiogenesis to boost proliferation of tumor vasculature.

Hypoxia also activates additional pathways including autophagy, which is a regulated
program for the degradation and recycling of cellular components that has been shown
to play a crucial role in the hypoxia-induced tumor response. Autophagy was initially
identified as a multistep catabolic process that promotes lysosome-mediated degradation
of nonessential or damaged cellular constituents [3]. Briefly, the process of autophagy is
initiated by the formation of phagophores, followed by the accumulation of autophago-
somes and the degradation of cargo by acid hydrolases in autolysosomes, which is the
organelle formed by the fusion of autophagosomes and lysosomes. Autophagy involves
five key regulatory steps, namely initiation, nucleation, elongation, lysosomal fusion and
degradation, and each step is regulated by a series of protein complexes that modulate the
autophagic activity [4–6].

Oxygen deprivation is considered the most established stimulus for the induction of
autophagy [7]. The net outcome of hypoxia-induced autophagy in the TME is complex
and controversial. Recent evidence suggests that autophagy is a double-edged sword
that may induce either cell death or cell protection. By clearing damaged organelles and
molecules, autophagy is involved in maintaining healthy cell function and protects the
organism against tumor development [8,9]. However, once the malignancy has developed,
autophagy may promote cancer cell survival and growth. Furthermore, autophagy allows
reprogramming of the tumor microenvironment and confers to the tumor the ability to
become resistant or sensitive to chemotherapy-induced toxicities [10]. As such, inhibition of
autophagy has recently evolved as a strategy to enhance the efficacy of chemotherapy [11].
Indeed, autophagy can have both pro and anti-tumor activities according to the cancer
stage, time, and extent of the ischemia [12].

Recent evidence has shed light on the processes involved in the regulatory role
of autophagy during hypoxia. Autophagy promotes cancer cell survival by producing
sufficient ATP via the recycling of free amino acid and free fatty acids, and thus helps
tumor cells overcome necrosis and apoptosis. Autophagy is also intimately associated
with cell death. Indeed, autophagic cell death has been characterized as type II of the three
identified forms of programmed cell death, apoptosis and necrosis being type I and type
III, respectively [13].

A better understanding of the molecular mechanisms underlying the complex dual
role of autophagy as a determining factor in the field of cancer biology, cancer immunology
and immunotherapy is needed. Thus, it is crucial to elucidate the functional consequences
of autophagy in shaping the stroma reactivity, reprogramming the tumor microenviron-
ment, and modulating tumor heterogeneity, all in the context of the enormous cellular
plasticity in cancer. This will be of major importance in order to integrate autophagy
induction or targeting in future cancer therapy approaches.

2. Microenvironmental Hypoxic Stress Induced Autophagy
2.1. As a Survival Mechanism for Hypoxic Cells

The most common stimuli that induce autophagy are oxygen deprivation and nutrient
scarcity. Under hypoxic stress, the transcription factor HIF-1α is stabilized and thus
activates the expression of multiple genes involved in signaling pathways that maintain
oxygen and energy homeostasis [14]. Three isoforms have been identified for the HIF-α
family, namely HIF-1α and HIF-2α, that are responsible for the hypoxia mediated cell
responses, and HIF-3α, of which less is known [15].

Hypoxia-mediated autophagy has been extensively studied; however, the exact signal-
ing pathways underlying the role of HIF-1α remain elusive [15,16]. HIF-1α is implicated
in regulating the expression of key genes involved in the initiation and progression of
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autophagosomes formation, including Bcl-2, adenovirus E1B 19 kDa-interacting protein 3
(BNIP3), Beclin 1, BNIP3-like (BNIP3L)/NIX, Phosphatidylinositol 3 kinase catalytic sub-
unit type 3 (PI3KC3), ATG7, ATG5, and ATG9A [17–22]. Mammalian target of rapamycin
complex 1 (mTOR C1) is a Ser/Thr kinase that controls cell growth [23]. mTOR is the major
downstream effector of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway [24].
The activity of mTOR is inhibited under nutrient starvation or oxygen deprivation [25,26],
an essential step for autophagy induction (Figure 1). Moreover, autophagy can be promoted
through ULK1 phosphorylation during energy or nutrient loss by activated AMP-activated
protein kinase (AMPK). However, autophagy may itself also regulate HIF-1α stability, and
this might partially explain the opposing roles of autophagy in malignant tumors [27].
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1α has been shown to induce autophagy by increasing the expression of both BNIP3 and 
Beclin proteins in lung cancer cells, leading to cisplatin resistance [28]. The interaction 
between Beclin-1 and Bcl-2 is regulated by BNIP3 and BNIP3L/NIX, both transcriptionally 
induced under hypoxia, and can disrupt the inhibitory interaction between Bcl-2 and Be-
clin-1, due to the higher affinity of Bcl-2 to BNIP3 [29]. Therefore, BNIP3 renders Beclin-1 
free to form a complex with VPS34 that is otherwise inactivated in the presence of Bcl-2, 
and subsequently promotes the nucleation of isolated membranes [29] (Figure 2). Hypoxia 
can further enhance the expression of BNIP3 by Ras and E2 transcription factor (E2F) 
which, in turn, can be reduced by the activity of both retinoblastoma protein (Rb) and NF-
kB [30–33]. Studies showed that silencing the expression of BNIP3 and BNIP3L/NIX com-
pletely inhibits autophagy induction by hypoxia in CCL39 cells and renders them pro-
apoptotic proteins [34,35]. In addition, these cells become sensitive to etoposide-induced 

Figure 1. A model of hypoxia-induced autophagy and cell death. Inactivation of mTOR during hypoxia leads to the
initiation of autophagy. Hypoxia inactivates mTOR downstream of PI3K and AMP pathways. On the other hand, hypoxia
causes Caspase 8 activation and subsequent apoptosis. TP53 plays a key role at the center of these pathways where it can
cause cell cycle arrest, and promote autophagy or apoptosis.

The impact of HIF-1α on autophagy occurs through BNIP3 and Bcl-2 regulation. HIF-
1α has been shown to induce autophagy by increasing the expression of both BNIP3 and
Beclin proteins in lung cancer cells, leading to cisplatin resistance [28]. The interaction
between Beclin-1 and Bcl-2 is regulated by BNIP3 and BNIP3L/NIX, both transcriptionally
induced under hypoxia, and can disrupt the inhibitory interaction between Bcl-2 and
Beclin-1, due to the higher affinity of Bcl-2 to BNIP3 [29]. Therefore, BNIP3 renders Beclin-1
free to form a complex with VPS34 that is otherwise inactivated in the presence of Bcl-2,
and subsequently promotes the nucleation of isolated membranes [29] (Figure 2). Hypoxia
can further enhance the expression of BNIP3 by Ras and E2 transcription factor (E2F) which,
in turn, can be reduced by the activity of both retinoblastoma protein (Rb) and NF-kB [30–
33]. Studies showed that silencing the expression of BNIP3 and BNIP3L/NIX completely
inhibits autophagy induction by hypoxia in CCL39 cells and renders them pro-apoptotic
proteins [34,35]. In addition, these cells become sensitive to etoposide-induced apoptosis
under hypoxic condition [36]. Similarly, BNIP3 induces mitochondrial dysfunction and
promotes autophagy and apoptosis in neonatal cardiac myocytes under hypoxia [37].
Thus, BNIP3 and BNIP3L/NIX proteins are essential inducers of autophagy in response to
hypoxia. Both BNIP3 and BNIP3L/NIX are found to be overexpressed in carcinoma cells of
various origins including breast cancer under hypoxic induction [15], and high expression
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of BNIP3L correlates with shorter disease-free survival time [38]. In contrast, BNIP3 was
not found to be expressed in other cancer cell types including pancreatic cancer, gastric
cancer, multiple myelomas, and primary colorectal cancers (CRCs), rendering these cells
more prone to resist apoptosis [39,40], and a decrease in BNIP3 expression has been shown
to lead to poorer survival and cell proliferation in renal cell carcinoma (RCC), as well as
pancreatic and CRCs [41–43].
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Figure 2. Autophagy induced by hypoxia promotes cancer cell survival. Hypoxia-inducible factor HIF-1 promotes
transcription of BNIP3, thereby activating Beclin-1 by disrupting the Bcl-2-Beclin-1 complex. Free Beclin-1 associates with
VPS34 and results in the activation of autophagy. Autophagy functions in both helping cells resist stress, by promoting
EMT and CSC survival, and induction of cell death. The cytotoxic effects of the immune cells that infiltrate the tumor
microenvironment are attenuated by autophagy.

Together, these results point to an inconsistent correlation between BNIP3 and HIF1
expression in several cancers [44]. This is further demonstrated in RCC tumor tissue where
BNIP3 and VHL expression levels are lower compared to adjacent non-tumor tissues,
whereas the expression of HIF-1α was higher in the same tumor tissues. Epigenetic regu-
lation of BNIP3 further adds to the complex regulation of this gene. In RCC, acetylation
of the BNIP3 gene results in an increase in its expression as well as inhibiting cell prolif-
eration [42]. This is in contrast to results in hepatocarcinoma where demethylation and
not acetylation of BNIP3 promoter restores its expression [45]. Even though the role of
BNIP3 in regulating hypoxia inducing autophagy is established, hypoxia inducing BNIP3
expression may not be involved in the induction of autophagy [46] and autophagy may
also be induced independently of HIF-1α expression [47,48]. These results indicate that
there is delicate balance contributing to cell survival and cell death, making it exceedingly
difficult to determine the stage at which targeting BNIP3 may be of benefit for tumor death
and patient survival.

During hypoxic conditions, cells must adapt to the consequences of reduced oxygen
availability, which has a direct negative impact on the cell’s capacity to produce ATP and
maintain energy homeostasis. Another important role of HIF-1α and autophagy in this
context is to increase the ability of the hypoxic cancer cells to activate signaling pathways
that promote ATP production independently of mitochondrial oxidative phosphoryla-
tion. HIF-1α induces increased glucose uptake, lactate production and reduces oxygen
consumption and production of reactive oxygen species (ROS) [49]. This synergetic ac-
tivity enhances the production of ATP and pyruvate and induces anaerobic glycolysis.
HIF-1α induces the expression of glucose transporters (GLUTs), and autophagy regu-
lates the uptake of glucose by increasing the plasma membrane translocation and activity
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of GLUT1 [50]. However, during hypoxia, cells cannot maintain adequate antioxidant
capacity, resulting in increased ROS levels. ROS subsequently promotes mitochondrial
outer membrane permeabilization (MOMP) process and increases the expression of the
pro-apoptotic proteins Bax/Bcl-2, Bax/Bcl-xL ratio, poly-(ADP-ribose)-polymerase (PARP)
fragments and caspases, leading to the eventual activation of apoptosis [51]. Moreover,
high levels of ROS may induce autophagy mediated cell protection. In fact, autophagy
reduces ROS levels through eliminating damaged mitochondria, through a process called
mitophagy that maintains a healthy and functional mitochondrial pool. Thus, autophagy
eliminates ROS and ROS damaged proteins, reduces cell damage and inhibits cell death,
and enhances cell survival mechanisms, as it was shown in myocytes and kidneys subject
to ischemia/reperfusion (IR) [52,53]. Moreover, cells treated with ROS scavenger (NAC) re-
duce both ROS levels and autophagic flux [54]. Importantly, on the one hand, this negative
feedback between autophagy and ROS protects cells from oxidative damage and ultimately
from death [55]. On the other hand, however, HIF-1 activation is regulated by ROS, which
mediates HIF-1 nuclear translocation and stabilization and, in turn, triggers the expression
of HIF dependent genes, including BNIP3/NIX [56].

2.2. Autophagy Promoting Immunosuppression

There is a plethora of evidence available on the role of autophagy in tumor evasion
from immune surveillance [57]. For example, M2 Macrophages cause immune suppression
and thus help the tumor escape from immune surveillance. Upon inhibition of autophagy
in tumor cells, the release of TRAPs (tumor cell-released autophagosomes) is prevented.
TRAPs can cause the polarization of macrophages towards M2 like phenotype, thus pro-
moting immunosuppression [58]. In the mouse model of breast cancer, inhibition of
autophagy by knockout of the focal adhesion kinase family interacting protein of 200 kDa
(FIP200) decreases tumor progression and increases the infiltration of anti-tumor CD8 +
T cells [59]. Similar results of autophagy inhibiting CD8 + T recruitment were observed
in lung cancer models [60]. Further evidence comes from human melanoma cells where
autophagy inhibition led to a decrease in tumor growth and an increase in accumulation of
anti-tumor T cells [61] and Natural killer cells [62]. Regulatory T (T regs) cells exert their
immune suppressive functions on other immune cells and hence maintain tolerance for
tumors; upon deletion of ATG7 from T regs, the suppressor function was compromised and
anti-tumor CD8 + T cells infiltrated, which resulted in the inhibition of tumor growth [63].
Lastly, autophagy inhibition in Myeloid-derived suppressor cells (MDSC) enhances MHC
II expression and T cell activation, and, at the same time, reduces tumor growth [64]. These
results indicate that autophagy plays a significant role in helping the tumor cells to evade
immune surveillance.

2.3. Autophagy Promoting Tumor Resistance to Immune Cell-Mediated Cytotoxicity

During the anti-tumor response, malignant cells are eradicated by the cytotoxic ma-
chinery of the immune system including natural killer (NK) cells and cytotoxic T cells
(CTLs). Accumulating evidence indicates that the hypoxic microenvironment contributes
to cancer cell resistance to immune cell mediated killing, which can be detrimental to anti-
tumor effector cell functions. In previous studies, we provided evidence indicating that the
quality of the adaptive and innate immune or NK cell cytotoxic responses and survival
pathways are shaped by autophagy; subsequently, this may impact the clinical benefit
of immune cell-based therapies. In this regard, our studies first established a functional
link between the regulation of antigen-specific T-cell lysis and autophagy, and this points
to a major role for autophagy in the promotion of tumor growth in vivo [60]. We have
demonstrated that blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell
activity and promotes regression. Very recently, Lawson et al., identified autophagy as a
conserved mediator in the CTLs-evasion by cancer cells; they also showed that autophagy
is required to resist IFNγ and TNF-induced cytotoxicity [65]. Nevertheless, Okamura
et al., have shown that autophagy is effective in creating CTL epitopes that mimic tumor-
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associated antigens, suggesting that the processing of ubiquitously expressed proteins by
autophagy mechanisms could contribute to the generation of specific tumor-associated
antigens [66]. Akalay et al., reported that in addition to the well-characterized role of
epithelial to mesenchymal transition (EMT) in cancer cell phenotypic changes that include
a tumor-initiating cell phenotype, EMT-induced cancer cell resistance to CTLs mediated
cell lysis, which correlates with the induction of autophagy [67].

Several studies demonstrated that autophagy is a key regulator of the innate immune
response. Specifically, Janji et al., have elegantly demonstrated that the susceptibility of
breast cancer cells to NK-mediated lysis is impaired by hypoxia-induced autophagy, and
that this is reversed by targeting autophagy [68]. We provide evidence that the activation
of autophagy in hypoxic cells blocks the NK-mediated target cell apoptosis; this is due
to autophagy being involved in the selective degradation of GZMB/granzyme B, a pro-
apoptotic NK-derived serine protease [68]. Similarly, it has been reported that tumor cells
utilize autophagy to evade immune attack by degradation of MHC-1 [69] and Connexin
43 [70] (Figure 3). Degradation of these surface molecules prevents the formation of the
immunological synapse. In a recent study, it has been demonstrated that targeting Beclin1
inhibited tumor growth; in addition, for NK-cells to infiltrate the tumor bed, they relied on
CCL5 overexpression by the autophagy-defective tumors [62]. More importantly, Messai
et al., demonstrated that HIF-2α led to overexpression of ITPR1, which subsequently
regulated the NK-mediated killing by activating autophagy in target cells via NK-derived
signal. Interestingly, NK-induced autophagy was inhibited by silencing both ITPR1 and
Beclin-1, and this subsequently increased granzyme B activity in target cells [71]. Finally,
we have shown a correlation between melanoma patients failing to respond to anti-PD1
(pembrolizumab) immunotherapy and increased levels of glycogen branching enzyme1
(BNIP3/GBE1) [38]. This result thus indicates that hypoxia, which elevates glycogenic flux
and autophagy, is a critical molecular program that could be considered as a prognostic
factor for melanoma.
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Figure 3. Autophagy as a double-edged sword: Autophagy induces the secretion of tumor promoting proinflammatory
factors (ATP, IL-1b, LIF, CXCL8, IL6, IL-8, HMGB1) and helps in immune evasion, either by degradation of anti-tumor
factors (MHC-1, Granzyme B and Connexin 43) or by promoting immune suppression.

2.4. Microenvironmental Hypoxic Stress Induced Autophagy as a Modulator of Tumor
Immunogenicity and Adjuvanticity

Hypoxia may play an important role as a driver of intratumor genetic and non-genetic
heterogeneity, and greatly affect the composition of the tumor immune microenviron-
ment [72]. Microenvironmental hypoxic stress induced autophagy may benefit cancer cells
through cytoprotective cancer cell intrinsic mechanisms and through increased resistance to
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cell-mediated cytotoxicity, as discussed above. Recent accumulating evidence also demon-
strates that autophagy is directly involved in the processing and presentation of cancer cell
endogenous antigen by MHC-I, and also by exogenous antigen presentation by MHC-II,
on professional antigen presenting cells (Chapter 10 from Reference [73]). Thus, autophagy
has been established as an important player in the dynamic process of “immunoediting”
where cancers evolve to avoid immune recognition and killing [74], and autophagy is
also being explored as a target experimentally in order to shift the balance from cancer
cytoprotection to “immunosurveillance”. Although much is yet to be learned about the
role of autophagy in the context of cancer therapy (Chapter 8. From Reference [73]), the
high-pre mortem autophagy of tumors, in particular, may eventually be exploited to aid in
the process of immune cell infiltration through increased release of immune stimulatory
signals.

In order to initiate the immune response to effectively eradicate cancer cells, multiple
sequential steps described by Chen and Mellman as the “cancer immunity cycle” must be
fulfilled [75]. Recently, the role of autophagy in the initial step of the cancer immunity cycle
has received a lot of attention in the cancer research community. In this step, professional
antigen-presenting cells (APCs) capture and release cancer neo-antigens. In brief, upon
encountering cancer neo-antigens, the professional APCs exit the tumor microenvironment
and travel to the lymph node where they present the cancer antigens to the T-cells via their
MHC molecules. This process educates T-cells to recognize and act upon the presented
epitope of the cancer neo-antigen and activates the T-cells. In the subsequent step, the
activated T-cells enter the vasculature and home to the tumor site where they infiltrate
the tumor microenvironment and may finally recognize and eliminate the neoantigen
expressing cancer cells [75]. In order to initiate the cancer immunity cycle successfully, the
expression of cancer-associated antigens harboring the potential to be recognized by APCs
(i.e., the immunogenicity) alone is not sufficient. Additional signals specifically potentiating
a robust immune response (i.e., adjuvanticity) are also required for robust initiation of
the “cancer immunity cycle” [76,77]. Thus, the ultimate goal of cancer immunotherapy
is to enable re-activation or de-repression of a halted cancer immunity cycle through
targeting and increasing the efficiency of each step of the “cancer immunity cycle” [78].
Increased release of danger/damage-associated molecular patterns (DAMPs), which act as
immunoadjuvant signals in the tumor immune microenvironment and exert their effect
by bridging the innate and adaptive arms of the immune system, has been linked to high
pre-mortem autophagy. In brief, DAMPs include “find me” signals, such as the release
of chemokines or ATP into the extracellular space, and the exposure of “eat-me” signals,
including relocation of phosphatidylserine to the outer leaflet of the cell membrane as well
as cell surface externalization of calreticulin (CALR).

Upon extracellular exposure in the tumor immune microenvironment, DAMPs po-
tently activate the immune system through the binding of pattern recognition receptors
(PRRs) [79]. DAMPs are released by the cells as endogenous danger signals in response
to cell death or various modes of excessive cellular stress, including high pre-mortem
autophagy. Upon the subsequent activation of the DAMP receptors (including toll-like
receptors (TLRs) and the receptor for advanced glycation and products (RAGE)), multiple
intracellular signaling pathways are activated, including mitogen-activated protein kinase
(MAPK), NF-κB, and phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathways [79].
Of note, although the relationship between the released DAMPs and autophagy in response
to cellular stress or injury is complex and seems to be highly context-dependent, it is con-
sidered likely to be important in regulating cancer progression and also modulating the
potency of anti-tumor treatments, and thus this issue deserves further attention to clarify
when and how autophagy could be targeted to increase adjuvanticity in the context of
improving cancer immunotherapy [80]. While still largely unexplored, the interdependent
regulation seems to be based on a finetuned molecular crosstalk where autophagy, on the
one hand, regulates the release as well as the degradation of DAMPs, and on the other hand,
autophagy itself may be triggered by the release of DAMPs [81]. While increasing evidence
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reveals that pre-mortem autophagy is important for the release of DAMPs, as discussed
in detail in our recent review (Chapter 8 from Reference [73]), autophagy itself may also
represent an attractive target in other clinical settings, for example, in oncogene-addicted
cancers and in less immunogenic cancers where the autophagy mediated adjuvanticity is
not expected to add substantially to the therapeutic benefit.

3. Autophagy and Apoptosis Relationship
3.1. Interplay between Autophagy and Apoptosis

Autophagy is generally considered a cell survival mechanism; it is a cell’s attempt
to cope with stress. Autophagy and apoptosis often take place in a sequence where
autophagy precedes apoptosis. Indeed, numerous reports have implicated autophagy
in the regulation or induction of cell death [82]. In certain situations, autophagy can
help to both induce apoptosis and process crosstalk through interconnecting signaling
pathways [83,84]. Nevertheless, the outcome of this regulation is still controversial and
the discrepancy in the outcomes can be correlated with a significantly different response
observed between normal and cancer cells.

As such, Beclin-1, an activator of cellular autophagy, is at the crossroad between
autophagy and apoptosis through direct interaction with anti-apoptosis family members,
including Bcl-2 and Bcl-XL [85]. Consequently, several BH3 (Bcl-2 Homology 3) only
proteins, including Bad, Bid, BNIP3, Noxa or Puma, well known to promote apoptosis, can
also promote autophagy by disrupting the inhibitory interaction between Beclin-1 and Bcl-2
or Bcl-XL. Another example highlighting the crosstalk between autophagy and apoptosis
is the capacity of Ser/Thr kinases (including Akt and JNK) to regulate both phenomena.
In particular, JNK can trigger both apoptosis and autophagy by phosphorylating Bcl-2
in its flexible loop between BH4 and BH3 domains, which decrease its inhibitory activity
on Beclin-1 and on pro-apoptotic members of the Bcl-2 family [82]. Although BH3-only
proteins stimulate apoptosis and autophagy, the exact sequential mechanism depends
on the intensity and duration of the stimulus. At low stress level, BH3-only proteins
promote Beclin-1 interaction with VPS34 to initiate autophagy. On the contrary, at high
stress level, BH3-only proteins have been shown to shift the cell response toward apoptosis
by activating the caspase cascades [86].

Autophagy can inhibit apoptosis by multiple mechanisms. The first mechanism is by
upregulating mitophagy. Mitophagy is induced by the loss of mitochondrial membrane
potential (∆Ψm), leading to increased inner membrane permeability and the ubiquitylation
of multiple outer membrane proteins such as voltage-dependent anion-selective channel
1 (VDAC1), mitofusin 1 (MFN1) and MFN2 promoting mitophagy [87–89]. Mitophagy
induction has been observed by an increasing accumulation of P62 in the pre-ischemic
cortex of a mouse model of transient middle cerebral artery occlusion (MCAO) treated with
rapamycin [90]. Thus, rapamycin could attenuate ischemic brain injury via the induction
of mitophagy. Moreover, ATG7 knock down or treatment with 3-methyladenine (3-MA)
inhibits autophagy and leads to the accumulation of damaged mitochondria in the cortex
of MCAO mice, the release of Cytochrome C and the activation of apoptosis [91]. These
results demonstrate that hypoxia-induced autophagy can prevent apoptosis by degrading
the mitochondria, thus inhibiting Cytochrome C release and subsequent apoptotic cascade
activation.

Autophagy can also inhibit apoptosis independently of mitochondria. In response to
hypoxia, externalized phosphatidylserine, as detected by Annexin V-FITC, increased in
EAhy926 cells treated with 3-MA accompanied with an increase in caspase 3 activity [92].
Another mechanism is by inducing the degradation of apoptotic proteins including the
active caspase 8 [93] or inhibitors of apoptosis (IAPs) [94]. For example, BRUCE, a member
of the IAP family, has been shown to accumulate in autophagy germline mutant egg,
indicating that autophagy eliminates BRUCE and reduces apoptosis [94]. In summary,
autophagy activation can promote cytoprotection by inhibiting apoptotic pathway interme-
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diates, such as by eliminating damaged mitochondria, reducing ROS levels, and blocking
caspase 3 activation.

However, apoptosis can also inhibit autophagy, mainly by caspase-mediated cleavage
of essential autophagy components [95]. The activation of caspases 3 and 8 causes ATG3,
ATG4D and Beclin-1 cleavage and suppression of autophagy [96,97].

In contrast to the previously mentioned effect, when the cellular capacity to cope with
stress is overwhelmed due to the intensity or the duration of the stimulus, autophagy can
activate apoptosis. Autophagy mediates apoptosis activation by the action of caspases.
Fragmented Beclin-1 can translocate to the mitochondria, causing mitochondria permeabi-
lization and the release of Cytochrome C [98], fragmented ATG4 may require a BH3 like
domain and induce apoptosis [96], and fragmented ATG5 translocates to the mitochondria
and activates apoptotic signals. Moreover, inhibiting autophagy by 3-MA was shown to
cause a reduction in the caspases’ activity post-ischemia, which prevents apoptosis [99].
Interestingly, inhibition of autophagy response could be related to the extent to which
autophagy is blocked. Knocking out ATG3 or ATG5 blocks the early steps of autophagy
and inhibits the subsequent activation of the caspases’ cascades; however, Bafilomycin A,
an inhibitor of late autophagy, increases caspases’ activity and eventually apoptosis [100].
Of note, autophagy can induce cell death; however, this occurs independently of the effects
of the autophagic flux, by a process known as autophagic cell death. Direct inhibition
of autophagy using pharmacological compounds or by reducing or depleting one of its
components prevents cell death in certain cancer cells [101–103].

3.2. Role of TP53 in Autophagy Induction and Regulation: Influence on Anti-Tumor Cytotoxic
Immune Response

Hypoxic stress, among other types of stressors, including oxidative stress and DNA
damage, induces activation of the tumor suppressor TP53. TP53 activates the expression
of genes to aid in stress adaptation. One component of the TP53-mediated transcriptional
response is the activation of autophagy (Figure 1).

Indeed, TP53 is positively and negatively involved in the regulation of autophagy [104],
and several mechanisms that function in the TP53-dependent autophagy initiation have
been described [105]. In particular, TP53 can activate autophagy through the induction
of Sestrin-1 and -2 [106,107], unc-51-like kinase 1 (ULK1) [108] or DRAM-1 expression.
Sestrin-1 and -2 are involved in AMPK phosphorylation, which, in turn, phosphorylates and
activates the TSC1-TSC2 complex, and consequently inhibits the signaling of mammalian
target of rapamycin (mTOR), one key autophagy inhibitor [106]. The serine/threonine
protein kinase ULK-1, a major component of the ULK complex, which also includes ULK-2
autophagy-related gene (ATG)-101, ATG-13 and FIP200, drives the formation of the initial
autophagosomal precursor membrane structure, also called phagophore [109]. On the
other hand, several studies demonstrated that TP53 stimulates anti-autophagic responses.
In particular, wildtype TP53 proteins localized in the cytoplasm display a negative effect
on autophagy [110,111] as gain-of-function mutant TP53 proteins which counteract the
formation of autophagosomes and their fusion with lysosomes [112,113].

Autophagy is, thus, a double-edged sword. On the one hand it can protect cells from
apoptotic cell death and, on the other hand, it can promote apoptosis depending on several
factors including cell type, extracellular nutrient supply, intracellular metabolic activity,
and triggering stimuli. Importantly, as mentioned earlier, autophagy contributes to tumor
cell resistance to immune killer cells; however, autophagy can also promote T cell or NK
cell induced apoptosis. For example, we have recently shown that, through the induction of
autophagy, mutant TP53 protein-reactivation increases GzmB- and NK cell-mediated killing
of breast tumor cells harboring a mutated TP53 [114]. Indeed, we showed that CP-31398 (a
TP53-reactivating small molecule) potentiates NK- and GzmB-mediated lysis by promoting
the TP53-dependent induction of Sestrin-1 and -2 and ULK-1 expression, resulting in
AMPK activation and mTOR inhibition and autophagosome formation. Moreover, CP-
31398-induced autophagy facilitates GzmB- and NK cell-induced mitochondrial outer
membrane permeabilization (MOMP) and caspase-3 cleavage in target cells though the
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selective autophagosomal sequestration of several anti-apoptotic proteins (including Bcl-
XL, Bcl-2 and XIAP). Consequently, this study serves to paint a more complex image of how
distinct autophagy induction and regulation mechanisms impact the anti-tumor cytotoxic
immune response.

4. Hypoxia Role in Linking Autophagy and Cancer Stem Cells

The effect of hypoxic stress triggers downstream pathways that further feed and
support tumor cell survival, aggressive behavior, and resistance to therapy. Cancer cells
undergo adaptive changes in response to hypoxia including EMT. In turn, EMT promotes
cancer stem cell (CSC) development. Autophagy has been hypothesized to be exploited by
CSCs as an adaptive mechanism to further sustain their survival (Figure 2). The complex
pathways involved in EMT, cancer cell stemness and autophagy are interconnected, and
are reversible. A trigger in the microenvironment can tip the balance in one direction or
the other challenging the cancer cells plasticity and response to environmental stresses.

Hypoxia in the tumor microenvironment is a main feature of solid malignancies.
HIF-1α stabilized by hypoxia upregulates several genes, that induce EMT and CSCs, to
promote survival in low-oxygen conditions. Hypoxic stress induces the induction of EMT
transcription factors SNAI1, SNAI2, TWIST1, and ZEB2 [115]. SNAIL, TWIST and ZEB2
are direct targets of HIF1α [116–119]; in addition, other master regulators have been shown
to mediate EMT processes downstream of hypoxia; these include TGFβ, STAT3, NOTCH
and NANOG [120,121]. EMT is a dynamic process that feeds into the CSCs induction
and maintenance pathways. Although CSCs account for only a small part of the tumor
bulk, they are assumed to be the main players involved in therapeutic resistance, cancer
relapse, and distant metastasis. HIF modulates, directly or indirectly, the expression of
genes involved in the initiation and maintenance of CSCs including OCT4, SOX2, KLF4,
MYC, NANOG, CRIPTO, as POU5F1, ALDH1A1, WNT and NOTCH [120,122,123].

Autophagy pathways rely on several factors including the type of stimulus, the cell
type, and the microenvironment. Hypoxia contributes to cell survival through the induction
of autophagy [124,125]. The link between autophagy, hypoxia and CSCs is attributed to
specific proteins that are working together in response to the hypoxic trigger. Specifically,
BNIP3/BNIP3L are HIF1α target genes that mediate the induction of autophagy under
hypoxic conditions, leading to cell survival [34]. Furthermore, the transcription factor
NANOG induced by hypoxia also binds to the promoter element of BNIP3L and induces
its expression [126].

Hypoxia inhibits signaling downstream of the PI3K/Akt/mTOR [127]; on the other
hand, mTOR is found to interact with and regulate HIF-1α [128–131]. Inhibiting mTOR
was found to reduce the viability of CD133+ pancreatic cancer cells [132] but also causes
an increase in CD133+ gastrointestinal cancer cells [131]; in this context, however, HIF-1α
induction down-regulated CD133 expression. Anti-cancer drug Gigantol is found to target
CSC via suppression of the PI3K/AKT/mTOR and JAK/STAT pathway in lung cancer
cells [133]. There is evidence that hypoxia can also activate mTOR in glioblastoma cell
lines [134]; upon activation mTORC1 binds to and phosphorylates ATG13 and ULK1 (as
part of the ULK1 complex), [135,136] upstream of the Beclin/PI3K complex [137]. In con-
trast Redd1, a negative regulator of mTOR increases in response to hypoxia; this happens
through the action of miR-7 that acts as a repressor of REDD1 and is downregulated un-
der hypoxic conditions [138]. Finally, KLF5, a transcription factor associated with cancer
tumorigenicity, increases under hypoxic conditions, and interacts with, and is regulated
by, HIF1α [139]. Knock down of KLF5 suppresses the resistance to anti-cancer cisplatin in
lung cancer cells, through inactivation of the PI3K/Akt/mTOR pathway [140]. Hence, the
signaling pathways involving mTOR and HIF-1α are cell context dependent.

5. Key Signaling Pathways Impacted by Autophagy in CSCs

Autophagy pathways are required for maintaining mesenchymal properties. Indeed,
inhibiting autophagy in mesenchymal like breast CSCs (BCSCs) results in the re-emergence
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of epithelial features with a concomitant reduction in CSCs [141]. Several proteins with
known functions in autophagy, including ATG4, Beclin and P62 have emerging roles in
EMT and/or CSCs maintenance. Overexpression of ATG4A promotes autophagy and
proliferation via the AMPK pathway [142]. High expression of ATG4A is associated with
poor overall survival of breast cancer patients [143]. Consistent with this, ATG4A promotes
the metastasis of gastric cancer cells in vivo and EMT in osteosarcoma [144,145] via the
Notch signaling pathway. Interestingly, inhibition of Notch signaling induces autophagy
via the (PTEN)-PI3K/AKT/mTOR pathway as well [146]. ATG4A positively impacts CSCs
as it promotes gastric CSC-like properties, maintenance, tumorigenicity and the EMT
phenotype [147]. Furthermore, ATG4A overexpression induces the expression of the CSCs
key genes, Sox-2, Oct-4 and Bmi-1, in gastric cancer cells [145]. Therefore, ATG4A plays a
positive role in several types of cancer cell survival and targeting it may prove beneficial.

Beclin1 is necessary for autophagy induction and is involved in EMT. Tumorigenicity
of breast CSCs is dependent on Beclin1 and autophagy [148], whereas knockdown of
Beclin1 impairs EMT in colon cancer cell lines [149], but also results in activation of STAT3
signaling in CRCs independently of its effects on autophagy [150]. STAT3 is an important
regulator of CSCs [151], and its nuclear localization induces autophagy [152]. Inhibiting
STAT3 reduces autophagy and tumor growth in the context of acute myeloid leukemia
(AML) both in vivo and in vitro [153]. Together, these results indicate that Beclin1 levels
modulate CSCs and autophagy through alternative pathways and targeting Beclin 1 may
be effective in specific cancer types and stages. P62 functions to activate Beclin1 and
autophagy, but it also can function as a negative regulator of autophagy, as is demonstrated
by the increase in autophagy following P62 knockdown in various cancer cell lines [154].
P62 expression is increased in BCSCs [155]; here, P62 inhibits the tumor-initiating frequency,
as well as the growth rate of BCSC-derived tumor xenografts in immunodeficient mice.
However, the role of P62 in the tumorigenicity is independent of its role in autophagy
pathways. This could be also due to CD44 expression that results in an increase in P62 and
subsequent NRF2 activation, leading to the activation of antioxidant response genes [156].
Knock down of P62 and DRAM1 in mesenchymal glioblastoma tumors results in a decrease
in aggressiveness and invasion of the glioblastoma stem cells [157]. Thus, targeting P62
may be effective in some cancers, as demonstrated by the inhibition of P62 in bladder cancer
that increases the sensitivity to the anti-cancer drug NVP-BEZ235, which also functions as
an inhibitor PI3K/mTOR [158].

6. Autophagy and Promotion of Inflammation

The link between autophagy and secretion of inflammatory cytokines was shown
when secreted factors from autophagy high and low melanoma cells were compared. It
was found that high autophagic activity was positively related to the increased protumor
cytokine production such as IL-1β, CXCL8 and LIF (Figure 3). Induction of autophagy in
the autophagy low melanoma cells led to increase in the secretion of protumor cytokines
and inhibition of autophagy in the autophagy high melanoma cells led to decrease in
the secretion of protumor cytokines [159]. In head and neck squamous cell carcinoma
(HNSCC), the cancer associated fibroblasts (CAFs) exhibit increased autophagy, which
helps in the progression of the disease. The authors show that CAFs in HNSCC show
increased secretion of IL6 and IL8 cytokines [160]. Another study used the co-culture model
system in which cancer cells and fibroblasts were cultured together; this led to the induction
of autophagy in the fibroblasts. Induction of autophagy upon co culture causes the secretion
of various protumor cytokines such as: IL-6, IL-8, IL-10, MIp1α, IFNγ, RANTES (CCL5) and
GMCSF [161]. Similarly, pancreatic satellite cells (PSCs) undergo autophagy and produce
IL-6 cytokine to promote pancreatic tumor growth, and the inhibition of autophagy in
PSCs reduced IL-6 and decreased invasiveness [162]. Another proinflammatory cytokine,
HMGB1, has been shown to be secreted from glioblastoma and hepatoma cells in an
autophagy dependent manner [163,164]. In response to chemotherapy, tumor cells release
ATP, which causes the recruitment of dendritic cells and T lymphocytes in the tumor bed.
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It was reported that the ATP release was mediated by autophagy and inhibiting autophagy
led to decreased ATP and recruitment of immune cells [165]. In conclusion, autophagy
promotes the secretion of various proinflammatory factors and most of these factors have
been shown to promote tumorigenesis, survival, metastasis, and proliferation [166–176].

7. Targeting Autophagy to Improve Current Cutting-Edge Therapy Approaches

Advancements in the understanding of interactive tumorigenesis signaling pathways
from in vitro and in vivo studies have changed the understanding of tumor therapies. More
specific and directed interventions have been developed, or are under development, to
regulate apoptotic sensitivity of tumor cells, contributing to the large number of compounds
produced, but few of them that had showed successful results in vivo, as was observed
in vitro. A plausible explanation is the interference of the tumor microenvironment with
the targeted signaling.

Because of the role of autophagy in pathways such as inflammation, apoptosis regula-
tion and EMT/CSC maintenance, targeting autophagy could be a valuable tool in targeting
cancer cells. Autophagy has been recently targeted as an anti-tumor therapy due to its
assumed pro-survival mechanism. Thus, inhibiting autophagy was thought to help in
reducing tumorigenesis. However, recent data are conflicting showing that the therapeutic
outcome can be correlated with the significant different and opposite function of autophagy
which can be tumorigenic and tumor suppressive depending on type of cells and the pro-
liferation stage. In fact, in healthy cells or in early pre-malignant cells, autophagy can be
protective by eliminating transformed cells; however, in late advanced cancer autophagy
induction would result in tumor cell survival and proliferation. Although, at this stage,
inhibiting autophagy would be considered as a successful target to eliminate tumor cells,
studies showed that these interventions should be dealt with precaution as autophagy
targeting is more complex even within the same cell population [177,178]. Many clinical
trials are ongoing to study the impact of autophagy inhibition (using Chloroquine and its
derivative Hydroxychloroquine) on tumor cells such as advanced solid tumors, breast can-
cers, glioblastoma multiforme, hepatocellular carcinoma, colorectal cancer and others [179].
These drugs were used in combination with other chemo-agents targeting cell cytoskeleton,
DNA, kinase inhibitors other metabolic pathways [180]. Currently, thoughts are directed
toward targeting specific autophagy components than the general autophagy pathway
for better therapeutic outcomes. Ongoing preclinical studies are testing compounds that
target more selectively autophagy such as inhibitors for ULK1 and ATG4B [181,182]. Bet-
ter understanding of the selective autophagy machinery and its interaction with other
signaling pathways that influence the survival- and proliferation-related decision of cells
is crucial to enable the development of more specific and targeted therapies. Moreover,
activation of cell death or inhibition cell proliferation both become effective tools use along
with drugs in combination with immunotherapy for targeting autophagy. However, the
induction of autophagy may help the tumor cells escape from immune surveillance and
further result in resistance to anti-tumor immunotherapy; for effective tumor eradication,
it is, therefore, key to determine whether, when and how autophagy can be modulated to
target cancer growth. Natural and synthetic compounds that target early or late pathways,
proteasomal inhibitors, protein kinase inhibitors and cytotoxic agents exist, are tested, and
have been effective in sensitizing cancer cells [183]. In addition, several clinical trials are
being conducted to gauge the in vivo effects of these drugs [184]. As CSCs are linked to
resistance to therapy, recurrence, and aggressive tumor behavior, understanding the mecha-
nisms underlying the maintenance of CSCs is vital for the development of new therapeutic
strategies that target specific populations of CSCs. Indeed, inhibiting autophagy in CRC
does reverse the hypoxia-induced phenotype in CSCs [185]. Combinatorial therapy such
as radiotherapy in the form of carbon-ion beam treatment combined with 5-FU resulted
in increased autophagy and apoptosis in CRC cells including CSCs [186]. This data could
indicate that activating autophagy alone may not be sufficient to trigger cell death; in
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combination with other forms of therapy, however, it will tip homeostatic mechanisms
towards cell death.

8. Conclusions

Autophagy provides an excellent intracellular recycling system that provides cellular
defense, and exploiting autophagy may contribute significantly to disease management
and prevention. The tumor microenvironment (TME) is hypoxic, metabolically demanding,
and inflammatory. All these factors are known to be conducive for the induction of
autophagy. In turn, autophagy orchestrates cancer cell plasticity and impacts critical
functions for cellular vitality and organismal homeostasis like apoptosis, oxidative stress
response, signaling inflammation, and response to immune cell mediated recognition
and killing. Today’s most urgent challenge lies in understanding the mechanisms of
autophagy underlying both its suppressor and driver of tumorigenesis through tuning
survival in a context dependent manner and in the context of the heterogenous and complex
tumor microenvironment. A better appreciation of the complex role of autophagy in the
immune-oncology field is particularly crucial. Thus, monitoring autophagy in the tumor
microenvironment using in vivo studies will have additional value because this will permit
the understanding of all interconnected mechanisms. High-dimensional single-cell studies
will allow the study of cellular heterogeneity, analysis of cell identity and will permit
monitoring of the evolution of cellular behavior such as metastasis and the effects of
treatments; this tool will be highly valuable in optimizing cancer treatment. Although
several studies have indeed addressed autophagy in human patients or via knock-down
experiments in animal models, it remains uncertain as to when, and under which exact
conditions, autophagy is pro-survival or a cell death inducer, and which signals are key
during this process. In most cases, it is also not known if the effect of targeting components
of autophagic machinery is due to signaling abrogation or to the disrupted autophagic flux
per se. Furthermore, it is important not to forget that autophagy also plays key roles in other
diseases including obesity and diabetes, cardiovascular disease, neuronal health, bacterial
infections, and viral disease [187]. Hence, targeting autophagy to maintain homeostasis
needs to be used in conjunction with targeted therapies and, as such, has potential benefit in
cancer treatment. It would, indeed, be of major interest to improve our current knowledge
on the resultant positive and negative effects of targeting autophagy to positively impact
anti-tumor immunity and, thus, resolve several issues that help determine the potential
combinatorial use of autophagy inhibitors with immunotherapies in clinical settings.
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