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Abstract. Attachment of circulating tumor cells to en- 
dothelial cell adhesion molecules restricted to select 
vascular compartments is thought to be responsible for 
site-specific metastasis. Lung-metastatic rat R3230AC- 
MET breast and RPC-2 prostate carcinoma cells bound 
outside-out endothelial cell membrane vesicles, pre- 
pared by perfusion of the rat lung vasculature with a 
low-strength formaldehyde solution, in significantly 
higher numbers than their nonmetastatic counterparts 
R3230AC-LR and RPC-LR. In contrast, vesicles de- 
rived from the vasculature of a nonmetastasized organ 
(e.g., hind leg muscle) showed no binding preference 
for either of the four tumor cell lines. Lung-derived 
endothelial vesicles were used here to generate mAbs 
against lung endothelial cell adhesion molecules. The 
first group of mice were actively immunized against 
lung endothelial vesicles, whereas the second group 
was injected with syngeneic mouse antiserum against 
leg endothelial vesicles before active immunization 

with lung endothelial vesicles. 17 hybridoma superna- 
tants obtained from the two fusions bound lung vesi- 
cles with at least a 10-fold higher affinity than leg 
vesicles. Seven (four obtained by a passive/active im- 
munization protocol) stained rat capillary endothelia. 
One rnAb, mAb 8.6A3, inhibited specific adhesion of 
lung-derived vesicles to lung-metastatic breast and 
prostate carcinoma cells. Purification of the antigen 
(endothelial cell adhesion molecule) from rat lung ex- 
tracts revealed a protein with a ll0-kD mol wt. NH2- 
terminal sequencing established identity with dipep- 
tidyl peptidase IV which had been reported to serve as 
a fibronectin-binding protein. These results indicate 
that vesicles obtained from in situ perfused organs are 
a convenient immunogen for the production of anti- 
bodies to compartment-specific endothelial cell surface 
molecules, and reinforce the concept that endothelial 
cell surface components are selectively recognized by 
circulating cancer cells during metastasis formation. 

M 
ETASTASIS is the process by which blood-borne 
cancer cells establish new tumor colonies in sec- 
ondary organs. The selection of target organs for 

metastasis occurs in nonrandom fashion and is dictated by 
compatible tumor cell and host cell characteristics (for a re- 
view, see references 6, 17, 30). The initiating step for arrest 
at a preferred, secondary location is adhesion to endothelium 
which is believed to be mediated by tumor cell surface mole- 
cules that recognize components on the endothelial lumenal 
surface of select vascular branches (2, 5, 12, 19-21, 26). 
This premise is supported by recent work in our laboratory 
detailing the isolation and characterization of the 90-kD 
lung-specific, melanoma cell-binding endothelial cell adhe- 
sion molecule Lu-ECAM-1 (37). Lu-ECAM-1 is constitu- 
tively expressed on endothelia of pleural and subpleural 
capillaries and venules and, to a lesser extent, other pulmo- 
nary venules and veins. Its expression in these blood vessels 
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correlates closely with the topographical distribution of B16- 
F10 melanoma lung metastases. Anti-Lu-ECAM-1 mAbs in- 
hibit colonization of the lungs by lung-metastatic B16 mela- 
noma cells, but have no effect on the colonization of the lungs 
by other types of lung-metastatic cancers (e.g., KLN205 
squamous carcinoma ceils) or on the number of liver colo- 
nies produced by liver-metastatic B16-L8-F10 melanoma 
cells (36, 37). This work supports earlier site-specific, tumor 
cell adhesion data in other laboratories using isolated 
microvascular endothelia from various organs. Although 
molecular details have not been revealed in these studies, 
cancer cells have been reported to preferentially bind to 
microvascular endothelium isolated from the metastasized 
organ (1, 3, 18, 27). For example, lung-metastatic B16-F10 
melanoma cells and RAWll7-L17 lymphoma cells adhere 
preferentially to monolayers of lung microvascular en- 
dothelial cells, while brain-metastatic glioma cells, liver- 
metastatic RAWll7-H10 and MB6A lymphoma cells, and 
ovary-metastatic teratoma cells bind preferentially to brain-, 
liver-, and ovary-derived microvascular endothelia, respec- 
tively. 
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Our objective in this study was to expand our initial work 
on melanoma lung metastasis (36, 37) and to investigate 
whether some of the more ubiquitous, epithelial-derived 
cancers that consistently metastasize to the lungs, i.e., breast 
and prostate cancers, recognize and adhere to cancer type- 
specific or common endothelial cell adhesion molecules of 
the lung vasculature (20). To achieve this goal, we relied on 
a method that circumvented the use of cumbersome cell iso- 
lation techniques in the identification of such endothelial cell 
adhesion molecules and in the performance of tumor cell/ 
endothelial cell adhesion assays (11, 21). Outside-out mem- 
brane vesicles that are representative of lumenal membranes 
of lung microvascular endothelium and that have been shown 
to preferentially bind to lung-metastatic cancer cells were 
obtained by perfusing the lungs with a low-strength formal- 
dehyde solution as previously described (11). Endothelial 
membrane vesicles were then employed in the production of 
mAbs against lung endothelial determinants, using standard 
active or passive/active immunization protocols (35). We re- 
port here on a mAb that inhibits the selective adhesion of 
lung endothelial cell-derived vesicles to lung-metastatic 
breast and prostate carcinoma cells. This antibody is used to 
purify and characterize a lung endothelial cell surface glyco- 
protein, identified as dipeptidyl peptidase IV. 

Materials and Methods 

Cell Cultures 

R3230AC rat mammary carcinoma cells (R3230AC-MET and R3230AC- 
LR) were obtained from Dr. J. A. Kellen, Sunnybrook Medical Center, 
University of Toronto, Toronto, Ontario, Canada (16, 23). The R3230AC- 
MET carcinoma cell line was selected in vivo for high lung colonization. 
The [Con A and WGAl-resistant variant R3230AC-LR was nonmetastatic. 
A high lung-metastatic rat prostate carcinoma cell line designated RPC-2 
was isolated from the in vivo transplantable Dunning R3327 prostatic carci- 
noma MatLyLu obtained from Dr. J. T. Isaacs, Johns Hopkins Oncology 
Center, Baltimore, MD (10). The RPC-LR cell line was developed as a 
[Con A and WGA]-resistant variant of RPC-2 and was found to be non- 
metastatic. All tumor cells were maintained in Rosewell Park Memorial 
Institute-1640 (RPMI-1640) medium supplemented with 10% heat- 
inactivated FBS (Gibco Laboratories, Grand Island, NY). Aortal en- 
dothelial cells were isolated and grown as described elsewhere (35, 37). 

Preparation of Endothelial Cell Membrane Vesicles 

Outside-out, lumenal endothelial cell membrane vesicles were prepared 
from the microvasculature of rat lungs as reported earlier (11). In brief, 
3-mo old, male Sprague-Dawley rats were injected intraperitoneally with 
0.5 ml of 20% sodium citrate, sacrificed with an overdose of sodium 
phenobarbital, and prepared for immediate organ perfusion. Lung perfu- 
sates entered through the pulmonary artery and exited from the left heart 
atrium. The lung vascular bed was first flushed with PBS, pH 7.4, contain- 
ing 1 mM CaCI2 and 0.5 mM MgCI2 (PBS-CM) I at a flow rate of 7 ml/min 
for 20 rain at 370C. Lungs were inflated periodically through the trachea 
during the washing procedure to improve removal of blood components. 
Flushing was followed by perfusion of the vascniature with 100 mM 
paraformaldehyde and 2 mM DTT in PBS-CM at a flow rate of 0.25 ml/min 
for 4 h at 37°C. Perfusates were centrifuged at 200 g to remove whole cell 
contaminants. Vesicles were then collected by high speed centrifugation 
(30,000 g; 1 h; 4°C). Vesicles were washed three times in PBS-CM contain- 
ing 0.2 mM phenylmethyl-sulfonylfluoride and immediately used in the out- 
lined experiments. 

Control endothelial cell membrane vesicles were prepared in a similar 
fashion from the vasculature of rat hind legs. Leg perfusates entered through 

1. Abbrevimions used in this paper: PBS-CM, 1 mM CaC12 and 0.5 mM 
MgC12; RPC, rat prostate carcinoma. 

the common iliac artery and exited via the iliac vein. Composition of the 
perfusion fluid, perfusion flow rate and time, and endothelial vesicle collec- 
tion were as described above. The following reasons were behind the selec- 
tion of hind leg endothelial membrane vesicles as controls in our experi- 
ments: (a) the hind leg vasculature provided a large endothelial lumenal 
surface that allowed the harvest of large numbers of endothelial vesicles; 
(b) the hind leg vasculature was lined with continuous endothelium prevent- 
ing edema formation and loss of endothelial vesicles into the interstitium 
during the perfusion process; (c) the hind leg was rarely metastasized by 
blood-borne cancer cells; and (d) there were little or no technical difficulties 
associated with the per fusion of the hind leg vasculature. Select experiments 
also included control endothelial cell membrane vesicles derived from 
monolayers of cultured aortic endothelium. 

Iodination of Endothelial Cell Membrane Vesicles 

Vesicle-associated membrane proteins were labeled by lactoperoxidase- 
catalyzed iodination, essentially as described by Sonic et al. (31). Briefly, 
200 #1 of 200 mM phosphate buffer, pH 7.3, containing 0.2 mCi Na12SI, 
200/zl of Enzymobead reagent (BioRad Laboratories, Richmond, CA), and 
100 #l of 1% /~-D-glucose were added to 500 #1 (50 #g protein/mi) of en- 
dothelial cell membrane vesicles in PBS-CM. Vesicles were incubated in 
this mixture for 30 min at room temperature. The reaction was stopped by 
removing Enzymobeads by centrifugation (100 g; 10 rain; 4°C). Vesicles 
were washed four times (each wash 10 rain) in PBS-CM to remove all un- 
bound 1251 and suspended in 1 ml of PBS-CM. 

Tumor Cell~Vesicle Binding Assay 

R3230AC carcinoma cell variants were seeded into wells of 96-well tissue 
culture plates (Becton Dickinson, Lincoln Park, NJ) so that confluent 
monolayers of equal tumor cell numbers and surface area were present after 
48 h of incubation at 37°C (11). Tumor cells were then washed with RPMI- 
1640 medium and nonspecific binding sites blocked by incubation with 
0.4% BSA in RPMI-1640 medium for 30 rain at 37°C. 40 ml of vesicle sus- 
pension ('~2.5 x 104 vesicles yielding 100,000 cpm; 8.5 × 104 vesi- 
cles/cm 2 of tumor cell surface) were added to each of three wells and the 
plates centrifuged at 200 g for 5 rain at room temperature. After 30 rain 
of incubation at 37°C, cells were washed three times with medium, solubi- 
lized with 1% SDS in H20 and counted in a gamma counter. The 
anchorage-independent rat prostate carcinoma (RPC) carcinoma cell vari- 
ants were incubated with endothelial membrane vesicles in suspension. 
Briefly, RPC cells were washed first in RPMI-1640 medium supplemented 
with 0.4% BSA, then aliquots of 100 #1 containing 5 × 104 tumor cells 
were mixed with 70 #1 of 125I-labeled vesicles to yield 'x,8.5 x 104 vesi- 
cles/cm 2 of tumor cell surface (assuming that RPC cells are spheres of 18- 
#m diam). The tumor cell/vesicle mixture was incubated for 30 rain at 
37°C. After removing unbound vesicles by gentle washing, tumor cells and 
bound vesicles were solubilized by adding 100 #1 of 1% SDS in H20 and 
counted in a gamma counter. Data are presented as percentages of the total 
cpm in 40 #1 of vesicle suspension, or as relative percentages setting binding 
of lung-derived endothelial membrane vesicles to the high lung-metastatic 
tumor variants (R3230AC-MET; RPC-2) as 100%. 

In binding inhibition experiments, mAb 8.6A3 was added to iodinated 
vesicles at the final concentrations of 100 #g/ml and 10 #g/ml. All anti- 
body/vesicle mixtures including control vesicles without antibody were agi- 
tated overnight at 4°C. Vesicles were then washed three times in RPMI-1640 
medium. The remainder of the assay was carded out as described above. 
mAb 7.3D5 which stained both rat lung and leg microvessels was used as 
a control antibody at the same concentrations as mAb 8.6A3. 

Antibody Production 

Active Immunization Procedure. Female Balb/c mice, 8-10-wk old, were 
immunized with vesicles obtained from perfused lungs. Each mouse was 
injected intraperitoneally with 0.25 ml of vesicle suspension (100 #g pro- 
tein) emulsified in complete Freund's adjuvant. Mice were reinocniated 4 
wk later with 0.25 ml of the same antigen emulsified in incomplete Freund's 
adjuvant. 6 wk after the initial immunization and 3 d before fusion of mouse 
splenocytes with Sp2/0/Agl4 myeloma cells (American Type Culture Col- 
lection, Rockville, MD) the mouse with the highest titer for lung endothelial 
derived vesicles was injected intrasplenieally with 0.1 rnl of antigen (50-100 
#g/mi) in PBS. Fusion procedures, hypoxanthine-aminopterin-thymidine 
(HAT) medium preparation and selection, cloning of selected hybridomas, 
and immunoglobulin subclass determination were as described in detail 
elsewhere (34, 38). 
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Passive~Active Immunization Procedure. In an alternative immuniza- 
tion protocol, passive immunization of mice with mouse antiserum directed 
against endothelial membrane vesicles from perfused rat hind leg muscula- 
ture preceded active immunization with vesicles derived from in situ per- 
fused rat lungs (11). Antiserum was produced by injecting female Balb/c 
mice with a suspension of rat leg-derived endothelial membrane vesicles 
(150 #g protein) on weeks 0, 4, and 6 as described above (35). Antiserum 
that had a titer of at least 1:1,000 was then injected intravenously into a sec- 
ond set of Balb/c mice (100 #1 per mouse). 5 min later, these mice were 
actively immunized with vesicles derived from rat lung endothelium 
emulsified in Freund's complete adjuvant. Subsequent inoculations with an- 
tigen were as described above. 

Screening of Hybridoma Supernatants. Hybridoma supernatants were 
initially screened for relevant mAbs against lung-derived vesicles in an 
ELISA. Strongly positive supernatants were then further tested in differen- 
tial ELISAs against both lung- and leg-derived vesicles (35). Vesicles 
(1 #g/well) were centrifuged at 2,500 g for 30 rain onto poly-L-lysine (MW 
>300,000; 0.1 mg/ml; Sigma Chemical Co., St. Louis, MO) coated 96-well 
plates (Immobilon, Dynatech, Alexandria, VA). Wells were blocked with 
0.2 % gelatin in PBS for 1 h at room temperature. Washed vesicles were then 
incubated with 25 #! of hybridoma supernatant for 1 h at room temperature. 
Plates were washed three times with 0.1% gelatin in PBS and incubated for 
1 h at room temperature with 50 #1 of goat anti-mouse IgG F(ab')2- 
peroxidase conjugate (Cappel Laboratories, Malvern, PA) diluted 1:1,000 
in PBS containing 10 % heat-inactivated normal goat serum (35). The plates 
were washed four times and incubated with 75 #1 of substrate solution con- 
sisting of 4 nag ortho-phenylenediamine (Sigma Chemical Co.), 4.0 #1 of 
30% H202 in 10 ml of 0.1 M citrate buffer, pH 4.5, for 15 rain at room 
temperature in the dark. The reaction was stopped by adding 50 ~1 of 2.5 M 
H2SO4 and immediately read at 490 um in a MicroELISA plate reader 
(Bio-Tek Instruments, Winooski, VT). 

Immunohistochemistry 
Serial, 3-gm thick sections were prepared from normal rat organs perfused 
with 4% formaldehyde in PBS, pH 7.4, and embedded in paraffin. De- 
paraffinized sections were stained by an indirect immunoperoxidase tech- 
nique utilizing a histostain kit from Zymed Labs, Inc. (South San Francisco, 
CA). Briefly, deparaffinized tissue sections were treated with 0.3% H202 
in methanol for 15 rain at 4°C, then blocked with 10% normal rabbit serum 
for 10 min at room temperature. Sections were incubated with primary anti- 
body (hybridoma supernatant) for 30 min at 37°C, followed by incubations 
with biotinylated rabbit anti-mouse Ig (1:1000 in PBS) and streptavidin- 
peroxidase conjugate, each for 10 min at room temperature (37). Antibody 
binding was visualized by adding the peroxidase substrate 3-amino-9- 
ethylcarbazole. Between each of these steps and after the development of 
color, sections were washed three times with PBS, 5 rain each. Stained tis- 
sue sections were examined with a light microscope. Control sections were 
stained in the absence of primary antibody (hybridoma superuatan0. 

lmmunoaffinity Purification 
40 rat lungs were homogenized (Polytron R, Kinematica, Brinkman Instru- 
ments, Westhury, NY) and washed extensively by centrifugation until the 
superuatant was clear (free of blood). Homogenates were extracted over- 
night at 4°C with 60 ml of lysis buffer: 50 mM Tris, 150 mM NaCI, 1 mM 
EDTA, 1 mM benzamidine chloride, 1 mM PMSF, 30 gg/ml DNase, 2 
#g/ml leupeptin, 0.27 TIU/ml aprotinin, 1% NP-40, pH 7.4. The lysates 
were first prepared on a 1-rrd column containing nonimmune mouse IgG im- 
mobilized on protein G-Sepharose 4FF, then directly applied onto a second 
1-ml column of mAb 8.6A3 coupled to protein G-Sepharose 4FF (37). Both 
columns had been previously equilibrated with lysis buffer and were run at 
a flow rate of 0.5 rrd/min. The second column was washed with 30 mi of 
each of the following: (a) lysis buffer; (b) 50 mlVl Tris-HC1, pH 8.0, 500 
mM NaC1, 0.2% NP-40; (c) 50 mm Tris-HCl, pH 8.0, 150 mM NaCI, 0.1% 
NP-40; (d) 50 mM Tris-HCl, pH 8.0, 150 mM NaC1, 0.5% NP-40, 0.1% 
SDS, 0.5% deoxycholate; and (e) 50 mM Tris-HC1, pH 8.0, 150 mM NaCI, 
with 10 mM CHAPS (Sigma Chemical Co.). Bound molecules were eluted 
with 200 mM glycine, pH 2.8, 150 mM NaCI, 10 mM CHAPS. Fractions 
of 1 mi were collected into tubes containing 0.1 vol of 1 M Tris, pH 11 (to 
yield a final pH of 8.0). Fractions were analyzed by SDS-PAGE (8 % poly- 
acrylamide) and visualized by silver staining. 

Purified sample was electrophoresed in 8.0% polyacrylamide. The pro- 
tein was electroblotted onto a polyvinylidene difluoride membrane (Immo- 
bilon-P, Millipore Corp., Bedford, MA) in 20% methanol transfer buffer 

at 300 A for 1 h. The transfer was confirmed with Coomassie blue stain 
after destaining with 10% acetic acid. Automated Edman degradation of 
protein was performed using an Applied Biosystems Inc. (model 470A) gas- 
phase sequencer with an on-line (model 120A) phenylthiohydantoin deriva- 
tive analyzer. The amino acid sequence was compared using FASTA soft- 
ware and the SWlSS-PROT database (24). 

Scanning Electron Microscopy 
R3230AC-MET and R3230AC-LR carcinoma cells were grown on Ther- 
manox R coverslips (Lux Scientific Corp., Thousand Oaks, CA) placed into 
wells of 96-well plates and a binding assay was performed with lung-derived 
endothelial cell membrane vesicles as described above (11). Wells were 
washed three times with medium and once with 100 mM cacodylate buffer. 
Cells were fixed with 2% glutaraldehyde in 100 mM cacodylate buffer, pH 
7.3, dehydrated in graded ethanol solutions, then critical point dried in a Pola- 
ron Jumbo critical point dryer (Polaron, Watford, England). Coverslips con- 
taining the critical point dried cells were attached to metal stubs with silver 
paint and sputter-coated with a thin layer of carbon in an Edwards evapora- 
tor (Manor Royal, Crawley, Sussex, England). Specimens were examined 
in a Jeol SEM 35CF scanning electron microscope. 

Binding of mAb 8.6A3 to the surface of lung-derived endothelial mem- 
brane vesicles was visualized by a scanning electron microscopic im- 
munogold technique as described in detail by Johnson et al. (11). In brief, 
endothelial vesicles immobilized on Thermanox ® coverslips were incubated 
with mAb 8.6A3 (hybridoma supernatant) for I h at room temperature, then 
washed four times with RPMI-1640 and incubated for 30 rain with goat anti- 
mouse IgG conjugated to 30 nm gold particles (Vector Laboratories, Budin- 
game, CA) diluted 1:10 in RPMI-1640 containing 10% heat-inactivated, 
normal goat serum. After washing, vesicles were processed for scanning 
electron microscope examination as described above. 

Results 

Attachment of Lung Endothelial Cell Vesicle to Lung 
Metastatic Cancer Cells 
Tumor cells with high lung-metastatic potential were tested 
for their capacity to bind lung- and leg- derived endothelial 
cell membrane vesicles. Tumor cells selected in vivo for high 
lung colonization (R3230AC-MET; RPC-2) bound signifi- 
cantly more lung endothelial vesicles than their nonmeta- 
static counterparts (R3230AC-LR; RPC-LR). At an approxi- 
mate concentration of 8.5 × 104 vesicles/cm 2 of tumor cell 
surface, lung-metastatic R3230AC-MET bound 14.0 + 
1.9% and RPC-2 52.6 + 5.3% of the lung-derived en- 
dothelial cell membrane vesicles, whereas the nonmetastatic 
R3230AC-LR and RPC-LR only bound 6.5 + 1.0% and 36.0 
+ 3.7%, respectively (Fig. 1, A and B). Control leg 
musculature-derived endothelial cell membrane vesicles ad- 
hered to lung-metastatic and nonmetastatic cells in com- 
parable numbers. R3230AC-MET and R3230AC-LR bound 
7.1 + 1.2% and 5.8 + 1.1% leg vesicles, whereas RPC-2 and 
RPC-LR bound 27.1 + 2.7 % and 33.4 + 3.7 %, respectively. 
Vesicles derived from cultured aortal endothelial cells bound 
in equal numbers to R3230AC-MET (6.5 + 1.0) and 
R3230AC-LR (5.8 -1- 0.8) carcinoma cells as leg-derived 
vesicles (Fig. 1 A). Vesicle binding results correlated well 
with the ability of breast and prostate tumor cell lines to pro- 
duce lung colonies after tail vein inoculation (11, 23). Rat 
R3230AC-MET mammary carcinoma cells and RPC-2 pros- 
tatic carcinoma cells both produced numerous lung colonies 
3 wk after tail vein inoculation of eight rats/tumor cell line 
with 1 × l06 tumor cells/rat. R3230AC-MET carcinoma 
cells generated 204 (176-231) colonies, whereas the pros- 
tatic carcinoma cell line formed 347 (168~400) colonies. In 
contrast, the lectin resistant cell variants R3230AC-LR and 
RPC-LR were unable to form experimental lung metastases. 
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Figure 1. Preferential attachment of lung-derived endothelial cell 
membrane vesicles to lung-metastatic tumor cells. Lung-metastatic 
rat R3230AC-MET breast (.4) and RPC-2 prostate (B) carcinoma 
cells selected for high lung colonization bind significantly more 
lung-derived endothelial membrane vesicles (dark bars) than their 
nonmetastatic counterparts R3230AC-LR and RPC-LR. In con- 
trast, neither of the four tumor cell lines shows any binding prefer- 
ence for leg-derived endothelial membrane vesicles (light bars). 
The graphs represent means and standard deviations from six (,4) 
and two (B) separate experiments with triplicate determinations in 
each experiment. Binding of lung endothelium-defived membrane 
vesicle to low and high metastatic tumor cells are compared by 
t test: [R3230AC-MET vs R3230AC-LR and RPC-2 vs RPC-LR: 
p < .001]. 

The preferential binding of lung-derived endothelial vesi- 
cles to lung-metastatic R3230AC-MET carcinoma cells was 
confirmed by scanning electron microscopy. R3230AC-MET 
carcinoma cells often bound several lung-derived vesicles 
(Fig. 2 ,4). Vesicle binding occurred throughout the exposed 

tumor cell surface and was often mediated by microvilli (Fig. 
2 B). A slight binding preference was observed for the mar- 
ginal zones of R3230AC-MET cells. In contrast, non- 
metastatic R3230AC-LR carcinoma cells bound few, if any, 
lung-derived endothelial vesicles (Fig. 2 C). Endothelial 
vesicles were easily distinguished from occasional tumor 
cell membrane plebs with immunogold staining using mAb 
8.6A3 (Fig. 2 D). 

Generation and Selection of  mAbs 
against Lung-derived Endothelial Cell 
Adhesion Molecule 

Immunization and Initial Selection. Two fusions were per- 
formed, the first following standard, active immunization, 
the second a passive/active immunization protocol. Hybrid- 
oma clones developed in 404 wells of the two fusions (35 %) 
(Table I). Of these, 81 (20%)were positive for lung-vesicle 
binding with the majority of these clones being derived from 
the passive/active protocol. 13 of the 81 clones that were 
positive for lung vesicle binding were also ELISA-positive 
for leg vesicle binding. The majority of these 13 clones were 
from the active immunization protocol. In the final analysis, 
68 of all clones (16.8 %) were positive for lung-vesicle bind- 
ing only and the majority of these (49) were acquired through 
the passive/active procedure. This finding indicates that the 
latter is the most efficient protocol in obtaining antibodies 
which are specific to endothelial cells in a given tissue. 

Secondary Selection by Immunohistochemistry. Super- 
natants with the highest ELISA absorbance ratios (>110) of 
lung/leg vesicle binding were further selected by the staining 
of 3/~m thick sections from perfusion-fixed rat lungs and leg 
muscle (Table II). A total of 17 clones were analyzed, 11 
from the active immunization group, 6 from the passive/ac- 
tive immunization group. Seven of the hybridoma superna- 
tants stained lung capillary endothelial cells. Four of these 
were from the passive/active protocol (Table II). Selective 
staining of lung capillary endothelium was observed with 
supernatants 7.5E6, 8.4B7, 8.5F6, and 8.6A3. Supernatant 
8.6A3 revealed the strongest staining reaction (Fig. 3 A), 
while supernatants 7.5E6 yielded mild to moderate and 
8.4B7 and 8.5F6 mild staining reactions. Arteries, arterioles, 
and venules were not stained by these supernatants nor were 
bronchial epithelia, pneumocytes, and smooth muscle cells. 
Furthermore, these supernatants failed to stain vascular en- 
dothelium of the hind leg musculature. Supernatants 7.6B7 
and 8.3E1 stained lung capillary endothelium in addition to 
bronchial epithelium, pneumocytes, and smooth muscle 
cells. Finally, supernatant 7.3D5 stained strongly lung capil- 
lary endothelium and weakly capillary endothelium of hind 
leg musculature, but not endothelia of any other vessel 
calibers. The staining reaction of 7.3D5 with lung capillary 
endothelium was of similar intensity as that of 8.6A3 (Fig. 
3 B). The relatively high number of mAbs that stained nei- 
ther lungs nor leg muscle appears to be related to denatura- 
tion of antigens during tissue fixation and processing. 

Final Selection in Tumor Cell~Endothelial Vesicle Bind- 
ing Inhibition Assay. Hybridoma cells producing superna- 
tants which unequivocally stained rat lung endothelium 
(7.3F3; 8.4B7; 8.5F6; and 8.6A3) were cloned by limiting di- 
lution before subjection to a final selection in a tumor 
cell/endothelial vesicle binding inhibition assay, mAb 8.6A3 
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F/gure 2. Scanning electron mi- 
crograph depicting endothelial 
membrane vesicles binding to 
R3230AC breast carcinoma 
cells. (A) Lung-metastatic 
R3230AC-MET carcinoma cell 
exhibits numerous bound lung- 
derived endothelial membrane 
vesicles. (B) Vesicle binding 
appears to be mediated by 
microvilli. (C) R3230AC-LR 
carcinoma cell shows only 
an occasionally bound lung- 
derived endothelial membrane 
vesicle. (D) Binding sites for 
mAb 8.6A3 on lung-derived 
endothelial cell membrane 
vesicle are visualized by im- 
munogold staining. Bars: ( .4  

andD) 2/~m; (Band C) 1 ttm. 

(10 #g/ml) caused a significant reduction in the binding of  
lung endothelial vesicles to lung-metastatic R3230AC-MET 
breast carcinoma cells (36 % vesicle binding inhibition) and 
RPC-2 prostate carcinoma cells (34%) (Fig. 4). The block- 
ing extent was to a level comparable with the binding of  lung- 
derived vesicles to the nonmetastatic cell lines R3230AC-LR 
and RPC-LR. A concentration of 100 #g/ml of  rnAb 8.6A3 
did not cause further reduction in binding. There was a 
moderate reduction of  lung vesicle binding to the non- 
metastatic rat mammary carcinoma cell line R3230AC-LR. 
The mAb had no significant effect on leg vesicle adhesion to 
either of the four cell lines. Flow cytometric analysis of lung 
endothelial vesicles incubated with rnAb 8.6A3 revealed 
labeling of  60 % of the vesicles indicating that the vesicles 
were reflective of  the microvascular lumenal surface in the 
lung (11). mAbs 7.3F3, 8.4137, and 8.5F6 failed to cause 
significant reduction in selective adhesion (data not shown). 
Control mAb 7.3D5, which had been shown to stain lung 
capillary endothelium with similar intensity as 8.6A3 had no 
effect on the binding of  lung- or leg-derived endothelial vesi- 
cles to either lung-metastatic or non-metastatic breast and 
prostate carcinoma cell variants (Fig. 4). 

lmmunohistochemistry with mAb ~6A3 

Tissue distribution of  the lung capillary endothelial cell 

Table L Generation of mAbs Against Lung-derived 
Endothelial Cell Lumenal Membrane Vesicles 

ELISA Positive 
Growth per Lung vesicle 

Immunization 576 wells Lung-V L e g - V  hybridoma 

Active 215 30 11 19 
Passive/active 189 51 2 49 

Totals 404 81 13 68 

adhesion molecule was performed by immunohistochemis- 
try using mAb 8.6A3. Stained tissues were the lungs, brain, 
heart, small intestine, kidney, liver, skin, spleen, lymph 
node, and thymus. In addition to lung capillaries, the anti- 
body bound endothelia of  medium-size to large splenic ven- 
ules (Fig. 5 A) and the vasa recta of  the kidney medulla (Fig. 
5 B). There was no staining of  endothelium in the remaining 
organs. However, the antibody also stained bile canaliculi in 

Table II. Selection of Lung-specific mAbs 

Absorbance at 490 nm Ratio 
Immunization Hybrid Lung-V/ Rat 
protocol No. Lung-V Lcg-V leg-V Lung/leg* 

Active 

Passive/active 

7.1B2 2.251 0.005 450 * 
7.2B9 1.559 0.056 28 - 
7.3D5 1.331 0.015 89 Ec,L! 
7.4G2 1.484 0.002 742 - 
7.6B7 2.085 0.011 189 Ec,B,P,S 
7.6C10 1.717 0.015 114 - 
7.2F4 1.622 0.009 180 - 
7.2F8 2.123 0.018 118 - 
7.2H11 2.344 0.005 469 - 
7.3F3 2.387 0.032 75 Ec 
7.5E6 1.804 0.003 601 - 

8.3E1 2.511 0.010 251 Ec,Ev,S,B 
8.4A8 1.163 0.014 83 - 

8 . 4 B 7  1.725 0.028 62 Ec 
8.4P10 1.753 0.057 31 - 
8.5F6 0.574 0.056 10 Ec 
8.6A3 1.784 0.020 89 Ec 

* Immunohistochemical staining of rat lung and skeletal muscle tissue sections. 
~; Negative staining reaction. 
§ Positive staining reaction: Ec, lung capillary endothelia; Ev, lung venule en- 
dothelia; L, leg small venule/arteriolar endothelia; B, bronchial epithelia; P, 
pneumocytes; S, smooth muscle. 
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Figure 3. Indirect immunoperoxidase staining of rat lungs with mAb 8.6A3 (A) and mAb 7.3D5 (B): Both antibodies stain lung capillary 
endothelia, but only mAb 7.3D5 also stains capillary endothelia from hind leg musculature. No staining reaction is observed on endothelia 
of other lung and leg vessels and tissue components. The magnification is 480 ×. 

the liver (Fig. 5 C) and the brush borders of kidney tubular 
epithelia (Fig. 5 D) and small intestinal villi. No staining of 
any structures was observed in the remaining organs. Con- 
trol slides lacking primary antibody were negative. 

Antigen Purification and NHrterminal Sequencing 

mAb 8.6A3 was used to purify the endothelial cell adhesion 
molecule by immunoaffinity chromatography of detergent 

extracts from washed, homogenized rat lungs. Evaluation of 
the sequential fractions eluted from the column by acidic so- 
lutions disclosed a protein with a relative mobility on SDS- 
PAGE of 110 kD under reducing and nonreducing conditions 
(Fig. 6). Although the elution buffer contained detergent, the 
protein exhibited a tendency to aggregate under nonreducing 
conditions, a typical characteristic of  many membrane pro- 
teins. NH2-terminal sequencing of 30 amino acids of  the 
purified protein revealed 100% identity with the integral 

Figure 4. Inhibition of preferential attachment of lung-derived endothelial membrane vesicles to lung-metastatic breast (A) and prostate 
(B) carcinoma cells using mAb 8.6A3. mAb 8.6A3 (6A3) reduces adhesion of lung-derived endothelial membrane vesicles (dark bars) to 
lung-metastatic R3230AC-MET and RPC-2 carcinoma cells to similar levels as "unspecific" (leg-derived) endothelial membrane vesicles 
bind to these cell lines. Control mAb 7.3D5 (3D5) has no effect on endothelial membrane vesicle binding to lung-metastatic carcinoma 
cells. Leg-derived endothelial membrane vesicles bind high lung-metastatic and nonmetastatic breast and prostate carcinoma ceils in similar 
numbers, mAbs 6A3 and 7D5 have no significant effect on the binding of leg-derived vesicles to either of the four cell lines, with the possible 
exception of a further reduction in the binding of these vesicles to RPC-LR by mAb 6A3. The graphs represent means and standard devia- 
tions from five (A) and two (B) separate experiments with triplicate determinations in each experiment. Binding of lung-derived endothelial 
membrane vesicles to high metastatic breast and prostate carcinoma cells and binding after incubation with mAb 6A3 are compared by 
t test: [LM vs LM + 6A3: p < .01]. 
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Figure 5. Indirect immunoperoxidase staining of rat tissues with mAb 8.66.3. Positive staining is observed on the surface of endothelia 
of medium-size to large splenic venules (A), endothelia of the vasa recta of the renal medulla (B), bile canaliculi (C), and kidney proximal 
tubular epithelium (D). Bar, 20 #m. 

membrane glycoprotein dipeptidyl peptidase IV (DPP IV). 
The results described herein suggest a previously unrecog- 
nized role for this molecule. 

Discuss ion  

Outside-out vesicles derived from the lumenal membrane of 
lung microvascular endothelium were used here as tools in 
identifying and, eventually, purifying an endothelial cell 
adhesion molecule that promotes binding of lung-metastatic 

breast and prostate carcinoma ceils. Our strategy was to first 
produce mAbs against membrane vesicles shown by ultra- 
structural immunocytochemistry to provide perfect repre- 
sentatives of lung microvascular endothelium in vivo (11, 15, 
28). Both active and passive/active immunization schedules 
provided nlAbs that were directed against endothelial cell 
surface molecules of select vascular compartments of the 
lungs. However, the efficiency with which such antibodies 
were generated was greater in the fusion group that was im- 
munized by the passive/active protocol, mAbs that highlighted 
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Figure 6. Silver stained SDS-polyacryl- 
amide gel (8 %; nonreducing) shows af- 
finity purified 110 kD DPP IV isolated 
from detergent-extracts of rat lungs. 

lung capillary endothelia were endothelial- and organ- 
specific, but only with respect to the two organs from which 
endothelial membrane vesicles had been derived, namely 
hind leg musculature and lungs. Further testing by immuno- 
histochemistry revealed that these antibodies were neither 
endothelial- nor organ-specific, although staining was re- 
stricted to distinct tissue and vessel compartments. These 
results are in agreement with those reported by Auerbach et 
al. (4), who employed cultured microvascular endothelial 
cells isolated from various organs including the lungs as im- 
munogens in the generation of mAbs against endothelial cell 
surface molecules. 

The distribution of the endothelial cell determinants that 
were recognized by mAbs generated against endothelial 
membrane vesicles obtained by in situ lung perfusion was 
quite different from that previously observed with mAbs 
raised against endothelial cell membrane vesicles derived from 
organ-specifically modulated aortal endothelial cells (22, 35). 
While the present set of mAbs was almost exclusively 
directed against endothelial cell epitopes that were expressed 
in lung capillaries, mAbs raised against vesicles from lung 
matrix-modulated endothelial cells almost always identified 
epitopes on venular endothelia (35, 37). This finding might 
be explained by the predominance of capillary endothelium- 
derived vesicles in standard in situ vesicle preparations, 
since the capillary bed provides by far the largest lumenal 
surface area of the lung vasculature (32). In contrast, modu- 
lation for lung specificity of vascular endothelium by lung 
matrix-derived extracts delivered mostly mAbs that were 
directed against endothelial cell epitopes of blood vessels in 
which the endothelium was readily exposed to pockets of 
organ-specific matrix, i.e., venules (35). In this context, it 

is also noteworthy that neither in the present nor in the previ- 
ous series of fusion experiments conducted in our labora- 
tory, we were able to produce mAbs that recognized en- 
dothelial cell epitopes displayed on the arterial segment of 
the lung vasculature (35), For the present study, this can 
again be explained by an underrepresentation of endothelial 
cell vesicles derived from the arterial segment of the lung 
vasculature in standard in situ lung vesicle preparations. 
Similar arguments can be made when matrix-modulated en- 
dothelial cells are used for the production of mAbs. The ar- 
terial matrix constitutes only a minor part of lung-derived 
extracellular matrix, making an induction of the arterial en- 
dothelial cell phenotype difficult, if not impossible. In sum- 
mary, the methodologies established in our laboratories for 
the generation of mAbs against organ-specific endothelial 
cell surface epitopes provide unique instruments with which 
we have been able to generate antibodies that are directed ei- 
ther against endothelia from the capillary network or against 
endothelia from the venular branches of the organ vas- 
culature. 

The mAb (8.6A3) that inhibited adhesion of lung-derived 
endothelial membrane vesicles to lung-metastatic R3230AC- 
MET breast and RPC-2 prostate carcinoma cells was found 
to be directed against a unique lung endothelial cell adhesion 
molecule, identified as dipeptidyl peptidase IV (DPP IV). 
While this sialoglycoprotein has been extensively inves- 
tigated with respect to its enzymatic activity (14), little has 
been published on its adhesion properties though it is recog- 
nized as a fibronectin-binding protein (8, 24). Preliminary 
work in our laboratory indicates that this binding property of 
DPP IV may be responsible for the attachment of lung-meta- 
static rat R3230AC-MET breast and RPC-2 prostate carci- 
noma cells (20). This hypothesis is supported by the finding 
that the lung-metastatic carcinoma cell lines R3230AC-MET 
and RPC-2 contain significantly higher numbers of cells that 
are decorated with fibronectin than their nonmetastatic (Con 
A and WGA)-resistant counterparts R3230AC-LR and RPC- 
LR. It appears that fibronectin is bound to and stored on can- 
cer cell surfaces, at least in part, by adhering to 131 and/33 
integrins, both significantly upregulated on lung-metastatic 
relative to nonmetastatic tumor variants (Johnson, R. C., 
and B. U. Pauli, manuscript in preparation). These prelim- 
inary observations suggest that tumor cell surface-associ- 
ated fibronectin may serve as an intermediary adhesion mol- 
ecule between tumor cell integrins and capillary endothelium 
DPP IV. 

The expression of DPP IV on lung capillary endothelia as 
well as on endothelia of the renal vasa recta and splenic ven- 
ules (9, 13) contrasts with the selective colonization of the 
lungs by R3230AC-MET breast and RPC-2 prostate carci- 
noma cells. Although this apparent discrepancy raises ques- 
tions concerning the proposed involvement of DPP IV in 
lung metastasis, we believe our data merely reinforce an 
"old" concept that successfully metastatic tumor cells must 
complete all steps of the metastatic cascade in order to give 
rise to secondary tumor growth. Thus, lack of metastases in 
kidney and spleen may well be related to "infertility" of the 
kidney and spleen microenvironments in promoting growth 
of extravasated tumor cells to noticeable colonies (for a re- 
view, see references 6, 17, 30, 33). Alternatively, tumor cells 
inoculated via the tail vein may not reach spleen and kidney 
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in sufficient numbers to generate experimental metastases in 
these organs. This hypothesis draws support from observa- 
tions in the mouse where tail vein inoculation of 2 x 1@ 
radiolabeled, lung-metastatic B16-F10 melanoma cells re- 
sults in the dissemination of a maximum of 2,000 and 3,000 
cells to either of these two organs, while the lungs are 
showered with a cell number that is close to that of the inocu- 
lure (7, 36). 

Data published by our laboratory and those of others sug- 
gest that expression of constitutive endothelial cell adhesion 
molecules is exclusive in its distribution, occurring only on 
endothelia of select vascular branches in distinct organ sites 
(5, 20, 37). These adhesion molecules are recognized by 
blood-borne cancer cells to promote arrest and subsequent 
extravasation at the secondary target organ. The application 
of in situ-derived endothelial cell membrane vesicles for the 
identification of such compartment-specific vascular mole- 
cules avoids the problems encountered with cultured, organ- 
derived microvascular endothelial cells and, thus, adds a 
new and powerful dimension to our pursuit of elucidating the 
role of endothelial cell adhesion molecules in site-specific 
metastasis. However, at the present writing this system has 
only been characterized to allow the systematic analysis of 
lung-derived endothelial cell adhesion molecules in metasta- 
sis of the lungs, the sites most frequently targeted by blood- 
borne cancer cells. Attempts to include the liver in such 
studies so far have failed due to massive edema and accom- 
panying loss of endothelial vesicle across the discontinuous 
endothelium of the liver sinusoids. Large scale perfusion ex- 
periments are currently in progress to explore the usefulness 
of various polysaccharide and protein additives to the perfu- 
sion fluid in order to better control edema formation and 
vesicle loss. Whether this system can be further expanded to 
include organs with endarterial blood supply such as brain 
and kidney remains to be seen. Initial perfusion experiments 
seem to indicate that endothelial vesicle harvest from such 
organs is satisfactory only during the early, less productive 
perfusion phase, but ceases as continued perfusion with the 
aldehyde solution leads to increasing vascular and tissue ri- 
gidity and associated occlusion of capillary lumina with vesi- 
cle clusters. 
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