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Increasingly, bio-based products made via sugar-powered microbial cell factories and
industrial fermentation are reaching the market and presenting themselves as sustainable
alternatives to fossil and animal-based products. The sustainability potential of biotechnol-
ogy, however, has been shown to come with trade-offs and cannot be taken for granted.
Shared environmental impact hotspots have been identified across industrial fermentation-
based products, including biomass production, energy consumption, and end-of-life fate.
Based on both these patterns and our direct experience in preparing for the commercial-
scale production of Brewed Protein™, we outline practical considerations for improving the
sustainability performance of bio-based products made via industrial fermentation.

Introduction
Industry’s growing capacity to engineer biology is increasingly being leveraged to produce novel bio-
based products using sugar-powered microbial cell factories and industrial fermentation. Various com-
panies are at or near commercial-scale production of these products, with applications ranging widely
and encompassing industries ranging from food and medicine to fuels and materials [1–3].
For non-therapeutic applications in particular, sustainability performance is often presented as a

key benefit of these products. The sustainability potential of biotechnology, however, has been shown
to come with trade-offs and cannot be taken for granted [4].
A recent review of published life cycle assessments (LCA) for various fermentation-derived products

showed highly varied environmental performance outcomes compared with fossil alternatives, with
better or worse performance depending on the impact metric in question [5]. Importantly, this review
also revealed shared hotspots that represented significant environmental impact drivers, including
biomass production, energy use during manufacturing, and end-of-life fate. Although the specific
environmental impacts and their magnitude for a given product should be evaluated in detail by con-
ducting an LCA study, these hotspots likely apply widely to bio-based products produced via indus-
trial fermentation. This means that for biomanufacturers prioritizing sustainability performance, extra
measures are potentially needed to mitigate these trade-offs.
Based on these patterns and our experience in preparing for the commercial-scale production of

Brewed Protein™ (Figure 1) as Spiber Inc. — a Japanese biotechnology company developing recom-
binant structural protein materials for the apparel and various other industries [1] — we outline prac-
tical considerations for improving the sustainability performance of bio-based products made via
industrial fermentation.

Biomass production
Rather than raising animals or processing petrochemicals, much of the industrial fermentation indus-
try is fueled by plant-based sugars, typically derived from renewable biomass in the form of food
crops like corn and sugarcane [6].
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But as seen in the context of industrial-scale bioethanol production [7,8], the reliance on first-generation
biomass poses various environmental trade-offs related to industrial agriculture, including increased land use
[9], eutrophication due to fertilizer usage [10], and soil depletion resulting from high tillage farming and
leaving fields fallow post-harvest [11]
To minimize land use and avoid competition with food resources, lignocellulosic biomass from crop residues

can potentially be used as a feedstock source instead. But unlike sugar cane sap or the starchy parts from corn,
lignocellulose has been designed by nature to resist deconstruction. This makes its efficient utilization difficult.
The technical challenges to overcome this recalcitrance are multi-faceted, and include the cost-effective conver-
sion of lignocellulosic biomass into fermentable sugars via physicochemical pretreatment and enzymatic
hydrolysis, as well the engineering of expression hosts that can efficiently utilize the resulting mixed sugar
streams while displaying sufficient tolerance to inhibitor compounds that may form during pretreatment [12].
Although Spiber Inc. is investing in the R&D efforts necessary to cost-effectively produce Brewed Protein™
from such lignocellulose-derived sugars, currently planned commercial facilities will, at least initially, operate
on sugars derived from first generation. It is therefore important to ensure that first-generation biomass used in
current commercial-scale fermentation processes is grown sustainably.
Perhaps the most efficient way to do so is by adopting voluntary sustainability standards (VSS), enforceable

principles with measurable criteria to promote sustainability outcomes. Typically, VSS systems are administered
by NGOs, who grant producers certification and assess compliance via independent verification systems.
To illustrate, Spiber Inc. is a member of Bonsucro, one of the fastest growing VSS providers with 5.8% of

global sugarcane area certified under its system as of June 2021 [13]. Global compliance with all Bonsucro stan-
dards would reduce irrigation water use by 65%, eutrophication potential by 34%, and GHG emissions from
cultivation by 51%, with most of the benefit coming from targeting the 10% of global cane production area fur-
thest from complying with Bonsucro’s criteria [14]. Simply by procuring feedstock from suppliers that are certi-
fied by Bonsucro, or by another high-quality VSS provider, biomanufacturers can likely improve the
performance of their operations across a range of environmental and socio-economic impact metrics.

Figure 1. Spiber Inc’s Brewed Protein™ production process involving genetic engineering of a microbial host to produce a target protein,

fermentation of sugars from renewable biomass, and processing of resultant protein into a variety of materials.

Figure reprinted with permission from Spiber Inc.
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In the case of Bonsucro, however, certification currently requires compliance with a set of core indicators as
well as a certain percentage of non-core indicators [15]. The prevention of sugarcane cultivation on land with
high conservation value and limitations on the application of agrochemicals, for example, are part of
Bonsucro’s core indicators, while best practices in terms of efficient fertilizer application, water usage, and soil
carbon improvements are part of the non-core indicators. This could result in producers not complying with
various environmental criteria important to the biomanufacturer. We therefore recommend direct confirmation
of VSS compliance details with suppliers and the implementation of additional sustainable agriculture practices
where gaps between sustainability targets and VSS scheme requirements are identified — e.g. by planting cover
crops in areas where soil quality is degraded [16], or integration of strips of native prairie species amongst
biomass crops to improve biodiversity [17].

Powering the facility
Electricity consumption during the manufacturing process is a major environmental impact driver, with geo-
graphical differences in electricity grid mixes making up much of the variability in total GHG emissions
[5,18,19].
This is partly due to energy-intensive commercial-scale fermentation processes such as agitation and cooling

of large fermentation vessels and, often, a waste-water treatment step [20].
To overcome the related environmental impact burden, the production location is ideally chosen such that

renewable energy can be used to power fermentation facilities and downstream processes. In case the location
is fixed, and the available grid does not include renewable energy options, renewable energy capacity can be
installed directly on-site if land is available.
If there is truly no alternative to fossil-powered fermentation, investments in market-based environmental

attribute certificates or carbon offsets could potentially help reduce emissions on a net basis. The market for
these instruments, however, is marked by high variability in both types of offsets and their environmental
integrity. In fact, studies have shown that many investments in environmental attribute certificates do not
increase the actual amount of renewable energy generation [21,22], and that many carbon offsets over-credit
the amount of offsets generated [23].
Biomanufacturers seeking to offset manufacturing-related GHG emissions should therefore take extreme care

in ensuring the environmental integrity of their investment, for example by coupling their credits to an under-
lying wholesale virtual power purchase agreement (VPPA) that results in new project financing, or by investing
in vetted carbon removal projects with proven additionally.
Notably, there are potential synergies here with biomass production, particularly in the area of soil carbon

storage where protocols are currently under development that would enable offsets to be generated from agri-
cultural practices that capture carbon into the soil [24].

Responsible end-of-life
The increasing use of bio-based products in consumer-facing applications will result in the End-of-Life (EOL)
fate of those materials — reuse, recycling, landfilling, composting, etc. — exerting a significant influence on
sustainability.
Although the range of EOL options and their environmental impact depend largely on the specific product,

consumer behavior, and geographical and cultural waste treatment patterns [25], whether or not a material can
readily biodegrade in the natural environment is a key starting point for further considerations around appro-
priate end-of-life processing.
In Spiber Inc’s case, its Brewed Protein™ polymers consist of the 20 standard amino acids found in nature.

Even though these amino acids can be metabolized to inorganic compounds by microorganisms, the timely
cleavage of peptide bonds in a macro-scale recombinant structural protein material cannot be taken for granted
[26]. Biodegradation studies therefore have to be conducted in order to verify the degradation potential and
speed in the natural environment. A study on compression-molded sheets [27] made from Spiber’s Brewed
Protein™ using soil-based inoculum shows quick degradation to oligopeptides and amino acids. Furthermore,
biodegradation of Spiber’s Brewed Protein™ fibers in seawater shows a fast and high level of mineralization,
comparable to the known biodegradable compound succinic acid over 40 days (Figure 2), suggesting high
ultimate biodegradability in marine conditions.
These evaluations will inform the environmental impact of various EOL scenarios (e.g. composting vs. land-

filling), with the aim to establish responsible EOL policies and collection systems for specific product
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formulations. Similar studies to inform appropriate end-of-life treatments are likely appropriate for all bio-
based products that may end up in the natural environment at the end of their life cycle.

Conclusion
Although humans have been harnessing the power of microbial cell factories and fermentation for millenia,
new fermentation-based products are increasingly becoming available in a consumer-facing commercial
context. The promise and expectation is that their application will contribute to environmental sustainability
across a range of impact metrics while meeting society’s growing demand for food, fuels, and materials.
Although there is potential to meet these expectations, scaling up fermentation-based production comes with

a set of shared sustainability challenges and trade-offs that should not be ignored. Fortunately, a bio-based pro-
duct’s environmental impact is not a fixed outcome. Decisions regarding feedstock sourcing, energy procure-
ment, and EOL policies all have the potential to significantly impact the environmental performance of
bio-based products. As biomanufacturers, we believe it is therefore important to go beyond the ‘Bio is always
better’ mantra, to analyse and acknowledge environmental trade-offs, and to take the extra steps required to
truly fulfill our sustainability promises.
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