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Abstract

Protein interaction networks shed light on the global organization of proteomes but can also place individual proteins into
a functional context. If we know the function of bacterial proteins we will be able to understand how these species have
adapted to diverse environments including many extreme habitats. Here we present the protein interaction network for the
syphilis spirochete Treponema pallidum which encodes 1,039 proteins, 726 (or 70%) of which interact via 3,649 interactions
as revealed by systematic yeast two-hybrid screens. A high-confidence subset of 991 interactions links 576 proteins. To
derive further biological insights from our data, we constructed an integrated network of proteins involved in DNA
metabolism. Combining our data with additional evidences, we provide improved annotations for at least 18 proteins
(including TP0004, TP0050, and TP0183 which are suggested to be involved in DNA metabolism). We estimate that this
‘‘minimal’’ bacterium contains on the order of 3,000 protein interactions. Profiles of functional interconnections indicate that
bacterial proteins interact more promiscuously than eukaryotic proteins, reflecting the non-compartmentalized structure of
the bacterial cell. Using our high-confidence interactions, we also predict 417,329 homologous interactions (‘‘interologs’’) for
372 completely sequenced genomes and provide evidence that at least one third of them can be experimentally confirmed.
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Introduction

Most bacterial genomes encode hundreds or even thousands of

proteins of unknown function [1]. If we want to understand the

biology of these organisms, we need to understand the role of their

proteins. One way to unravel the molecular function of a protein is

to identify interacting proteins [2].

Up to now, the protein networks of only three organisms have

been comprehensively investigated. Systematic purification of

protein complexes and their identification by mass spectrometry

has recently been completed in both budding yeast and Escherichia

coli [3–5]. However, it became clear that these studies recovered

only a fraction of all complexes and interactions [6] and it is still

unclear how many interactions take place in a cell since no

organism has been sampled exhaustively. More important, for the

majority of interactions it remains unclear what their biological

significance is.

Only recently, the first comprehensive bacterial yeast-two-

hybrid (Y2H) interaction map was presented for C. jejuni [7].

Partial Y2H interaction maps have been published for human, fly,

and worm [8] and for several bacteria including Helicobacter pylori

[9], Synechocystis sp. [10] and Mesorhizobium loti [11]. Similar to

purified complexes though, yeast two-hybrid data reveal only a

fraction of all interactions with false negative rates estimated to be

in the range of 50–90% [12]. Low coverage can only be overcome

by applying multiple methods to the same organism [13] or

studying homologous proteins in multiple organisms [14].

We have tested nearly all binary combinations among the

proteins of Treponema pallidum, the causative agent of

syphilis, using the yeast two-hybrid system. With 1.14 Mbp and

1,039 ORFs [15], T. pallidum has one of the smallest genomes of

any bacterium with an extracellular life-style. Although syphilis is

usually not a life-threatening disease, it still caused 12 million new

infections as recently as 1999, mostly in developing countries [16].

Progress in understanding the Syphilis disease and the biology of

T. pallidum is severely hampered because T. pallidum cannot be

cultured continuously in vitro and is not susceptible to genetic

manipulation. However, our functional genomics studies demon-

strate that insights into the function of individual proteins and

larger functional complexes can be gained even for a bacterium

which is not approachable by direct experiments. T. pallidum is

only remotely related to other bacteria but still shares a significant

fraction of conserved genes with other species [15]. Hence, we

expect a substantial number of interactions to predict homologous

counterparts in more tractable experimental systems as well as in

other pathogens.

Given the significant false-positive rate in many Y2H screens it

is necessary to verify these interactions by independent methods.
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In this study we have confirmed only 8 Y2H interactions for one

simple reason: Treponema pallidum is not an experimentally tractable

organism and thus it will remain difficult to investigate the

biological relevance of these interactions. We suggest that

interactions found in species such as T. pallidum be verified in

more mainstream model organisms such as E. coli. We have

previously shown the efficiency of such an approach for

interactions among T. pallidum motility proteins by analyzing their

homologous proteins and interactions in E. coli and Bacillus subtilis

[14].

The aim of this study was to unravel the protein network of a

single cell by means of the yeast two-hybrid system, evaluate its

utility when compared to other experimental approaches and

compare the resulting data to other genome-wide datasets. We

conclude that the Y2H as used here may recover one quarter of all

interactions and may require other methodologies or multi-species

approaches to achieve a more complete coverage. Our dataset

indicates for the first time that some operons can interact via their

contained proteins and that bacterial cells exhibit more promis-

cuous interaction patterns than eukaryotic proteomes. We support

the latter observation with data from yeast and speculate that this

property is a consequence of the much less compartmentalized

organization of prokaryotic cells when compared to eukaryotes.

Results and Discussion

Generation of a comprehensive binary protein-
interaction map and quality control

Yeast-two-hybrid screening for the T. pallidum proteome was

conducted in a systematic array-based format as described

previously [14,17]. In particular, the array format ensures

reproducibility and control for unspecific background activation.

Of nearly 1,000,000 examined protein pairs, 3,684 tested positive

in our yeast two-hybrid assays resulting in 3,649 distinct

interactions (Figure 1A, Table 1, Table S1). While we ranked all

interactions based on various quality criteria, we decided to

publish the whole dataset despite the fact that it may contain a

significant number of false positives. We believe that this makes

our results more transparent and also allows other researchers to

investigate their own quality scoring algorithms.

We used two independent approaches to derive more reliable,

‘‘high-confidence’’ datasets from our raw two-hybrid data: first, a

simple approach based on the number of times a certain protein is

found as prey: preys which are found more than 50 times (which is

an arbitrary threshold) are likely to be unspecific interactors and

thus have been excluded from the ‘‘TPA 50’’ dataset. Second, we

applied a more comprehensive logistic regression approach,

similar to that used in the STRING database [18](high-confidence

dataset, see methods for details). In the latter high-confidence

network (‘‘TPA HCI’’), 576 proteins of T. pallidum are connected

by 991 distinct interactions with an average of 3.4 interactions per

protein. Based on our training dataset, the false positive rate of this

set can be estimated to be 28% (see Supporting online information

[SI] file [Discussion S1] for details). However, since there are no

objective computational ways to unambiguously identify false

positives or negatives in any interaction dataset further experi-

mental verifications are required for better assessments. Table 1

and Figure 1B show a summary of the topological properties of the

network.

Comparison of datasets
Up to now, only two comprehensive studies of protein

interactions in bacteria have been published [5,7]. In addition, a

number of partial prokaryotic interaction studies have been

presented, including Y2H maps [9–11] and another coAP/MS

study for E. coli [19]. Surprisingly, only 26 T. pallidum interactions

were shared with C. jejuni, only 23 interactions with E. coli, and

only 5 with H. pylori (Table S1). While the small overlap seems to

be surprisingly low, small overlaps between interaction datasets are

commonly observed, and may be explained by the large

phylogenetic distance between these species, the different

methodologies applied, the considerable false negative rate, and

the incomplete sampling of each interactome.

Total number of interactions of a minimal bacterial
proteome

To estimate the overall false-negative rate of our Y2H screen,

we made use of a comprehensive set of flagellar protein

interactions, which we collected for a comprehensive study on

bacterial motility [14]. In this study, a ‘‘gold standard’’ dataset of

59 motility interactions was used, of which 39 had homologous

pairs in T. pallidum. Of these 39 pairs, only 9 (or 23%) were found

in our dataset which would imply a false-negative rate of 77% (but

see below). To estimate the false positive rate, we looked for ‘high-

confidence’ interactions which were maximally separated in a

network of protein families (StringDB experimental COG network

- exp. score.0.15). Based on the overlap, we estimate the false

positive rate of our high-confidence set to be 28%. Based on our

high-confidence set with 991 interactions, we can predict a total

number of approx. 3,100 interactions (total interactions = found

interactions2false positives+false negatives) for T. pallidum with an

average of ,6 interactions per protein.

Large-scale interaction studies cover functional complexes only

to a limited extend. Integration of several datasets is the first choice

to increase the coverage as has been recently demonstrated by our

group for bacterial motility where a combination of two-hybrid

data from T. pallidum and C. jejuni reduced the false-negative rate

from 77% and 87%, respectively, to a combined 67% [14]. We

expect that further technical improvements and the addition of

even more genomes may be able to reduce the false negative rate

to below 50%.

Mapping of the interactome onto the genome
On the genome level, bacterial genes have long been known to

be organized in functional groups such as operons or as co-

conserved genomic islands [20]. Many structural features of

interactomes have been revealed including the tight connection of

functional protein complexes (e.g., [21]). We wondered, whether

an interdependence of the genome and the interactome structure

could be identified. To this end, we overlaid Y2H interactions and

predicted gene associations [18] onto the circular T. pallidum

chromosome (Figure 2). The overlay shows that all regions of the

circular chromosome are highly connected both by Y2H

interactions and by the predicted functional connections clearly

indicating that the given genome structure does not constrain the

overall flexibility of physical interconnections. Despite this overall

tendency, we wondered whether especially tightly connected pairs

of genomic loci are present. In other words, we were looking for

operons or ‘‘neighborhoods’’ of which multiple proteins interacted

with multiple proteins from operons or neighborhoods elsewhere

in the genome. For this, we applied a filtering algorithm (which

involves the comparison with randomized networks) to enrich

highly connected genomic loci (Figure 2, Table S2). As

anticipated, many interactions connected genomic loci of well

known protein complexes such as the ribosome (8 links) or the

bacterial flagellum (5 links). One striking example in the TPA50

data set is link #3 involving six proteins and six interactions which

connect the region flanking FliS (TP0943), the flagellin chaperone,

Treponema Pallidum Interactome

PLoS ONE | www.plosone.org 2 May 2008 | Volume 3 | Issue 5 | e2292



and the region of the uncharacterized proteins TP0046–TP0048

(Figure 2). In addition to FliS, TP0046 and TP0048 have also been

functionally implicated in bacterial motility and the ortholog of

TP0945 shows a motility phenotype in E. coli [14]. This suggests

that the locus around TP0048 has a functional involvement in

bacterial motility, and demonstrates that genomic loci links can

have functional implications.

Functional class organisation
The main difference between pro- and eukaryotes is their

subcellular organization. We wondered whether this functional

specialization is reflected in protein interaction networks. To

investigate this, we grouped all proteins belonging to the same

functional category (as defined by the STRING database [18]) and

counted the links within these groups and between groups. Figure 3

shows functional link matrices for several large-scale interaction

datasets, including the Treponema network. Surprisingly, on the

level of interactions between functional groups, prokaryotic

datasets appear to be more similar among each other than

eukaryotic datasets (Figure 3). That is, in bacteria proteins seem to

have more interactions with functionally unrelated proteins than

eukaryotes do. Interestingly, this observation cannot be an artifact

of the yeast two-hybrid system as the same pattern can be seen in

protein complex purification data from E. coli [5] and yeast [3],

[4]. This comparison also reveals cross-talk between different

processes, e.g. that the ‘‘cell motility’’ class occupies a central

position in prokaryotes: while proteins in this class interact mostly

with themselves, they also have multiple links to the ‘‘signal

transduction mechanisms’’, the ‘‘secretion’’, and to the ‘‘energy

production’’ classes.

The number of self-links, i.e. functional links on the diagonal

of the matrix, can be assumed to give an indication of the

functional organization in a dataset or a species. We noticed that

the number of self-links is larger in eukaryotes than in

prokaryotes: T. pallidum (4 links, 1,039 genes), C. jejuni (6 links,

1,654 genes), E. coli (7 links [the average between [5] and [19]],

4,289 genes), yeast (16 links [Y2H], 20 links [Gavin], 6,200

genes). One explanation for these differences could be the source

of the data: coAP/MS approaches tend to favor stable complexes

and proteins within the same complex are usually assigned to the

same functional class. On the other hand, Y2H favors transient

Figure 1. The protein interaction network of T. pallidum. A: High-confidence protein interaction network (TPA HCI 0.5) including 576 proteins
and 991 interactions. Nodes are color-coded according to TIGR main roles. Links are color-coded based on their logistic regression score (indicated as
spectral scale). Proteins involved in DNA metabolism (Figure 4) are shown as enlarged red circles. Note their distributed topology. See Table S1 for all
interactions and scores. B. Comparison of the approximated power-law degree distributions of the T. pallidum networks. Node degrees k and their
relative frequency P(k) are plotted on a bilogarithmic scale and fitted by linear regression. ‘‘TPA all’’, ‘‘TPA 50’’, and ‘‘TPA HCI’’ are the complete T.
pallidum network and sub-networks filtered by ‘‘preycount’’ or logistic regression, respectively. The insert shows the node degree distribution of the
high-confidence T. pallidum network (TPA HCI 0.5) on a linear scale.
doi:10.1371/journal.pone.0002292.g001

Table 1. Topological properties of presented interaction
networks.

All TP50 HCI0.3 HCI0.5 HCI.0.7

Filtering: in degree - ,50 - - -

Filtering: log regr. score - - .0.3 .0.5 .0.7

False negative rate (12sensitivity) - - 18% 20% 50%

False positive rate (12specificity) 52% 28% 12%

proteins 726 601 640 576 422

Interactions in directed networks1 3684 1634 1628 992 414

Av. Node degree 10 5.4 5 3.4 1.9

Av. Shortest path length 2.95 3.88 3.95 4.73 8.08

Power coefficient 1.15 1.47 1.54 1.71 2.35

R2 0.85 0.91 0.91 0.87 0.94

1(includes reciprocal interactions).
Topological parameters for T. pallidum protein datasets and corresponding
networks were calculated using the NetAnalyzer plugin for Cytoscape (http://
med.bioinf.mpi-inf.mpg.de/netanalyzer/): whole network ‘‘all’’, network filtered
by in-degree ‘‘TPA 50’’, and networks filtered by logistic regression score ‘‘HCI
0.3’’ - ‘‘HCI 0.7’’. In addition, the false negative and the false positive rates after
106 cross validation are given for the datasets filtered by logistic regression.
doi:10.1371/journal.pone.0002292.t001

Treponema Pallidum Interactome
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Figure 2. Genomic locations linked by protein interactions. A,B. Certain genomic locations are especially tightly linked via protein
interactions when compared to randomized networks. Genomic location links are visualized for the ‘‘TPA 50’’ protein interaction dataset (A) and for
bioinformatical associations from the String database (B, ‘‘StringDB 700’’, protein links with combined score.0.7) [18]. Grey lines indicate all individual
protein interactions/associations connecting genes on the circular chromosome of T. pallidum (1.14 Mbp total size). Tightly connected clusters
comprising 5 or more neighbouring genes were identified (thick lines) by a computational method, which is based on the comparison to re-wired
versions of the network (see methods). The number of linking interactions between two clusters is indicated by the color of their connecting line and
the enrichment compared to randomly re-wired networks is indicated by a Z-value (in the outer circle at the positions of the clusters). Due to the
incorporation of genomic neighbourhood links by the String database (and for clarity), self-links between genomic locations are removed in the
‘‘StringDB 700’’ representation. C, The region flanking FliS (TP0943) is, for example, connected to the region of TP0046–TP0048, linking motility and
sugar metabolism (TP0943–TP0946) to a cluster of uncharacterized proteins around TP0047 which appears to be involved in motility as well [14].
doi:10.1371/journal.pone.0002292.g002

Figure 3. Interactions between functional classes in pro- and eukaryotes. Connections between functional classes mediated by protein-
interactions in Y2H datasets (TPA HCI = T. pallidum high confidence interactions, CJE HCI = Campylobacter jejuni high confidence interactions), and
two comprehensive coAP/MS datasets from E. coli [5] and yeast [3]). For each data set and each class combination, a functional class association index
(fCAI) was calculated (see methods), which scores the interaction density between two functional classes in a dataset of given size and class coverage.
The matrices show the significance of each enriched functional class link (see color key). Results obtained from genome-wide Y2H (top) or coAP/MS
(bottom) experiments are compared between bacteria and yeast (see color key).
doi:10.1371/journal.pone.0002292.g003

Treponema Pallidum Interactome
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interactions [13] among proteins which may be more promis-

cuous and thus less-well defined functionally. An alternative

explanation for the differences in functional linkage is an

increase in functional complexity from bacteria to eukaryotes,

with a fundamental difference in the functional organization

between these cell types. A slightly higher number of self-links in

the yeast coAP/MS dataset compared to the combined yeast

Y2H dataset argues for the former explanation. Comparing the

three datasets of bacterial origin with the yeast datasets (coAP/

MS and Y2H), however, supports an alternative explanation: a

higher level of functional organization is observed in the

eukaryotic datasets. Thus, the well-known difference in structural

organization of pro- and eukaryotes is also reflected on the

protein-interaction level. Functional processes are well separated

in eukaryotes, e.g., through differential compartments such as

organelles, whereas most functional processes in prokaryotes co-

exist in space and partly in time as exemplified by the

synchronous execution of transcription and DNA replication.

It remains to be seen whether these results can be generalized for

more species when additional datasets for other prokaryotes and

eukaryotes become available.

An integrated view of DNA-metabolism related processes
In addition to the protein network of bacterial motility [14],

we here present an additional network of DNA metabolism for

T. pallidum, which is solely based on high-throughput data and

bioinformatical predictions (Figure 4A, see Discussion S1 and

Table S3 for an extended discussion). For additional support, a

number of interesting interactions were validated by co-

immunoprecipitation (Figure 4B). Several known functional

complexes can be identified including the Uvr-system, the

Ruv-system, and the DNA replication complex. DNA replication

and DNA repair are linked, e.g. by the transcription-repair-

coupling factor (TrcF), which links stalled RNA polymerases to

nucleotide excision repair [22]. Here, TrcF is linked to DNA

replication via the DNA primase (DnaG), and thus could

participate in the clearance of stalled RNA polymerase arrays,

which eventually block DNA replication in prokaryotic cells

[23]. As anticipated, two DNA binding proteins, Ssb (single-

stranded-DNA binding protein) and Hup (HU protein), with

ubiquitous functions occupy a central position in the network

[24–29]. The RNA helicase HrpA interacts with the (anti-)

termination protein NusA indicating an involvement of HrpA in

this regulatory process. The single-stranded DNA dependent

helicase Rep is required for genome replication [30] and acts

with PriC in the replication fork restart pathway. However, its

specific role is unknown [31]. The direct interaction of Rep with

the replication helicase DnaB could indicate a concerted action

of these helicases during replication fork restart. In addition,

several proteins were newly associated with DNA-metabolism

including a number of Treponema or Spirochete specific proteins

(Table 2). The protein TP0004, for example, interacts with GyrB

of the gyrase complex. Since TP0004 is located in a conserved

gene cluster together with GyrA (TP0005) in spirochetes, a

functional connection of TP0004 with the gyrase is very likely.

The Treponema specific protein TP0183 interacts with the DNA

replication initiation protein DnaA, with SbcD, which removes

DNA hairpin structures that lead to stalling of DNA replication

[32], and a DNA repair helicase TP0380. Thus, TP0183 might

help to reinitiate DNA replication after DNA repair mediated by

SbcD and TP0380. All in all, the DNA metabolism network

mirrors biological knowledge from small-scale experiments, and

demonstrates the potential of these approaches to uncover novel

biological insights.

Functions of unknown proteins
In total, 433 proteins of T. pallidum (42% of the proteome) are

still uncharacterized [33]. Thus, we expanded our interaction-

based annotation from DNA metabolism to the whole dataset.

Indeed, 649 out of the 991 interactions in the high-confidence set

involved at least one uncharacterized protein. 493 of these

interactions link an uncharacterized protein to a protein of known

function. These protein-pairs can be used to derive improved

annotations, e.g. by integrating datasets for specific functional

groups such as DNA metabolism (Figure 4) or bacterial motility

[14]. More typically, a bioinformatical guilt-by-association ap-

proach and manual curation of highly-reliable interactions are

used. A selection of 18 new annotations derived from our data is

given in Table 2. These (initial) annotations form an in-route for

further characterization. As an example, we recently characterized

the protein TP0658 as a novel bacterial assembly factor based on

its interaction with flagellin proteins [34].

Patterns of conserved interactions
Out of 1,039 T. pallidum genes, 302 are Spirochete-specific and

an additional set of 147 genes shows a ‘‘narrow’’ distribution and is

conserved in less than 50% of the sequenced bacterial species.

Interestingly, a majority of 758 (76%) T. pallidum interactions

(HCI) involve at least one of the 449 ‘‘narrowly’’ distributed

proteins. Based on this observation, we asked how the overall

distribution for interacting proteins looks like. For this, we

constructed a phylogenetic profile for interacting protein families

(‘‘iCOGs’’, Figure 5). These profiles could be separated into

distinct conservation clusters by a matrix clustering approach. The

most striking pattern is observed in cluster #1, in which the

interacting proteins are either both absent or both present in a

given species. This cluster is highly enriched for motility-related

interactions (35 fold enrichment, p = 1.1610220), which explains

the observed pattern by the distribution among motile bacteria.

Cluster #6 shows the highest conservation and is enriched in

translation-related functions in archaea and eukaryotes (cluster

#6, 5 fold enrichment, p = 3.961027). On the contrary, the large

cluster #2 contains mainly Treponema or Spirochete specific proteins,

which interact with broadly conserved proteins, and is enriched for

proteins of unknown or general function (3 fold, p = 0.003). For

Spirochete-specific proteins, we also find a general tendency to

interact with well-conserved proteins, which are conserved in

60%–80% (z-score vs. random of 2.0) or in 80%–100% (z-score of

1.1) of the sequenced species. Despite the large number of

Spirochete-specific proteins, their overall tendency to interact with

well-conserved proteins supports the notion that specific properties

of spirochetes (e.g., their endoflagella) have not been invented

independently in evolution but rather derived by modification of

existing structures or by recruiting spirochete-specific proteins.

Prediction of protein interactions in other species
Interactions in Treponema are likely to be conserved in other

species. In fact, we have tested 174 motility-related interactions

among Campylobacter jejuni proteins predicted from our dataset [14].

Using the criteria of Parrish et al. [7], 49 of those were tested positive

with high confidence. Interestingly, most of them were not found in

the study by Parrish et al. because their screens used pooled clones

while our retests used individual clones. Pooling often results in lost

interactions for poorly understood reasons. In any case, the

comparison of Treponema and Campylobacter data confirms other

studies where interactions predicted from yeast were also found in

worm [35] or where metazoan interactions successfully predicted

homologous interactions in yeast [36]. As a basis for further

functional analysis and comparative interactomics, we predict

Treponema Pallidum Interactome
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Figure 4. An expanded view on DNA metabolism. A. The DNA metabolism network for T. pallidum based on the integration of several
experimental and bioinformatical data sets (see methods). T. pallidum proteins with a DNA metabolism related function (red nodes) are linked by
interactions from several high-confidence protein interaction datasets. The color of the interactions indicates their source (see color key), e.g., all blue
interactions were identified in our study (i.e. in T. pallidum) and are part of the high-confidence interaction dataset for T. pallidum (for detailed list see
Table S3b). Proteins of other functional classes are included, when their association is supported by at least one additional evidence. Grey lines
indicate support of an interaction by bioinformatical predictions (String database score.0.4). Proteins with orange borders have been shown to
localize to the nucleoid. Proteins with a hexagonal shape have a tight bioinformatical link to a DNA metabolism protein (String database score.0.8).
Proteins that are discussed in the text are shown in larger, blue font. B. Co-immunoprecipiation (coIP) experiments for a number of selected DNA
metabolism interactions are shown (thick lines in network). The coIP is conducted with an anti-Myc antibody. For each coIP, the total input and the

Treponema Pallidum Interactome
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417,329 interactions in 372 other genomes (Table S4, Figure 6, and

SI file ‘‘Data S1’’). Based on our successful prediction of Campylobacter

interactions using Treponema data, we estimate that about 118,000

(49/174*417,329) of these predicted interactions will turn out to be

reproducible.

Conclusions
Here we presented a genome-wide protein interaction map for

Treponema pallidum, the causative agent of Syphilis. The genome of

T. pallidum is one of the smallest of all bacteria not living within

host cells, and most importantly, T. pallidum is not approachable by

many experimental methods, since it cannot be cultured

continuously in vitro. From its interaction map, we obtain insights

into the connection between genomes and interactomes, we see

that the different structural organization of pro- and eukaryotes is

already reflected on the interaction level, and demonstrate the

usefulness of our interaction data to reveal biological insights into

biological processes (DNA metabolism) as well as into the function

of individual proteins (e.g., HrpA). We learned that Spirochete and

Treponema-specific proteins interact with ubiquitously conserved

proteins and potentially modulate their functions to achieve

Spirochete-specific properties. Finally, based on our high-confidence

interaction data 417,329 interactions for 372 species can be

predicted.

The biological relevance of the interactions found in this study

remains to be shown in model organisms that are more tractable

experimentally. Nevertheless, we believe in the utility of data

obtained in organisms such as T. pallidum as they can show us

which proteins and interactions are conserved in other species and

thus help us to define minimal or essential sets of protein activities.

Outlook
Protein interaction mapping is where genome sequencing was

about 10 years ago. Many more interaction datasets are required

to distinguish between conserved and non-conserved (but

biologically relevant) interactions and separate them from false

positives and false negatives. Such a classification will make it

much easier to evaluate the biological significance of individual

interactions, either by suggesting additional experiments or by

facilitating computational analysis such as protein docking.

fractions after coIP are analyzed by Western Blot probing with an anti-HA and an anti-Myc antibody as indicated on the left of each blot. The empty
Myc-tag vector ‘‘M-’’ is used as a control for unspecific binding of the HA-tagged protein. HA-tagged proteins are labeled with ‘‘H’’ and their gene
name or gene number, e.g. ‘‘H4’’ in the first coIP corresponds to HA-tagged protein TP0004. Accordingly, Myc-tagged proteins are labeled with ‘‘M’’,
e.g. M-gyrB corresponds to Myc-tagged GyrB protein.
doi:10.1371/journal.pone.0002292.g004

r

Table 2. Novel functional assignments based on protein network and additional evidence.

Gene Novel Function Evidences

TP0004 Gyrase associated protein GT (gyrase, gyrA); PI (gyrase, gyrB)

TP0050 DNA replication, nucleotide metabolism PI (dnaB), DOM (phophoribosyl transferase)

TP0064, TP0066,
TP0067, TP0068

Operon involved in DNA metabolism
(+ cell division)

PI (DNA metabolism + cell division); GBAA (TP0066, cell division/chromosome partitioning);
DOM (TP0065, DNA methylase); HOM (TP0067, putative cell div. protein)

TP0183 DNA metabolism GBAA (DNA metabolism); PI (dnaA, sbcD, DNA repair helicase)

TP0297 Cell wall metabolism PI (capsular polysaccharide biosynthesis protein); DOM: (SPOR = involved in
peptidoglycane binding)

TP0320 (a) dsDNA and nucleotide uptake PI (ribulose-3-P-epimerase & exonuclease for dsDNA); GT (TP0319, TP0322, and TP0323
[rib/gal transporter])

TP0443 DNA metabolism and/or repair PI (gidB (tRNA methyltransferase), recX); DOM (DALR anticodon binding domain); GT (recN)

TP0496 Membrane protein involved in translational
and cell division

PI (tRNA-synthetases, DNA primase); GBAA (translation); GT (rod-shape determining
proteins)

TP0526 (b) transcription termination/antitermination PI (nusA)

TP0561 (c) Membrane protein chaperone PI (with membrane proteins), DOM (SsgA, sporulation, cell division)

TP0580 (e) ABC transporter, polysaccharide (antigen)
synthesis (dTMP sugar)

PI (uridylate kinase) (enzyme complex); DOM (GtrA): generation of sugar building block

TP0650 Translation GBAA (translation); GT (tRNA-synthetases); PI (peptide deformylase; ribosomal protein L32)

TP0658 (f) Flagellar assembly factor fliW PI (flagellin); GT (motility)

TP0772 Transcription Regulator PI (RNA-polymerase, TP0701); HOM (LysR family transciptional regulator, KEGG, SW-Score
122)

TP0920 Energy production GBAA (energy); GT (Oxidoreductase, TP0921)

TP0941 Regulation of motility GBAA (signal transduction); PT (FlgM); GT (FliS, FlgN)

TP0963 (d) ABC transporter, membrane biogenesis PI (TP0965); DOM (FtsX); GT (ABC transp., lipoprotein metabolism)

All proteins in this table are currently annotated as (conserved) hypothetical [33]. Used evidence codes are: PI (protein interaction), GT (genomic context), DOM (protein
domain), genomic loci link (GLL), guilt-by-association approach (GBAA), homology (HOM). Notes and references: (a) TP0319 is a purine nucleotide receptor and its
whole operon probably involved in nucleotide import [41]; (b) ATP-dependent helicase (HrpA). (c) SsgA like proteins play a chaperonin-like role [42]; (d) Transporter
complex with TP0965 (HlyD motif). (e) See ref. [43], (f) See ref. [34].
doi:10.1371/journal.pone.0002292.t002
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Figure 5. Interacting clusters of orthologous groups (‘‘iCOG’’) show phylogenetically conserved interaction patterns. Each row of the
shown profile corresponds to a species and each column corresponds to a pair of interacting protein families (i.e. iCOG), for which an interaction was
found in the high-confidence T. pallidum data set. The protein families were defined based on the ‘‘cluster of orthologous genes’’ approach (COG)
(see methods). With this, the profile shows for each interaction of the T. pallidum data set whether both interacting proteins, only one interacting
protein or none of the interacting proteins are conserved in a given species (given row). For each species from the shown taxonomy (y-axis) and each
iCOG, a conservation value is shown in the matrix. This conservation value indicates whether both COGs are conserved/absent in a given species or
whether only one or the other COG is conserved (see left upper corner for color key). Overall, three distinct conservation regions are visible in the
clustered matrix: #1, #2, and region #3-#6, which we subdivided somewhat arbitrarily into individual clusters #3-#6 with increasing conservation
from left to right (note branches on tree above). This figure is also available as zoomable Figure S1 in PDF format in which individual species names
and iCOGs can be seen.
doi:10.1371/journal.pone.0002292.g005

Figure 6. Prediction of interactions for other species based on T. pallidum high-confidence data sets. Species (y-axis) are ordered
according to taxonomy (broad groups are indicated) and the number of predicted interactions for each species based on two confidence score cut-
offs (HCI 0.5 with score.0.5 and HCI 0.7 with score.0.7) is shown.
doi:10.1371/journal.pone.0002292.g006
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Materials and Methods

Description of datasets and a more extensive description of the

applied methods can be found as supporting information

(Discussion S1). The interactions of this study have been submitted

to the IntAct database (http://www.ebi.ac.uk/intact/, accession

number EBI-1581350) and to the IMEx consortium (http://imex.

sourceforge.net) through the MPIDB database (http://www.jcvi.

org/mpidb, identifier IM-9152).

Cloning of baits and preys, Y2H screening
The ORF clones from McKevitt et al. [37] were transferred into

compatible bait and prey vectors pAS1-loxP, pLP-GBKT7Amp,

and pLP-GADT7 [Clontech], by Cre-mediated homologous

recombination. After transformation into yeast, all preys were

arrayed and screened as described in [14].

Selection of high-confidence datasets and logistic
regression model for quality scoring

For the ‘‘TPA 50’’ dataset, preys that were found in more than

50 screens were removed as large numbers indicate unspecific

interactions [14]. Based on a binary logistic regression model [18],

we assigned probability scores to all interactions using a training

set of positive (interologs in DIP and IntAct) and negative

Treponema interactions (see Discussion S1 for more details on the

training data and scoring procedure). Next, we generated a set of

‘highly reliable interactions’ (TPA HCI) retaining only those with a

probability . = 0.5. At this probability cutoff, 80% of interactions

in the positive training set are classified correctly (true positives),

while 28% of negative interactions were misclassified (false

positives).

Links between genomic locations (Figure 2)
The number of interactions or bioinformatical associations

between clusters of five neighboring genes was counted for the real

network and for randomized versions of this network. Overrep-

resentation of a link compared to 1000 randomized networks was

assessed by calculating a Z-score, Z~
n{SnrandT

srand

, with the

number of linking interactions n, its average in 1,000 randomized
networks Ænrandæ, and its standard deviation srand. Links between
gene clusters with at least three connecting interactions/associa-
tions and a z-score (compared to random networks) of at least 2 are
shown in Figure 2.

Associations of functional classes (Figure 3)
Association values were calculated for the functional classifica-

tion scheme of the String database [18]. First, the functional class

association index (fCAI) was computed for each dataset and each

functional class pair. The fCAI represents a log-odds-ratio, which

compares the odds to find the number of linking interactions in the

experimental set to the odds in a random model (see discussion

S1). Based on a z-statistic, a raw p-value was derived for each

functional class link and used for the visualization of functional

links in the association matrix.

Extended view of T. pallidum’s DNA metabolism (Figure 4)
A set of T. pallidum proteins involved in DNA metabolism was

extracted from several databases (Table S3). Several interaction

sets were integrated: high-confidence T. pallidum Y2H set (TPA

HCI), high-confidence C. jejuni Y2H set [7], two socio-affinity-

index (SAI) filtered E. coli coAP/MS sets ([19] and [5]), a B. subtilis

Y2H set [38], a H. pylori Y2H set [9], and bioinformatically

predicted interactions [18]. E. coli proteins localized to the

bacterial nucleoid were taken from the GenoBase database

(http://ecoli.naist.jp/GB6/search.jsp). The transfer of interactions

between species (interologs) was based on orthology relationships

from the MBGD database [39]. All T. pallidum interactions and

interologs linking two DNA metabolism related proteins were

selected. In addition, interactions or interologs of DNA metabo-

lism related proteins, which were supported by bioinformatical

predictions [18] (combined score.400) or by at least two

experimental datasets, were chosen. Finally, associated proteins,

which were predicted to be involved in DNA metabolism [18]

(combined score.800 for DNA metabolism related proteins),

localized to the nucleoid in E. coli, or had an additional evidence

associated with it (Table 2) were included. Network visualization

was done with the Cytoscape software [40]. A number of these

selected interactions were re-tested by co-immunoprecipitation as

described in [14] (Figure 4B). Briefly, E. coli BL21/DE3 cells were

co-transformed with expression vectors carrying Myc-tag (vector

pBad24Myc_loxP) and HA-tag (vector pBad33HA_loxP) fusions

of the proteins to be tested. Protein expression was induced with

0.2% (w/v) L-Ara for 3 h at 37uC. The co-immunoprecipitation

was performed with anti-Myc antibodies (Santa Cruz).

Conservation Classes and iCOGs (Figure 5)
A matrix showing the conservation of iCOGs (interacting

clusters of orthologous groups) in the ‘‘TPA HCI’’ data set was

created. For each interaction in the interaction data set, an

iCOG was defined, if both interacting proteins were part of a

COG (cluster of orthologous group–meaning that they could be

grouped with proteins from other species into an orthologous

protein family). Each element of the matrix, contains a

conservation value for a specific iCOG in a specific genome

(species). The conservation value (cv) indicates whether both

COGs of the iCOG are conserved (cv = 1) or absent (cv = 0) in

the given species or whether only one or the other COG is

conserved (cv = 0.5). Average linkage clustering of the matrix in

iCOG direction was done with the R-package using Euclidean

distances.

Significant enrichment of functional classes (taken from the

STRING database) in the conservation clusters were identified

employing Fisher’s exact test in conjunction with a Bonferroni

correction for multiple testing (p,0.01) using the R-package.

Supporting Information

Table S1 All protein-protein interactions of Treponema palli-

dum found in this study.

Found at: doi:10.1371/journal.pone.0002292.s001 (1.82 MB

XLS)

Table S2 Additional genomic links as shown in Figure 2.

Found at: doi:10.1371/journal.pone.0002292.s002 (0.11 MB

XLS)

Table S3 All proteins involved in DNA metabolism as well as

their interactions as shown in Figure 4.

Found at: doi:10.1371/journal.pone.0002292.s003 (0.07 MB

XLS)

Table S4 Summary table for the predicted interactions showing

all species, their phylogenetic relationships, and the number of

predicted interactions for each species.

Found at: doi:10.1371/journal.pone.0002292.s004 (2.00 MB

XLS)

Discussion S1 More detailed discussion of results and addi-

tional details on the methodology used in this study.
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Found at: doi:10.1371/journal.pone.0002292.s005 (0.42 MB

DOC)

Data S1 Predicted protein-protein interactions based on our

Treponema pallidum data; zip archive containing 372 files with

one file per species.

Found at: doi:10.1371/journal.pone.0002292.s006 (6.09 MB ZIP)

Figure S1 Interacting clusters of orthologous groups (‘‘iCOG’’)

show phylogenetically conserved interaction patterns. Each row of

the shown profile corresponds to a species and each column

corresponds to a pair of interacting protein families (i.e. iCOG),

for which an interaction was found in the high-confidence T.

pallidum data set. The protein families were defined based on the

‘‘cluster of orthologous genes’’ approach (COG) (see methods).

With this, the profile shows for each interaction of the T. pallidum

data set whether both interacting proteins, only one interacting

protein or none of the interacting proteins are conserved in a given

species (given row). For each species from the shown taxonomy (y-

axis) and each iCOG, a conservation value is shown in the matrix.

This conservation value indicates whether both COGs are

conserved/absent in a given species or whether only one or the

other COG is conserved (see left upper corner for color key).

Overall, three distinct conservation regions are visible in the

clustered matrix: #1, #2, and region #3-#6, which we

subdivided somewhat arbitrarily into individual clusters #3-#6

with increasing conservation from left to right (note branches on

tree above).

Found at: doi:10.1371/journal.pone.0002292.s007 (0.14 MB

PDF)
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