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Background: Ferroptosis is associated with cancer initiation and progression. However, the
molecular mechanism and prognostic value of ferroptosis-related genes in lung squamous
cell carcinoma (LUSC) are poorly understood.
Methods: The mRNA expression profiles, methylation data, and clinical information of pa-
tients with LUSC were downloaded from TCGA and GEO database. Ferroptosis-related dif-
ferentially expressed genes (DEGs) were identified between cancerous and non-cancerous
tissues, and their prognostic value was systemically investigated by bioinformatic analyses.
Results: A ferroptosis-related gene signature (ALOX5, TFRC, PHKG2, FADS2, NOX1) was
constructed using multivariate Cox regression analysis and represented as a risk score.
Overall survival (OS) probability was significantly lower in the high-risk group than in the
low-risk group (P<0.001), and receiver operating characteristic curve showed a good pre-
dictive capacity (AUC = 0.739). The risk score was an independent prognostic factor for
LUSC. A nomogram was constructed to predict the OS probabilities at 1, 3, and 5 years.
High-risk score was associated with increased immune infiltration, lower methylation levels,
higher immune checkpoint genes expression levels, and better chemotherapy response.
Cell adhesion molecules, focal adhesion, and extracellular matrix receptor interaction were
the main pathways in the high-risk group. The signature was validated using the TCGA test
cohort, entire TCGA cohort, GSE30219, GSE157010, GSE73403, and GSE4573 datasets.
The gene disorders in patients with LUSC were validated using real-time PCR and single-cell
RNA sequencing analysis.
Conclusions: A ferroptosis-related gene signature was constructed to predict OS probability
in LUSC. This could facilitate novel therapeutic methods and guide individualized therapy.

Introduction
Lung cancer is a common malignancy and the leading cause of cancer-associated deaths worldwide [1].
Non-small cell lung carcinoma (NSCLC) is the most common type of lung cancer and represents approxi-
mately 80–85% of all lung cancers [2,3]. Lung squamous cell carcinoma (LUSC) is a subtype of NSCLC and
accounts for 30% of lung cancer diagnoses [4,5]. Various genetic and epigenetic changes have occurred in
different subtypes of lung cancer [6]. Moreover, in patients with lung adenocarcinoma (LUAD), targeted
therapies (against EGFR, ALK, ROS1, or BRAF) have significantly improved the clinical outcome [7].
However, these effective therapeutic methods may not be suitable for patients with LUSC [6]. Meanwhile,
surgical intervention and chemotherapy and/or radiation have been proven to be suitable against a part
of LUSC [8]. The 5-year survival rate of lung cancer is approximately 18% [9]. Therefore, considering the
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limited therapeutic strategies and prognostic models, a systematic study to explore the differentially expressed genes
(DEGs) is required to identify a prognostic signature and guide decision-making for LUSC treatment.

Ferroptosis is described as a non-apoptotic regulated cell death, which is an iron-dependent form induced by
erastin, characterized by excess reactive oxygen species (ROS) generation and lipid peroxidation [10]. Ferroptosis
has been found to occur in lung cancer in recent years [11]. An increased retention of P53 in the nucleus is induced
by the cytosolic P53RRA-Ras GTPase-activating protein-binding protein 1 (G3BP1) interaction, which triggers cell
cycle arrest, apoptosis, and ferroptosis [12]. Thus, suppressing ferroptosis could inhibit lung cancer cell growth and
migration [13]. SLC7A11, a ferroptosis-related gene, can repress the progression of NSCLC by ferroptosis-associated
pathways [14]. However, whether these ferroptosis-related genes are altered in LUSC and correlated with LUSC pa-
tient prognosis remain largely unknown.

In the present study, the mRNA expression profiles, methylation data, and clinical information of patients with
LUSC were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. A
prognostic signature was then constructed using ferroptosis-related DEGs and validated in multiple test cohorts. The
correlations of risk score with immune infiltration, methylation levels, and immunotherapy and chemotherapy re-
sponse were evaluated using R language. Finally, real-time PCR and single-cell RNA sequencing analysis (scRNA-seq)
were performed to validate the expression levels of five genes in LUSC.

Materials and methods
Data collection
The mRNA expression profiles of 502 LUSC samples and 49 control samples, DNA methylation data of 370 LUSC
samples, and the clinical information of 504 patients with LUSC were obtained from TCGA database (https://portal.
gdc.cancer.gov/). GSE30219, GSE157010, GSE73403, and GSE4573 datasets were obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/gds/), which included 293, 235, 69, and 130 patients with lung cancer, respectively.
The inclusion criteria were patients with (1) LUSC, (2) mRNA expression profiles, and (3) complete follow-up data.
Thus, a total of 490 patients from TCGA, 61 patients from GSE30219, 235 patients from GSE157010, 69 patients
from GSE73403, and 130 patients from GSE4573 were included in the present study. The patients from TCGA were
randomly divided into training and test cohorts in a 7:3 ratio using ‘glmnet packages’ in R language (version 4.0.2)
[15,16]. Thus, 346 and 144 patients were allocated to the TCGA training and test cohorts, respectively. GSE30219,
GSE157010, GSE73403, and GSE4573 datasets were considered as the external validation cohort. The baseline char-
acteristics of patients with LUSC are shown in Table 1. The raw data and phenotype data of the GSE111907 dataset
were downloaded from the GEO database, which is a scRNA-seq dataset and include 185 samples. The inclusion cri-
teria were (1) LUSC and (2) cancer cell or immune cell. Thus, 12 cancer cell samples and 12 immune cell samples
were included in the current study. Sixty ferroptosis-related genes were retrieved from previous literature [17–20].

Identification of ferroptosis-related DEGs
The gene expression matrix of LUSC was obtained using Strawberry Perl (5.32.0.1-64bit), and the expression ma-
trix of ferroptosis-related genes was extracted using R language. The ferroptosis-related DEGs were identified using
‘limma packages’ in R language based on |log2 fold change (FC)| > 0 and adjusted P value < 0.05. Volcano plots were
constructed using ‘ggplot2 packages’ in R language.

Identification of prognostic genes and construction of a prognostic
signature
Prognostic ferroptosis-related genes were identified using univariate Cox regression analysis with P<0.05. The prog-
nostic ferroptosis-related DEGs were screened using ‘venn diagram package’ in R language. A prognostic signature
was constructed using multivariate Cox regression analysis according to a linear combination of levels of gene ex-
pression multiplied by a regression coefficient (β). The risk score was calculated according to the formula: Risk score
= levels of gene 1 relative expression × β1 gene 1 + levels of gene 2 relative expression × β2 gene 2 + . . . + levels
of gene n relative expression × βn gene n. The patients were divided into low-risk and high-risk groups according
to the median risk score. Kaplan–Meier survival curve was plotted between the high-risk and low-risk groups and
compared using the log-rank test. The predictive value of the signature was assessed using receiver operating charac-
teristic curve (ROC) analysis. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding
(t-SNE) analysis were performed to explore the distribution position of the two groups. Univariate and multivariate
Cox regression analyses were used to screen independent prognostic factors for LUSC.
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Table 1 Clinical features of patients with LUSC from TCGA and GEO databases

Clinical features
TCGA training
cohort (346)

TCGA test cohort
(144) GSE30219 (61) GSE157010 (235) GSE73403 (69) GSE4573 (130)

Age (years)

≥65 226 (65.32%) 94 (65.28%) 27 (44.26%) 156 (66.38%) 25 (36.23%) 78 (60.00%)

<65 119 (34.39%) 50 (34.72%) 34 (55.74%) 79 (33.62%) 44 (63.77%) 52 (40.00%)

Unknown 1 (0.29%) 0 0 0 0 0

Gender

Men 256 (73.99%) 106 (73.61%) 56 (91.80%) 153 (65.11%) 65 (94.20%) 82 (63.08%)

Women 90 (26.01%) 38 (26.39%) 5 (8.205) 82 (34.89%) 4 (5.80%) 48 (36.92%)

Unknown 0 0 0 0 0 0

T classification

T1-T2 276 (79.77%) 121 (84.03%) 55 (90.16%) 202 (85.96%) 46 (66.67%) 109 (83.85%)

T3-T4 70 (20.23%) 23 (15.97%) 6 (9.84%) 31 (13.19%) 23 (33.33&) 21 (16.15%)

Unknown 0 0 0 2 (0.85%) 0 0

N classification

N0 211 (60.98%) 101 (70.14%) 52 (85.25%) / 35 (50.72%) 83 (63.85%)

N1-N3 132 (38.15%) 40 (27.78%) 9 (14.75%) / 34 (49.28%) 47 (36.15%)

Unknown 3 (0.87%) 3 (2.08%) 0 / 0 0

M classification

M0 286 (82.66%) 116 (80.56%) 61 (100.00%) / 69 (100.00%) 129 (99.23%)

M1 6 (1.73%) 1 (0.69%) 0 / 0 0

Unknown 54 (15.61%) 27 (18.75%) 0 / 0 1 (0.77%)

UICC stage

Stage I-II 273 (78.90%) 123 (85.42%) 57 (93.44%) / 38 (55.07%) 107 (82.31%)

Stage III-IV 70 (20.23%) 20 (13.89%) 4 (6.56%) / 31 (44.93%) 23 (17.69%)

Unknown 3 (0.87%) 1 (0.69%) 0 / 0 0

Nomogram and calibration plots of the nomogram
A nomogram could better predict the disease prognosis due to its multidimensional parameters [21,22]. A nomogram
was constructed using independent prognostic factors (age, UICC stage, and risk score) to predict the OS probability
at 1-, 3-, and 5-years using the ‘rms package’ in R language. Calibration plots of the nomogram were applied to check
the conformity of the nomogram-predicted and actual OS probabilities.

Gene set enrichment analysis
Gene set enrichment analysis is a computational method that determines whether a priori defined set
of genes shows statistically significant and concordant differences between two biological states [23]. The
‘c2.cp.kegg.v7.5.1.symbols.gmt’ was downloaded from the GSEA database (http://www.gsea-msigdb.org/gsea/index.
jsp). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses between the high and low-risk groups
were performed using ‘limma’, ‘org.Hs.eg.db’, ‘clusterProfiler’, and ‘enrichplot’ packages in R language.

Analysis of DNA methylation levels of five genes
DNA methylation matrix of LUSC was obtained using Strawberry Perl, and DNA methylation data of five genes
(arachidonate 5-lipoxygenase [ALOX5], transferrin receptor [TFRC], phosphorylase kinase catalytic subunit gamma
2 [PHKG2], fatty acid desaturase 2 [FADS2], and NADPH oxidase 1 [NOX1]) in LUSC were extracted using R
language and compared between the high- and low-risk groups using Mann–Whitney test.

Analysis of immune infiltration and immunotherapy
The mRNA expression matrix of LUSC was converted to the tumor micro-environment score matrix using R lan-
guage. The tumor micro-environment score including stromal score, immune score, and estimate score were com-
pared between the high and low-risk groups using R language. The correlations of risk score and five genes with
different immune cells were determined using R language. Spearman’s rank correlation test was used to analyze the
correlations, and the significance level was set at P<0.05. Moreover, levels of immune checkpoints genes (PD1, PDL1,
CTLA4) relative expression were compared between the two risk groups using GraphPad Prism (version 7.00).
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Analysis of sensitivity of chemotherapy drugs
Six chemotherapy drugs including bexarotene [24,25], dasatinib [26,27], embelin [28], midostaurin [29], pazopanib
[30–32], and pyrimethamine [33,34] were screened from previous literature, which have been shown to have effects on
lung cancer. The half inhibitory concentration (IC50) of these chemotherapy drugs was compared between both risk
groups using ‘pRRophetic packages’ in R language. Wilcoxon signed-rank test was used to compare the differences
between the two risk groups. P<0.05 was considered statistically significant.

Real-time PCR validation
Ten paired lung tissue samples were obtained from patients with LUSC who underwent lobectomy in West China
Hospital of Sichuan University. Histologically normal tissues were considered as controls. Total RNA was extracted
using the E.Z.N.A. HP Total RNA Kit (OMEGA, U.S.A.), according to the manufacturer’s instructions. Complemen-
tary DNA (cDNA) was synthesized using PrimeScript TM RT reagent Kit (Takara, Japan) following the manufacturer’s
instructions. Real-time PCR was performed using Iq TM SYBR Green Supermix (BIO-RAD, U.S.A.) according to the
manufacturer’s protocol. Relative expression levels of five genes were normalized by theβ-actin Ct value (endogenous
reference), applying a 2−��Ct Ct relative quantification method. The real-time PCR primers were as follow:

ALOX5-forward: 5′-CAAAATCTGGGTGCGTTCCA-3′

ALOX5-reverse: 5′-AGCAGCTTGAAAATGGGGTG-3′

TFRC-forward: 5′-GGAGTGCTGGAGACTTTGGA-3′

TFRC-reverse: 5′-TATACAACAGTGGGCTGGCA-3′

PHKG2-forward: 5′-AGCTTCGAGAGTTGTGTGGG-3′

PHKG2-reverse: 5′-TAACATCAGGATCTGCCGCC-3
NOX1-forward: 5′-GGGGTCAAACAGAGGAGAGC-3′

NOX1-reverse: 5′-CTTCTGCTGGGAGCGGTAAA-3′

FADS2-forward: 5′-GCCACTTAAAGGGTGCCTCT-3′

FADS2-reverse: 5′-TGCTGGTGATTGTAGGGCAG-3′

β-actin-forward: 5′-CCACGAAACTACCTTCAACTCC-3′.
β-actin -reverse: 5′-GTGATCTCCTTCTGCATCCTGT-3′.

Single-cell RNA sequencing analysis
The relative expression levels of five genes (ALOX5, TFRC, PHKG2, FADS2, NOX1) were compared between the
cancer cells and immune cells.

Statistical analysis
Statistical analysis was performed using GraphPad Prism or R language. Shapiro–Wilk test was applied to test the data
distribution type. Levels of relative gene expression were expressed as median (interquartile range). Mann–Whitney
test was used in comparing the differences between two groups. P<0.05 was considered statistically significant dif-
ference.

Results
Identification of ferroptosis-related DEGs
The study flowchart is shown in Figure 1. A total of 51 ferroptosis-related DEGs (38 up-regulated and 13
down-regulated genes) were identified when LUSC was compared with the control (Figure 2A).

Identification of prognostic ferroptosis-related DEGs
In univariate Cox regression analysis, a total of six ferroptosis-related genes were associated with survival
(Figure 2B). There were six prognostic ferroptosis-related DEGs between ferroptosis-related DEGs and prognostic
ferroptosis-related genes (Figure 2C).

Construction of the prognostic signature
Multivariate Cox regression analysis was applied to construct the prognostic signature. Subsequently, five genes
(ALOX5, TFRC, PHKG2, FADS2, NOX1) were screened using R language (Figure 2D), and the risk score formula
was established: Risk score = (0.170 × expression of ALOX5) + ([−0.125] × expression of TFRC) + ([−0.298] ×
expression of PHKG2) + (0.181 × expression of FADS2) + ([−0.848] × expression of NOX1). The patients with
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Figure 1. Study flow chart and main findings

Numbers within parenthesis indicate the size of the sample obtained.

LUSC were stratified into high- or low-risk groups according to the median risk score (Figure 3C). Kaplan–Meier
survival curve demonstrated that the high-risk group had a lower OS probability than the low-risk group (P<0.001;
Figure 3A), and the area under the ROC curve (AUC) value was 0.739 (Figure 3B). Patients in the high-risk group
had a higher mortality (Figure 3D). Relative expression levels of the five genes between the two risk groups are shown
in a heatmap (Figure 3E). PCA and t-SNE analysis indicated that the patients in the high- or low-risk groups were
distributed in different positions (Figure 4A,B).

Validation of the prognostic signature
Kaplan–Meier survival curve showed that OS probability in the high-risk group was significantly lower than that in
the low-risk group (P<0.001, Figure 5A), and AUC was 0.710 (Figure 5B) in the TCGA test cohorts. In addition, PCA
and t-SNE analysis showed that patients in the two risk groups were distributed in different positions (Figure 4C,D).
The high-risk group had a lower OS probability compared with the low-risk group (P<0.001, Figure 5C), and AUC
was 0.722 (Figure 5D) in the entire TCGA cohorts. In addition, the high-risk group also had a lower OS probability
than the low-risk group in GSE30219 (P<0.001, Figure 5E), GSE157010 (P<0.001, Figure 5F), GSE73403 (P<0.001,
Figure 5G), and GSE4573 (P<0.001, Figure 5H).

Risk score as an independent prognostic factor for LUSC
Age, UICC stage, and risk score were associated with prognosis using univariate Cox regression analysis (hazard ratio
[HR]: 1.023, P=0.041; HR: 1.346, P=0.003; HR: 2.312, P<0.001, Figure 6A), which was confirmed using multivari-
ate Cox regression analysis (HR: 1.026, P=0.027; HR: 1.355, P=0.003; HR: 2.234, P<0.001) in the training cohorts
(Figure 6B). In contrast, only risk score was associated with prognosis in univariate Cox regression analysis (HR:
2.076, P=0.006, Figure 6C) and multivariate Cox regression analysis (HR: 2.085, P=0.005, Figure 6D) in the test
cohorts. Thus, the risk score was an independent prognostic factor for LUSC.

Nomogram and calibration plots of the nomogram
A nomogram was successfully constructed to predict the OS probabilities at 1, 3, and 5 years in patients with LUSC,
which was calculated by plotting a vertical line between the total point axis and each prognostic axis (Figure 6E). In
addition, calibration plots of the nomogram demonstrated high conformity of the nomogram-predicted and actual
OS probabilities at 1, 3, and 5 years in patients with LUSC (Figure 6F).
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Figure 2. Construction of the prognostic signature

(A) Volcano plots of ferroptosis-related genes in patients with LUSC versus healthy control. (B) Univariate Cox regression analysis.

(C) The prognostic ferroptosis-related DEGs. (D) Multivariate Cox regression analysis. DEG, differentially expressed gene; FC, fold

change.

Gene set enrichment analysis
The results showed that the high-risk group was mainly enriched in cell adhesion molecules, focal adhesion, and
extracellular matrix (ECM) receptor interaction (Figure 7A), whereas metabolism of xenobiotics by cytochrome P450,
and oxidative phosphorylation were the main pathways in the low-risk group (Figure 7B).

DNA methylation levels of five genes
DNA methylation levels of TFRC (P=0.002) and FADS2 (P=0.020) in the high-risk group were significantly lower
than that in the low-risk group (Figure 8A,B), whereas DNA methylation levels of ALOX5, PHKG2, and NOX1
were slightly reduced in the high-risk group compared with the low-risk group without a statistical difference (Figure
8C–E).
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Figure 3. Evaluation of the prognostic signature

(A) Kaplan–Meier survival curve, (B) receiver-operating characteristic curve, (C) risk score distribution, (D) survival status, and (E)

heatmap of five gene expression profiles.

Immune infiltration and immunotherapy
The tumor microenvironment score including stromal score (P<0.001), immune score (P<0.001), and estimate score
(P<0.001) were all higher in the high-risk group compared with the low-risk group (Figure 9A). Thus, the tumor
micro-environment was significantly different between the two risk groups. Moreover, the risk score was positively
associated with macrophages M2 (P=0.013, rho = 0.12), memory B cells (P=0.02, rho = 0.13), resting memory
CD4+ T cells (P<0.001, rho = 0.27), Treg cells (P<0.01, rho = 0.13), and neutrophils (P=0.015, rho = 0.12) (Figure
9B–F) and was negatively associated with activated dendritic cells (P=0.026, rho = −0.11) and follicular helper T
cells (P<0.01, rho = −0.2) (Figure 9G,H). The correlations of five genes with immune cells were illustrated in Figure
9I. In addition, to explore the immunotherapy response on different risk groups, relative expression levels of immune
checkpoint genes (PD1, PDL1, CTLA4) were compared, and the results showed that the relative expression levels of
PD1 (P<0.001) and CTLA4 (P<0.001) were higher in the high-risk group (Figure 10A–C), which showed that the
high-risk group may have a better immunotherapy response.
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Figure 4. PCA and t-SNE analysis

PCA and t-SNE analysis of the prognostic signature in the TCGA (A,B) training cohorts and (C,D) the test cohorts. PCA, principal

component analysis; t-SNE, t-distributed stochastic neighbor embedding.

Sensitivity of chemotherapy drugs
The results indicated that the high-risk group exhibited a lower IC50 for bexarotene, dasatinib, embelin, midostaurin,
pazopanib, and pyrimethamine (P<0.001, Figure 10D–I), suggesting that the prognostic signature may be a reference
option for chemotherapy drugs.

Real-time PCR validation
Levels of TFRC (P<0.001), PHKG2 (P=0.008), FADS2 (P=0.023), and NOX1 (P=0.049) mRNA relative expression
were higher in tumor tissues than in control tissues (Figure 11A–D); however, levels of ALOX5 (P<0.001) mRNA rel-
ative expression were reduced in cancerous tissues compared with control tissues (Figure 11E), which were consistent
with the bioinformatic results.

8 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).



Bioscience Reports (2022) 42 BSR20212835
https://doi.org/10.1042/BSR20212835

Figure 5. Validation of the prognostic signature

Kaplan–Meier survival curve and receiver operating characteristic curve in (A,B) the TCGA test cohorts and (C,D) the entire TCGA

cohorts. Kaplan–Meier survival curve in (E) GSE30219, (F) GSE157010, (G) GSE73403, and (H) GSE4573 datasets; AUC, area under

the ROC curve.

Single-cell RNA sequencing analysis
Many types of immune cells infiltrate tumors, thus clarifying that the resource of five genes is of great importance.
Levels of TFRC (P<0.001), PHKG2 (P=0.005), FADS2 (P<0.001), and NOX1 (P=0.011) mRNA relative expression
were higher in cancer cells than in immune cells (Figure 11F–I), whereas levels of ALOX5 (P<0.001) mRNA relative
expression were lower in cancer cells than in immune cells (Figure 11J).

Discussion
In the present study, a ferroptosis-related gene signature was constructed to predict prognosis in patients with LUSC
using multivariate Cox regression analysis, and the risk score was determined to be an independent prognostic factor
for LUSC. A nomogram was successfully constructed to predict the OS probabilities at 1, 3, and 5 years in patients
with LUSC. The high-risk score was associated with increased immune infiltration, lower methylation levels, higher
levels of immune checkpoint genes, and better chemotherapy drugs sensitivity. Finally, the prognostic signature was
validated using the TCGA test cohorts, entire TCGA cohorts, and multiple GEO datasets.

TFRC, also known as CD71, is an essential membrane protein-regulating intracellular iron transporter [35,36]. Ac-
tivating TFRC increases the iron content, mediates the release of ROS, and induces lipid peroxidation, which further
promotes the ferroptosis of cells [37]; however, knocking down TFRC significantly inhibits cancer cell proliferation
and metastasis via up-regulation of AXIN2 expression or sponge of microRNA-107 [38,39]. Levels of TFRC mRNA
expression were significantly increased in LUSC samples [40]. PhK is a heterotetramer composed of four copies each
of α, β, γ, and � subunits [41]. Subunit γ is encoded by PHKG2 [42]. Silencing PHKG2 prevents accumulation of
lipid peroxides and decreases cellular iron level [43]. PHKG2 is a useful diagnostic biomarker for multiple cancers,
including breast cancer [44] and endometrial cancer [45]. NOX1 plays an important role in ROS generation and
lung cancer [46,47]. NOX1-dependent ROS generation for toll-like receptor 4 (TLR4) signaling is found to enhance
the metastasis of NSCLC [48]. In addition, NOX1 up-regulation is shown to activate sirtuin 1 (SIRT1) and inhibit
P53 [49]. FADS2 is overexpressed in cancer and functions as a potential oncogene that facilitates cancer cell pro-
liferation [50]. Inhibiting FADS2 could reduce ferroptosis by increasing levels of Fe and lipid ROS in lung cancer
cells [51]. ALOX5 gene encodes lipoxygenase, which could catalyze the conversion of arachidonic acid to leukotriene
[52]. Knockdown of ALXO5 mitigates lipid peroxidation, mitochondrial damage, DNA impairment, and cell death
in ARPE-19 cells [53]. Genetic variations in the promoter region of ALOX5 may induce a reduced drug response to
montelukast sodium in patients with asthma, leading to pharmacogene [54]. ALOX5 polymorphisms in non-smokers
may increase risk of lung cancer [55]. The increased TFRC, PHKG2, FADS2, NOX1, and reduced ALOX5 levels in
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Figure 6. Correlations of the risk score with clinicopathological characteristics and construction of a nomogram and cali-

bration plots

Univariable and multivariate Cox regression analysis in the (A,B) training cohorts and (C,D) test cohorts. (E) Nomogram to predict

OS at 1, 3, and 5 years. (F) Calibration plots of the nomogram. OS: overall survival; *P<0.05, **P<0.01, ***P<0.001.

10 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 7. Gene set enrichment analysis

The primary pathways enriched in the (A) high-risk group and (B) low-risk group in LUSC using gene set enrichment analysis.

Figure 8. Levels of five genes methylation expression

Levels of (A) TFRC, (B) FADS2, (C) ALOX5, (D) NOX1, and (E) PHKG2 methylation between the two risk groups. Data were expressed

as median (interquartile range).

LUSC tissues were reported in the present study, and scRNA-seq analysis showed that the levels of the five dysregu-
lated genes were mainly influenced by cancer cells rather than immune cells.

The ferroptosis-related gene signature has been successfully constructed to predict the prognosis in patients with
hepatocellular carcinoma [56], breast cancer [57], pancreatic adenocarcinoma [58], and cholangiocarcinoma [59].
Additionally, in LUAD, a ferroptosis-related gene signature including five genes was constructed to predict prognosis
[60]. However, the ferroptosis-related gene signature for LUAD was not suitable for LUSC due to disease hetero-
genicity [6], different responses to clinical treatment [61,62], different prognoses [63], and lack of an experimental
validation. Therefore, in the present study, a ferroptosis-related gene signature was successfully constructed using
five genes validated by real-time PCR to predict the prognosis in patients with LUSC. Kaplan–Meier survival curve
showed that patients with LUSC in the high-risk group were associated with a lower OS probability with moderate
sensitivity and specificity than patients in the low-risk group. Moreover, the risk score was an independent prog-
nostic factor for LUSC through multivariate Cox regression analysis. The signature was successfully validated using
the TCGA test cohort, entire TCGA cohort, GSE30219, GSE157010, GSE73403, and GSE4573. Thus, the prognostic
signature could be used to discriminate different risk groups and may contribute to guide therapy.

GSEA was performed to explore the underlying molecular mechanism between the two risk groups. The abnor-
mal expression of cell adhesion molecules resulting in a loss of cell–cell and cell–matrix interactions can promote
cancer cell invasion and migration [64]. For example, CEACAM6 overexpression promotes the migration of NSCLC
by enhancing integrin expression [65–67]. In addition, up-regulation of adhesion molecules may contribute to lung
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Figure 9. The correlations of risk score with immune infiltration

(A) Tumor microenvironment score. (B) Macrophages M2. (C) Memory B cells. (D) Resting memory CD4+ T cells. (E) Treg cells.

(F) Neutrophils. (G) Activated dendritic cells. (H) Follicular helper T cells. (I) The correlations of five genes with immune infiltration;

*P<0.05, **P<0.01, ***P<0.001.

metastasis enhanced by local infection/inflammation [68]. Dysregulated focal adhesion and ECM receptor could re-
sult in tumor progression [69–71]. In the present study, the cell adhesion molecules, focal adhesion, and ECM receptor
interaction were the main pathways in the high-risk groups. Thus, the lower OS probability in the high-risk group
may correlate with activated adhesion molecules, focal adhesion, and ECM. DNA methylation is an important type
of epigenetic modification [72]. Hypermethylation or hypomethylation could cause the down-regulation or overex-
pression of target genes, which further regulate NSCLC tumorigenesis and progression [73]. The overall methylation
levels of the five genes were lower in the high-risk group in the present study, which may also correlate with the lower
OS probability in the high-risk group. Thus, interfering with the above-mentioned pathways and targets may facilitate
novel therapeutic methods and thus improve prognosis.

12 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
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Figure 10. The correlations of risk score with immunotherapy and chemotherapy

Levels of (A) PD1, (B) CTLA4, and (C) PDL1 relative expression between the high- and low-risk groups. IC50 of (D) bexarotene, (E)

dasatinib, (F) embelin, (G) midostaurin, (H) pazopanib, and (I) pyrimethamine between the two risk groups. Data were expressed

as median (interquartile range). IC50: half inhibitory concentration; ns, no significance; ***P<0.001.

Immune cells are an important part of the tumor microenvironment and play a critical role in tumor development
[74]. Tumor-associated macrophages and intra-tumoral CD8+ T cells are significantly associated with a poor prog-
nosis in lung cancer [75–78]. Treg cells could promote lung cancer progression and metastasis [79–82] and are signif-
icantly associated with worse OS [83]. The neutrophil count in peripheral blood is an effective diagnostic biomarker
for lung cancer [84]. Our research showed that high risk score was associated with increased macrophages M2, mem-
ory B cells, memory CD4+ T cells, neutrophils, and Treg cells. Thus, the high-risk group had a lower OS probability
due to increased immune infiltration and may have a better treatment response to immunotherapy. Currently, im-
mune checkpoint inhibitors (ICI) are becoming the standard first-line treatment for advanced NSCLC [85–87], and
PD1, PDL1, and CTLA4 are mainly targets for ICI [88–92]. The high-risk score was correlated with increased relative
expression levels of immune checkpoint genes (PD1, CLTA4). Thus, the high-risk group may be more sensitive to
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Figure 11. Real-time PCR and single cell RNA sequencing analysis

Levels of (A) TFRC, (B) PHKG2, (C) FADS2, (D) NOX1, and (E) ALOX5 relative expression in lung tissues using real-time PCR.

Relative expression levels of (F) TFRC, (G) PHKG2, (H) FADS2, (I) NOX1, and (J) ALOX5 between cancer cells and immune cells

using single cell RNA sequencing analysis. Data were expressed as median (interquartile range); *P<0.05, **P<0.01, ***P<0.001.

immune checkpoint inhibitors against PD1 and CLTA4. Most patients with lung cancer are diagnosed in an advanced
stage [93]; thus, chemotherapy still serves as an important therapeutic method for them [94]. The high-risk group has
a lower IC50 for six common chemotherapy drugs for lung cancer, which may be a reference option for chemotherapy
drugs.

Highlights of the present study include the prognostic signature, which was constructed in the training cohort and
validated in the test cohort, entire TCGA cohort and GSE30219, GSE157010, GSE73403, and GSE4573 datasets; and
immunotherapy and chemotherapy response, which were identified to guide individualized treatment. In addition,
the results of bioinformatic analysis were validated using real-time PCR in another cohort. Limitations of the present
study are that our results were based on TCGA database and, thus, the prognostic signature needs to be validated in
a clinical patient cohort. Moreover, the molecular mechanisms and specific role of ferroptosis-related genes, such as
on lipid reactive oxygen species and ferrous ion accumulation, in LUSC need to be explored in further study.

Conclusions
A ferroptosis-related gene signature (ALOX5, TFRC, PHKG2, FADS2, NOX1) was constructed in the present
study. The OS probability was significantly lower in the high-risk group than in the low-risk group (P<0.001),
and AUC value was 0.739. The high-risk score was associated with increased immune infiltration, lower methy-
lation levels, higher immune checkpoint genes expression level, and better chemotherapy sensitivity. Therefore, a
ferroptosis-related gene signature was successfully constructed to predict prognosis for LUSC, and it may facilitate
novel therapeutic methods and guide individualized therapy including immunotherapy and chemotherapy.

Data Availability
The data used to support the findings of the present study are available from TCGA database (https://portal.gdc.cancer.gov/) and
GEO datasets (https://www.ncbi.nlm.nih.gov/gds/).

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
This research was funded by Sichuan Provincial Administration of Traditional Chinese Medicine [project id: 2021MS462].

14 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/


Bioscience Reports (2022) 42 BSR20212835
https://doi.org/10.1042/BSR20212835

CRediT Author Contribution
Ti-wei Miao: Data curation, Software, Validation, Methodology, Writing—original draft. De-qing Yang: Data curation, Software,
Validation, Writing—original draft. Fang-ying Chen: Data curation, Software, Validation, Writing—original draft. Qi Zhu: Supervi-
sion, Writing—original draft. Xin Chen: Supervision, Funding acquisition, Writing—original draft, Writing—review & editing.

Ethics Statement
The studies involving human participants were approved by the Clinical Trial and Biomedical Ethics Committee of West China
Hospital of Sichuan University (No. 2016-120). All patients with LUSC volunteered to attend the study and signed an informed
consent to allow analyses to be performed on their tissue samples.

Abbreviations
ALOX5, arachidonate 5-lipoxygenase; DEG, differentially expressed gene; ECM, extracellular matrix; FADS2, fatty acid desat-
urase 2; FC, fold change; GSEA, gene set enrichment analysis; HR, hazard ratio; ICI, immune checkpoint inhibitor; LUAD, lung
adenocarcinoma; LUSC, lung squamous cell carcinoma; NOX1, NADPH oxidase 1; NSCLC, non-small cell lung carcinoma; OS,
overall survival; PCA, principal component analysis; PHKG2, phosphorylase kinase catalytic subunit gamma 2; SIRT1, sirtuin 1;
TFRC, transferrin receptor; TLR4, toll-like receptor 4; t-SNE, t-distributed stochastic neighbor embedding.

References
1 Cassim, S., Chepulis, L., Keenan, R., Kidd, J., Firth, M. and Lawrenson, R. (2019) Patient and carer perceived barriers to early presentation and

diagnosis of lung cancer: a systematic review. BMC Cancer 19, 25, https://doi.org/10.1186/s12885-018-5169-9
2 Travis, W.D., Brambilla, E., Burke, A.P., Marx, A. and Nicholson, A.G. (2015) Introduction to The 2015 World Health Organization classification of tumors

of the lung, pleura, thymus, and heart. J. Thoracic Oncol. 10, 1240–1242, https://doi.org/10.1097/JTO.0000000000000663
3 Travis, W.D., Brambilla, E., Noguchi, M., Nicholson, A.G., Geisinger, K.R., Yatabe, Y. et al. (2011) International association for the study of lung

cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J. Thoracic Oncol.
6, 244–285, https://doi.org/10.1097/JTO.0b013e318206a221

4 Sorber, L., Zwaenepoel, K., Deschoolmeester, V., Van Schil, P.E., Van Meerbeeck, J., Lardon, F. et al. (2017) Circulating cell-free nucleic acids and
platelets as a liquid biopsy in the provision of personalized therapy for lung cancer patients. Lung Cancer 107, 100–107,
https://doi.org/10.1016/j.lungcan.2016.04.026

5 Huang, J.Z., Chen, M., Chen, D., Gao, X.C., Zhu, S., Huang, H. et al. (2017) A peptide encoded by a putative lncRNA HOXB-AS3 suppresses colon cancer
growth. Mol. Cell. 68, 171.e6–184.e6, https://doi.org/10.1016/j.molcel.2017.09.015

6 Wang, Q., Yang, S., Wang, K. and Sun, S.Y. (2019) MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer. J. Hematol. Oncol. 12, 63,
https://doi.org/10.1186/s13045-019-0759-9

7 Piotrowska, Z., Isozaki, H., Lennerz, J.K., Gainor, J.F., Lennes, I.T., Zhu, V.W. et al. (2018) Landscape of acquired resistance to osimertinib in
EGFR-mutant NSCLC and Clinical validation of combined EGFR and RET inhibition with osimertinib and BLU-667 for acquired RET fusion. Cancer Discov.
8, 1529–1539, https://doi.org/10.1158/2159-8290.CD-18-1022

8 Gandara, D.R., Hammerman, P.S., Sos, M.L., Lara, Jr, P.N. and Hirsch, F.R. (2015) Squamous cell lung cancer: from tumor genomics to cancer
therapeutics. Clin. Cancer Res. 21, 2236–2243, https://doi.org/10.1158/1078-0432.CCR-14-3039

9 Siegel, R.L., Miller, K.D. and Jemal, A. (2018) Cancer statistics, 2018. CA Cancer J. Clin. 68, 7–30, https://doi.org/10.3322/caac.21442
10 Tang, D., Kang, R., Berghe, T.V., Vandenabeele, P. and Kroemer, G. (2019) The molecular machinery of regulated cell death. Cell Res. 29, 347–364,

https://doi.org/10.1038/s41422-019-0164-5
11 Alvarez, S.W., Sviderskiy, V.O., Terzi, E.M., Papagiannakopoulos, T., Moreira, A.L., Adams, S. et al. (2017) NFS1 undergoes positive selection in lung

tumours and protects cells from ferroptosis. Nature 551, 639–643, https://doi.org/10.1038/nature24637
12 Mao, C., Wang, X., Liu, Y., Wang, M., Yan, B., Jiang, Y. et al. (2018) A G3BP1-interacting lncRNA promotes ferroptosis and apoptosis in cancer via

nuclear sequestration of p53. Cancer Res. 78, 3484–3496, https://doi.org/10.1158/0008-5472.CAN-17-3454
13 Chen, P., Wu, Q., Feng, J., Yan, L., Sun, Y., Liu, S. et al. (2020) Erianin, a novel dibenzyl compound in Dendrobium extract, inhibits lung cancer cell

growth and migration via calcium/calmodulin-dependent ferroptosis. Signal Transd. Targeted Ther. 5, 51
14 Yu, H., Han, Z., Xu, Z., An, C., Xu, L. and Xin, H. (2019) RNA sequencing uncovers the key long non-coding RNAs and potential molecular mechanism

contributing to XAV939-mediated inhibition of non-small cell lung cancer. Oncol. Lett. 17, 4994–5004, https://doi.org/10.3892/ol.2019.10191
15 Shen, C., Luo, C., Xu, Z., Liang, Q., Cai, Y., Peng, B. et al. (2022) Molecular patterns based on immunogenomic signatures stratify the prognosis of colon

cancer. Front. Bioeng. Biotechnol. 10, 820092, https://doi.org/10.3389/fbioe.2022.820092
16 Cao, R., Cui, L., Zhang, J., Ren, X., Cheng, B. and Xia, J. (2022) Immune-related lncRNA classification of head and neck squamous cell carcinoma.

Cancer Cell Int. 22, 25, https://doi.org/10.1186/s12935-022-02450-z
17 Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J. et al. (2017) Ferroptosis: a regulated cell death nexus linking

metabolism, redox biology, and disease. Cell 171, 273–285, https://doi.org/10.1016/j.cell.2017.09.021
18 Hassannia, B., Vandenabeele, P. and Vanden Berghe, T. (2019) Targeting ferroptosis to iron out cancer. Cancer Cell. 35, 830–849,

https://doi.org/10.1016/j.ccell.2019.04.002
19 Bersuker, K., Hendricks, J.M., Li, Z., Magtanong, L., Ford, B., Tang, P.H. et al. (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit

ferroptosis. Nature 575, 688–692, https://doi.org/10.1038/s41586-019-1705-2

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY).

15

https://doi.org/10.1186/s12885-018-5169-9
https://doi.org/10.1097/JTO.0000000000000663
https://doi.org/10.1097/JTO.0b013e318206a221
https://doi.org/10.1016/j.lungcan.2016.04.026
https://doi.org/10.1016/j.molcel.2017.09.015
https://doi.org/10.1186/s13045-019-0759-9
https://doi.org/10.1158/2159-8290.CD-18-1022
https://doi.org/10.1158/1078-0432.CCR-14-3039
https://doi.org/10.3322/caac.21442
https://doi.org/10.1038/s41422-019-0164-5
https://doi.org/10.1038/nature24637
https://doi.org/10.1158/0008-5472.CAN-17-3454
https://doi.org/10.3892/ol.2019.10191
https://doi.org/10.3389/fbioe.2022.820092
https://doi.org/10.1186/s12935-022-02450-z
https://doi.org/10.1016/j.cell.2017.09.021
https://doi.org/10.1016/j.ccell.2019.04.002
https://doi.org/10.1038/s41586-019-1705-2


Bioscience Reports (2022) 42 BSR20212835
https://doi.org/10.1042/BSR20212835

20 Doll, S., Freitas, F.P., Shah, R., Aldrovandi, M., da Silva, M.C., Ingold, I. et al. (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature
575, 693–698, https://doi.org/10.1038/s41586-019-1707-0

21 Huang, L., Lin, W., Xie, D., Yu, Y., Cao, H., Liao, G. et al. (2022) Development and validation of a preoperative CT-based radiomic nomogram to predict
pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study. Eur. Radiol. 32,
1983–1996, https://doi.org/10.1007/s00330-021-08268-z

22 Luo, L.M., Wang, Y., Lin, P.X., Su, C.H. and Huang, B.T. (2022) The clinical outcomes, prognostic factors and nomogram models for primary lung cancer
patients treated with stereotactic body radiation therapy. Front. Oncol. 12, 863502, https://doi.org/10.3389/fonc.2022.863502

23 Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A. et al. (2005) Gene set enrichment analysis: a knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102, 15545–15550, https://doi.org/10.1073/pnas.0506580102

24 Ai, X., Mao, F., Shen, S., Shentu, Y., Wang, J. and Lu, S. (2018) Bexarotene inhibits the viability of non-small cell lung cancer cells via
slc10a2/PPARγ/PTEN/mTOR signaling pathway. BMC Cancer 18, 407, https://doi.org/10.1186/s12885-018-4224-x

25 Shen, D., Yu, X., Wu, Y., Chen, Y., Li, G., Cheng, F. et al. (2018) Emerging roles of bexarotene in the prevention, treatment and anti-drug resistance of
cancers. Expert Rev. Anticancer Ther. 18, 487–499, https://doi.org/10.1080/14737140.2018.1449648

26 Kim, C., Liu, S.V., Crawford, J., Torres, T., Chen, V., Thompson, J. et al. (2021) A Phase I trial of dasatinib and osimertinib in TKI Naı̈ve patients with
advanced EGFR-mutant non-small-cell lung cancer. Front. Oncol. 11, 728155, https://doi.org/10.3389/fonc.2021.728155

27 Redin, E., Garmendia, I., Lozano, T., Serrano, D., Senent, Y., Redrado, M. et al. (2021) SRC family kinase (SFK) inhibitor dasatinib improves the
antitumor activity of anti-PD-1 in NSCLC models by inhibiting Treg cell conversion and proliferation. J. Immunother. Cancer 9 (3), e001496,
https://doi.org/10.1136/jitc-2020-001496

28 Avisetti, D.R., Babu, K.S. and Kalivendi, S.V. (2014) Activation of p38/JNK pathway is responsible for embelin induced apoptosis in lung cancer cells:
transitional role of reactive oxygen species. PLoS ONE 9, e87050, https://doi.org/10.1371/journal.pone.0087050

29 Ctortecka, C., Palve, V., Kuenzi, B.M., Fang, B., Sumi, N.J., Izumi, V. et al. (2018) Functional proteomics and deep network interrogation reveal a
complex mechanism of action of midostaurin in lung cancer cells. Mol. Cell. Proteom. 17, 2434–2447, https://doi.org/10.1074/mcp.RA118.000713

30 Tanimoto, A., Takeuchi, S., Kotani, H., Yamashita, K., Yamada, T., Ohtsubo, K. et al. (2018) Pulmonary carcinosarcoma showing an obvious response to
pazopanib: a case report. BMC Pulmon. Med. 18, 193, https://doi.org/10.1186/s12890-018-0757-7

31 Spigel, D.R., Burris, 3rd, H.A., Greco, F.A., Shih, K.C., Gian, V.G., Lipman, A.J. et al. (2018) Erlotinib plus either pazopanib or placebo in patients with
previously treated advanced non-small cell lung cancer: A randomized, placebo-controlled phase 2 trial with correlated serum proteomic signatures.
Cancer 124, 2355–2364, https://doi.org/10.1002/cncr.31290

32 Sun, J.M., Lee, K.H., Kim, B.S., Kim, H.G., Min, Y.J., Yi, S.Y. et al. (2018) Pazopanib maintenance after first-line etoposide and platinum chemotherapy in
patients with extensive disease small-cell lung cancer: a multicentre, randomised, placebo-controlled Phase II study (KCSG-LU12-07). Br. J. Cancer
118, 648–653, https://doi.org/10.1038/bjc.2017.465

33 Lin, M.X., Lin, S.H., Lin, C.C., Yang, C.C. and Yuan, S.Y. (2018) In vitro and in vivo antitumor effects of pyrimethamine on non-small cell lung cancers.
Anticancer Res. 38, 3435–3445, https://doi.org/10.21873/anticanres.12612

34 Kim, D.G., Park, C.M., Huddar, S., Lim, S., Kim, S. and Lee, S. (2020) Anticancer activity of pyrimethamine via ubiquitin mediated degradation of
AIMP2-DX2. Molecules 25 (12), 2763

35 Aisen, P. (2004) Transferrin receptor 1. Int. J. Biochem. Cell Biol. 36, 2137–2143, https://doi.org/10.1016/j.biocel.2004.02.007
36 Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A. et al. (2016) Iron oxide nanoparticles inhibit tumour growth by inducing

pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 11, 986–994, https://doi.org/10.1038/nnano.2016.168
37 Zhang, L., Wang, F., Li, D., Yan, Y. and Wang, H. (2021) Transferrin receptor-mediated reactive oxygen species promotes ferroptosis of KGN cells via

regulating NADPH oxidase 1/PTEN induced kinase 1/acyl-CoA synthetase long chain family member 4 signaling. Bioengineered 12, 4983–4994,
https://doi.org/10.1080/21655979.2021.1956403

38 Huang, Y., Huang, J., Huang, Y., Gan, L., Long, L., Pu, A. et al. (2020) TFRC promotes epithelial ovarian cancer cell proliferation and metastasis via
up-regulation of AXIN2 expression. Am. J. Cancer Res. 10, 131–147

39 Su, H., Tao, T., Yang, Z., Kang, X., Zhang, X., Kang, D. et al. (2019) Circular RNA cTFRC acts as the sponge of MicroRNA-107 to promote bladder
carcinoma progression. Mol. Cancer 18, 27, https://doi.org/10.1186/s12943-019-0951-0

40 Zhan, C., Zhang, Y., Ma, J., Wang, L., Jiang, W., Shi, Y. et al. (2014) Identification of reference genes for qRT-PCR in human lung squamous-cell
carcinoma by RNA-Seq. Acta Biochim. Biophys. Sin. (Shanghai) 46, 330–337, https://doi.org/10.1093/abbs/gmt153

41 Brushia, R.J. and Walsh, D.A. (1999) Phosphorylase kinase: the complexity of its regulation is reflected in the complexity of its structure. Front. Biosci.:
J. Virt. Libr. 4, D618–D641, https://doi.org/10.2741/Brushia
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