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Predictive performance 
of different NTCP techniques 
for radiation‑induced esophagitis 
in NSCLC patients receiving proton 
radiotherapy
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Joe Y. Chang4, Zhongxing Liao4, X. Ronald Zhu2 & Xiaodong Zhang2*

This study aimed to compare the predictive performance of different modeling methods in developing 
normal tissue complication probability (NTCP) models for predicting radiation‑induced esophagitis 
(RE) in non–small cell lung cancer (NSCLC) patients receiving proton radiotherapy. The dataset was 
composed of 328 NSCLC patients receiving passive‑scattering proton therapy and 41.6% of the 
patients experienced ≥ grade 2 RE. Five modeling methods were used to build NTCP models: standard 
Lyman–Kutcher–Burman (sLKB), generalized LKB (gLKB), multivariable logistic regression using 
two variable selection procedures‑stepwise forward selection (Stepwise‑MLR), and least absolute 
shrinkage and selection operator (LASSO‑MLR), and support vector machines (SVM). Predictive 
performance was internally validated by a bootstrap approach for each modeling method. The overall 
performance, discriminative ability, and calibration were assessed using the Negelkerke  R2, area 
under the receiver operator curve (AUC), and Hosmer–Lemeshow test, respectively. The LASSO‑MLR 
model showed the best discriminative ability with an AUC value of 0.799 (95% confidence interval 
(CI): 0.763–0.854), and the best overall performance with a Negelkerke  R2 value of 0.332 (95% CI: 
0.266–0.486). Both of the optimism‑corrected Negelkerke  R2 values of the SVM and sLKB models 
were 0.301. The optimism‑corrected AUC of the gLKB model (0.796) was higher than that of the SVM 
model (0.784). The sLKB model had the smallest optimism in the model variation and discriminative 
ability. In the context of classification and probability estimation for predicting the NTCP for radiation‑
induced esophagitis, the MLR model developed with LASSO provided the best predictive results. The 
simplest LKB modeling had similar or even better predictive performance than the most complex SVM 
modeling, and it was least likely to overfit the training data. The advanced machine learning approach 
might have limited applicability in clinical settings with a relatively small amount of data.

Radiotherapy is an essential treatment modality for patients with non-small cell lung cancer (NSCLC). However, 
radiation-induced toxicity, such as esophagitis, is of great concern to physicians as it lowers patients’ quality of 
life and may limit the dose-escalation targeted for better tumor  control1. Accurate prediction of the normal tis-
sue complication probability (NTCP) offers clinical guidelines for early intervention and facilitates physicians 
to develop a patient-specific treatment strategy. Moreover, there has been a growing interest in NTCP model-
based patient selection for proton  therapy2–6. For a given endpoint, modeling of NTCP can be performed using 
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different approaches, ranging from the conventional analytic functions to the latest machine learning  techniques7. 
And yet, there is no consensus on what is the best approach for NTCP modeling in the context of radiotherapy.

Traditional NTCP models were developed using analytic functions based on different assumptions of the 
dose–response  relationship8–13. Among the analytic NTCP models, the Lyman–Kutcher–Burman (LKB) is the 
most well-known and widely used  method11–13. In addition, it is the only NTCP model available in clinical treat-
ment planning systems for biological  evaluation14. In the standard LKB (sLKB) model, only the dosimetric factor 
was considered and the three-dimensional dose distribution was simplified into a single measure. It has been 
found the performance of the sLKB model was improved by adding one or more dose-modifying variables that 
account for the effect of non-dosimetric  factors15–17. The LKB model with dose-modifying variables was denoted 
as the generalized LKB (gLKB) model hereafter. Another classic modeling technique to deal with various types of 
predictors is multivariable logistic regression (MLR), a statistical method to predict a binary outcome based on 
a set of independent  variables18. Compared with the sLKB model which used only one dosimetric measure, the 
MLR model is capable of handling multiple dose-volume metrics, such as maximum dose, mean dose, Vx values 
(the percentage volume receiving a dose greater than x Gy), and Dx values (the minimum dose given to x% of the 
volume)19. The sLKB model showed a slightly lower discriminative ability than the MLR  model20, but the differ-
ence between the performance of the generalized gLKB model and that of the MLR model has not been reported.

In the era of big data, the application of supervised machine learning in the treatment response modeling for 
radiotherapy has been rapidly growing. Support vector machine (SVM)21, a commonly used supervised machine 
learning algorithm, has shown promising accuracy in predicting lung radiation-induced  pneumonitis22, local 
tumor control after stereotactic body radiation therapy for early-stage NSCLC  patients23, and other clinical 
 outcomes24,25. With the preset feature selection, the results of the comparison in performance between SVM and 
MLR were  inconsistent26,27. It is of interest to compare their predictive power using a technique-specific feature 
selection scheme. Moreover, the advantage or the disadvantage of the complex SVM model over the simple LKB 
model remains unknown.

In this study, we aimed to identify the value of increasing the complexity of the NTCP model and using 
the advanced modeling technique in clinical practice by comparing the performance of LKB, MLR, and SVM 
methods for a data set concerning esophagitis.

Materials and methods
Data set. The data set consists of 328 NSCLC patients treated with passive-scattering proton therapy at The 
University of Texas MD Anderson Cancer Center during April 2006 to February 2012, and 136 (41.5%) patients 
experienced grade 2 or higher radiation-induced  esophagitis20. This retrospective data collection was approved 
by our institutional review board (The University of Texas MD Anderson Cancer Center) with waivers for the 
patient’s informed consent. The prescription was 50–82.5 Gy [relative biological effectiveness (RBE)] in 25–37 
fractions, with or without concurrent chemotherapy (CCRT). The clinical data were collected from the Epic 
system (Epic Systems Corporation), and the dosimetric data were extracted from the Eclipse treatment plan-
ning system (version 8.9, Varian Medical Systems) and has been converted to equivalent dose in 2-Gy fractions. 
Details of the patient characteristics, treatment, follow-up schedule, and esophagitis scoring were presented 
 elsewhere20. The clinical characteristics included in the study were age (odds ratio (OR) = 0.99), sex (OR = 0.99), 
stage (OR = 2.23), and CCRT (OR = 4.76). There was no missing data on the outcome and predictors. All meth-
ods were performed in accordance with the relevant guidelines and regulations.

Modeling techniques. Standard Lyman–Kutcher–Burman modeling. In the LKB model, NTCP is cal-
culated using the probit formula coupled with a generalized equivalent uniform dose (EUD) dose-volume his-
togram-reduction  scheme28. The sLKB model described the dose–response relationship characterized by three 
parameters, in which n represents the volume effect, m denotes the slope of the NTCP curve at TD50, and TD50 is 
the dose tolerance corresponding to 50% complication risk (Supplementary material 1).

Generalized Lyman–Kutcher–Burman modeling. In the gLKB model, a dose-modifying factor was introduced 
to account for the effect of clinical features. The use of CCRT has been shown to be associated with a higher 
probability of developing grade ≥ 2 esophagitis in this cohort of  patients20. Therefore, we substituted the param-
eter TD50 with a group-specific TD50s for the subgroup treated with (TD50y) or without (TD50n) CCRT, while 
keeping the same n, m for the entire cohort (Supplementary material 1). The dose-modifying factor is the ratio 
of TD50y and TD50n.

In the sLKB and gLKB modeling, the same methods were used to determine the best fits and the 95% confi-
dence intervals (CI) for the parameters. The maximum likelihood estimation was used to determine the optimal 
values for the parameters n, m, TD50, TD50y, and TD50n. The 95% CIs for the fitted parameters were obtained using 
the profile likelihood  method29,30.

Multivariable logistic regression. In the multivariable logistic regression model, the NTCP is modeled as a logit 
transformation of a linear function of several prognostic variables (Supplementary material 1). The candidate 
prognostic variables for each patient include four clinical and 17 dosimetric parameters. The clinical variables 
were sex, race, age, stage, and the use of CCRT. The dosimetric variables were EUD, the maximum dose  (Dmax), 
the mean dose  (Dmean), and the percentage volume receiving a dose higher than x Gy(RBE) (x ranges from 10 to 
75 in increments of 5). The results of the correlation between variables are available  elsewhere20. Table 1 listed the 
encoding values of the clinical variables and the dosimetric values. The EUD was calculated using the parameter 
n derived for the sLKB model.
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For the stepwise feature selection, a forward stepwise algorithm was adopted with the likelihood ratio test. 
Starting with a null model, the stepwise regression added or removed one variable at each step based on the p 
value for the likelihood ratio test. The variable selection process stopped if no variable can be added or removed. 
Stepwise-MLR is referred to as the multivariable logistic regression model using the stepwise feature selection 
in the following sections.

The LASSO method profiles out the insignificant variables by penalizing the regression coefficients of the vari-
ables and shrinks some of them to zero. As such, variables with non-zero coefficients were selected. The degree 
of penalty is controlled by the regularization parameter λ (Supplementary material 1). A fivefold cross-validation 
was performed to determine the optimal value of λ. The multivariable logistic regression model using LASSO 
regulation for feature selection is denoted as LASSO-MLR.

Support vector machine. For binary classification, the SVM searches for a hyperplane that maximizes the mar-
gin between the two classes. In this study, a radial kernel function was used to map the data from a low-dimen-
sional space into a high-dimensional feature space where the non-linear boundary became a linear boundary. 
Two hyperparameters were included in the SVM model. C is the regularization parameter that trades off the 
margin width against the fitting error, and γ is the parameter in the kernel function that controls the overfitting. 
The NTCP estimates were then generated from a decision function using a logit transformation (Supplementary 
material 1).

A grid-research was performed in the space of  (log2C =  − 5:2:15,  log2γ =  − 3: − 2: − 15) to identify the optimal 
parameter pair (C, γ) using fivefold cross  validation31. The whole data set was divided into 5 subsets of approxi-
mately equal size. In each iteration, a model was trained in 80% of the sample using a pair of (C,γ) and tested in 
the remaining 20% subsets. The procedure was repeated 5 times. The selection criterion was the averaged value 
of the area under the receiving operator curve (AUC) computed in the testing samples. All grid points of (C, γ) 
were tested and the one yielding the maximum AUC was picked. The best parameters of C and γ were then used 
in the feature selection. The optimal subset of features was determined by sequentially adding features based on 
the criterion of the fivefold cross-validated AUC until there is no improvement. In the SVM modeling, a total of 
24 variables were included, where stage was partitioned as a four-category attribute (1,0,0,0), (0,1,0,0), (0,0,1,0), 
and (0,0,0,1).

Bootstrapping for feature selection and model validation. The feature selection procedures in 
Stepwise-MLR, LASSO-MLR, and SVM were repeated in 1000 bootstrap samples drawn from the replacement 
of the original sample. The features with a selection frequency of greater than 80% were picked for the final 
models. Another threshold was applied for the selection frequency if the highest selection frequency was lower 
than 80%. With the selected features, models were built on the original sample and the performance was evalu-
ated (apparent performance). For SVM, the grid-search step was repeated to find the best pair (C, γ) within the 
selected feature space.

Table 1.  Candidate clinical variables and EUD values of the data set. I 0 = male, 1 = female. II 0 = no, 1 = yes. 
CCRT  concurrent chemotherapy, EUD equivalent uniform dose, RBE relative biological effectiveness, Dmax 
maximum dose, Dmean mean dose, Vx percentage volume receiving dose higher than x Gy (RBE).

Index Variables Range/classification Mean/frequency

1 Sex 0,  1I 185, 143

2 Age, years 33–95 68.6

3 Stage 1, 2, 3, 4 59, 47, 208, 14

4 CCRT 0,  1I 130, 198

5 EUD, Gy(RBE) 0–68.02 37.63

6 Dmax, Gy(RBE) 0–86.00 62.91

7 Dmean, Gy(RBE) 0–56.70 18.53

8 V10, % 0–93.54 37.44

9 V15, % 0–91.70 34.93

10 V20, % 0–90.23 32.48

11 V25, % 0–88.98 30.35

12 V30, % 0–87.89 28.28

13 V35, % 0–86.93 26.14

14 V40, % 0–86.06 23.93

15 V45, % 0–85.03 21.95

16 V50, % 0–83.15 19.82

17 V55, % 0–80.42 16.78

18 V60, % 0–73.00 14.01

19 V65, % 0–61.99 10.32

20 V70, % 0–59.12 7.12

21 V75, % 0–47.33 3.08
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We also used the bootstrap approach to internally validate the predictive performance of different NTCP 
models. Model fitting including feature selection and coefficient estimation was repeated on each bootstrap 
sample using the specific modeling technique. From the resulting model, the performance was evaluated in the 
bootstrap sample (bootstrap performance) and the original sample (test performance). The optimism was calcu-
lated as the difference between bootstrap performance and test performance. A lower value of optimism denotes 
a lower level of overfitting. The optimism should be corrected to reflect the stable and unbiased estimation of 
the model performance in future data. The optimism-corrected performance was then obtained by subtracting 
the optimism from the apparent performance.

The performance of the model was assessed using the Negelkerke  R2, AUC, and Hosmer–Lemeshow (HL) 
test. Negelkerke  R2 is an overall measure to quantify the variability explained by a model. AUC is used to indicate 
how well the model classifies patients into different risk groups. HL test assessed the calibration of the model, 
and a p value of greater than 0.05 indicates good agreement between predicted probability and observed risk.

Software. Model development and data analysis were performed in MATLAB (version R2016b, Math-
Works, Inc.). For the SVM modeling, we used the MATLAB version of the freely distributed package  LIBSVM32.

Results
In the gLKB model, the optimal values of n and m [n = 0.23 (95% CI: 0.09–0.47), m = 0.54 (95% CI: 0.41–0.74)] 
are slightly deviated from the values of sLKB model [n = 0.24 (95% CI: 0.10–0.49), m = 0.51 (95% CI: 0.37–0.70)]. 
The TD50 for patients treated with CCRT (TD50y) was 42.17 Gy (RBE) [95% CI: 31.76–52.53 Gy (RBE)], while it 
was 57.84 Gy (RBE) [95% CI: 42.65–79.75 Gy (RBE)] for patients treated without CCRT. Therefore, the dose-
modifying factor is 1.4. Compared with the sLKB model, the gLKB model showed a better fit of the data, as can 
be deduced from the the increased value of optimism corrected Negelkerke  R2 and AUC.

Figure 1 shows the selection frequency for all the variables in the 1000 bootstrap samples with the modeling 
techniques Stepwise-MLR, LASSO-MLR, and SVM. For the variables with greater than 80% frequency, stepwise 
selection and LASSO had two common variables: CCRT (stepwise: 80.8%, LASSO: 99.7%) and EUD (stepwise: 
93.6%, LASSO: 96.7%). Compared with stepwise selection, LASSO tended to include more variables and it 
selected V75 with a frequency of 92.4%. Using 60% as a threshold, the variables selected by SVM were CCRT 
(66.3%) and EUD (69.2%), matching the variable selection based on the stepwise approach. Table 2 presents the 
regression coefficients for the two MLR models using the selected variables and the optimal values of C and γ 
for the SVM model.

A summary of the apparent performance, bootstrap performance, optimism, and the optimism-corrected 
performance of all the models are listed in Table 3. The optimism-corrected Negelkerke  R2 and AUC values of 
the LASSO-MLR were also higher than the other models. Stepwise-MLR showed a marginal improvement in the 
optimism-corrected-AUC (0.797) compared with the gLKB model (0.796). A similar predictive performance was 
found for the SVM and sLKB model with regard to the optimism-corrected Negelkerke  R2 and AUC values. Both 
of the optimism-corrected Negelkerke  R2 values of the SVM and sLKB models were 0.301, and the optimism-
corrected AUC values were 0.783 and 0.784 for the sLKB and SVM models respectively. Moreover, there were 
minimal differences between SVM and gLKB, Of note, the advanced SVM modeling technique was more prone 
to overfitting, as indicated by its highest optimism (0.039 and 0.015 for Negelkerke  R2 and AUC respectively). 
By contrast, the lowest optimism was observed in the conventional sLKB model.

Figure 2 displays the receiving operator curves and the calibration plots of all the models. A comparison of 
receiving operator curves of all the models (Fig. 2a) showed that sLKB was less accurate in detecting true positive 
cases at a higher threshold as compared with the other models. The predictions of all the models significantly 
agreed with the observed outcome, as demonstrated by the non-significant HL tests. The loess smoother of 
LASSO-MLR was closer to the ideal line, indicating a better calibration performance.

Discussion
In this study, we investigated and internally validated the predictive performance of NTCP models developed 
for radiation-induced esophagitis in NSCLC patients receiving proton radiotherapy using different modeling 
techniques ranging from conventional analytic solution, logistic regression, to advanced machine learning. Of 
the five NTCP models, LASSO-MLR showed the best fit for the data. The sLKB model had the lowest optimism. 
SVM modeling resulted in NTCP models with a good apparent performance but with the highest optimism. 
Our results highlighted the non-inferiority of the conventional LKB modeling to the advanced SVM modeling 
in the discriminative ability and the accuracy of the predicted probability.

The predictive performance of the NTCP model was improved when more factors were considered. For the 
LKB modeling, our results of the comparison of the apparent performance were in line with the studies conducted 
by Peeter et al.15 and Defraene et al.33, who found the modified LKB model with both the dosimetry and clinical 
factors gave a significantly better fit than the standard LKB model with dosimetry alone for different endpoints. 
Previous studies also reported similar findings in multivariable logistic regression modeling that the model 
with more predictors had a higher performance than the one with fewer  predictors34,35. However, the compari-
son of the optimism-corrected performance has not been investigated. Of note is that the optimism-corrected 
performance was considered a less unbiased assessment of the model in the future data than the apparent 
 performance36. It is more likely to have a higher optimism by including more variables, thus resulting in lower 
optimism-corrected performance. Xu et al.35 demonstrated that an all-variable logistic regression model was 
susceptible to overfitting, which suggested a robust variable selection approach. As shown in Table 3, thought 
the optimisms of gLKB and LASSO-MLR were higher than those of their counterparts using the same modeling 
technique, the optimism-corrected performance of gLKB and LASSO-MLR were still higher.
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The advanced SVM modeling technique did not offer improvement in our prediction of the dose–response 
relationship over the conventional LKB and logistic regression models. Moreover, the predictive performance 
of the SVM model was slightly poorer than the Stepwise-MLR that used the same predictors. The results would 
probably be explained by the γ parameter of the SVM model. In addition to the regulation parameter C, the 
behavior of the SVM model using the radial basis function kernel is very sensitive to the γ parameter. A large 
value of the γ parameter means that the radius of the influence area of the support vectors only includes the 
support vector itself and the regulation from the parameter C is unable to prevent overfitting. A small value of 
the γ parameter denotes an overly constrained model that cannot capture the complexity of the data, resulting 
in a model with a similar performance as the model assuming the linearity of the predictors. The γ parameter in 
the optimized SVM model has a relatively low value of  2−13. Therefore, the SVM model performed comparably 
to the logistic regression model under the same feature selection and even did not outperform the simplest ana-
lytic LKB model. Lynam et al.26 also reported that logistic regression performed as well as the machine learning 
algorithm in their study population when a small number of predictors were considered. Currently, there is 
no golden standard for variable selection and fewer significant variables are preferred in clinical practice. The 
nonlinear machine learning approaches may prove more powerful in the context of a larger dataset with more 

Figure 1.  Selection frequencies of the candidate variables in 1000 bootstrapping samples by forward stepwise 
selection and LASSO for the MLR model (a), and by forward stepwise selection for the SVM model (b).
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variables, such as the study of genomics and radiomics. In addition, the signal-to-noise of the clinical data may 
be lower. Therefore, the advanced machine learning modeling technique may have limited applicability in the 
current clinical setting.

For clinical practitioners, intuitive interpretability and ease of implementation were two important aspects 
when choosing the “best” model. The parameter n in the LKB model provides insight into whether the low dose 
region or the high dose region matters. We can also derive a dose constraint in terms of EUD from the LKB and 
logistic regression models based on the monotonically increasing functions of EUD, leading toward individual-
ized treatment planning. In contrast, the mapping of input data and the output predictions in the SVM model 
is considered a “black box”, which prevents practitioners from better understanding the data and quantifying 
the effect of the dosimetric and non-dosimetric predictors. Incorporating the decision-making platform with a 
large amount of information given by the treatment planning system and the patient information system such 
as Epic would facilitate the adoption of a machine learning algorithm in clinical decision-making. In terms of 
performance and utility, LASSO-MLR was the best modeling technique in the current context.

One limitation of the current study is that only a few clinical predictors had been enrolled in the investigation. 
A further study would be different NTCP modeling techniques incorporated with functional imaging features 
and biological markers. In addition, larger and external data sets are needed to verify the findings of this study.

Conclusion
In the context of classification and probability estimation for predicting the NTCP of radiation-induced esophagi-
tis in NSCLC patients receiving proton radiotherapy, a multivariable logistic regression model developed with 
LASSO provided the best predictive results. The simplest LKB modeling using the analytic function had similar 
or even better predictive performance than the most complex SVM modeling, and it was least likely to overfit 
the training data. The advanced machine learning approach might have limited applicability in clinical settings 
with a relatively small amount of data.

Table 2.  Feature selection results and parameter values for sLKB, gLKB, Stepwise-MLR, LASSO-MLR, 
and SVM models. sLKB standard Lyman–Kutcher–Burman, gLKB generalized Lyman–Kutcher–Burman, 
Stepwise-MLR multivariable logistic regression using stepwise feature selection, LASSO-MLR multivariable 
logistic regression using least absolute shrinkage and selection operator for feature selection, SVM support 
vector machine, CCRT  concomitant chemotherapy, EUD equivalent uniform dose, V75 percentage of volume 
receiving dose higher than 75 Gy(RBE).

Models Parameters/features Coefficients/formula

sLKB n, m,  TD50 n = 0.24, m = 0.51,  TD50 = 44.83 Gy (RBE)

gLKB n, m,  TD50y,  TD50n
n = 0.23, m = 0.54,  TD50y = 42.17 Gy (RBE)
TD50n = 57.84 Gy (RBE)

Stepwise-MLR CCRT, EUD log
(

p
1−p

)

= −3.5845+ 0.8505 ∗ CCRT+ 0.0664 ∗ EUD

LASSO-MLR CCRT, EUD, V75 log
(

p
1−p

)

= −3.2766+ 0.7913 ∗ CCRT+ 0.0573 ∗ EUD+ 0.0438 ∗ V75

SVM CCRT, EUD C =  215, δ =  2–13

Table 3.  Apparent, bootstrap performance and optimism of sLKB, gLKB, Stepwise-MLR, LASSO-MLR, and 
SVM models. *Apparent performance (optimism-corrected). sLKB standard Lyman–Kutcher–Burman, gLKB 
generalized Lyman–Kutcher–Burman, Stepwise-MLR multivariable logistic regression using stepwise feature 
selection, LASSO-MLR multivariable logistic regression using least absolute shrinkage and selection operator 
for feature selection, SVM support vector machine, AUC  area under the receiver operator curve, HL Hosmer–
Lemeshow, LL log likelihood, AIC Akaike information criterion.

Performance sLKB gLKB Stepwise-MLR LASSO-MLR SVM

Apparent

 Negelkerke  R2 0.315 (0.301)* 0.342 (0.323)* 0.344 (0.329)* 0.354 (0.332)* 0.340 (0.301)*

 AUC 0.785 (0.783)* 0.799 (0.796)* 0.800 (0.797)* 0.803 (0.799)* 0.799 (0.784)*

 HL test χ2 = 12.01 (p = 0.24) χ2 = 5.08 (p = 0.83) χ2 = 5.18 (p = 0.79) χ2 = 3.84 (p = 0.92) χ2 = 5.60 (p = 0.78)

 LL  − 178.55  − 174.46  − 174.20  − 172.48  − 174.75

Bootstrap mean (95% CI)

 Negelkerke  R2 0.318 (0.210–0.427) 0.349 (0.244–0.454) 0.349 (0.246–0.452) 0.363 (0.260–0.465) 0.334 (0.207–0.460)

 AUC 0.787 (0.737–0.836) 0.802 (0.753–0.850) 0.802 (0.753–0.850) 0.805 (0.757–0.853) 0.807 (0.756–0.858)

Optimism mean (95% CI)

 Negelkerke  R2 0.014 (− 0.096–0.124) 0.020 (− 0.091–0.130) 0.015 (− 0.093–0.123) 0.022 (− 0.088–0.132) 0.039 (− 0.091–0.168)

 AUC 0.002 (− 0.048–0.052) 0.004 (− 0.045–0.052) 0.003 (− 0.046–0.051) 0.004 (− 0.044–0.051) 0.015 (− 0.037–0.068)
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The datasets used and/or analysed during the current study available from the corresponding author on reason-
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