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This simulation study aims to propose an optimal starting model to search for

the accurate growth trajectory in Latent Growth Models (LGM). We examine the

performance of four different starting models in terms of the complexity of the mean

and within-subject variance-covariance (V-CV) structures when there are time-invariant

covariates embedded in the population models. Results showed that the model search

starting with the fully saturated model (i.e., the most complex mean and within-subject

V-CV model) recovers best for the true growth trajectory in simulations. Specifically, the

fully saturated starting model with using 1BIC and 1AIC performed best (over 95%) and

recommended for researchers. An illustration of the proposed method is given using the

empirical secondary dataset. Implications of the findings and limitations are discussed.

Keywords: latent growth models, latent curve models, growth analysis, model selection, specification search,

starting model, model building, growth curve

INTRODUCTION

Longitudinal data has been widely used in many research areas including medical, education, and
psychology. One of the major questions when using longitudinal data is often on the change of
the measured variables over time, such as: are parental control and knowledge for their children
declining over time? (Keijsers and Poulin, 2013); what are the developmental trajectories for
adolescents’ empathic concern associated with pubertal status? (Van der Graaff et al., 2014). Most
educational and psychological researchers are interested in not only the accurate growth, but also
the factors/covariates (e.g., gender, involvement in peer-oriented leisure activities) accounting for
the variation of growth trajectory among participants (Crockett and Beal, 2012; Titzmann et al.,
2014). Latent growth models (LGM; also called latent growth curve models) have been increasingly
popular in longitudinal studies given that the latent growth models allow researchers to take
into account the between-individual differences as well as within-individual differences over time
(Meredith and Tisak, 1990; Preacher et al., 2008; Duncan et al., 2013).

In longitudinal data analysis under LGM, many studies have devoted to optimally model the
overall shape of the growth trajectories for all subjects based on the hypothesized model (Duncan
et al., 1994; Hancock and Lawrence, 2006; Blozis, 2007). When there is no hypothesized theory,
however, researchersmay use exploratory approach to search for the optimal growth shape based on
their data. Visual inspection using graphical function in statistical software (e.g., empirical growth
plot) can be one viable approach to start with, but it is more suitable with a subset of sample rather
than with a large sample data (Singer and Willett, 2003). While the traditional model building
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approach has been employed for decades, under this
circumstance, there have been extensive efforts to suggest
the model specification search strategy for the optimal shape of
growth trajectory (Leite and Stapleton, 2011; Liu et al., 2012;
Kim et al., 2016; Whittaker and Khojasteh, 2017). Under the
framework of LGM, model specification search can be conducted
in terms of the mean structure (i.e., shape of the overall changing
pattern) and variance-covariance (V-CV) structure consisting
of growth factor V-CV (i.e., variations across the individual
growth trajectories) and residual V-CV structure (i.e., variations
within the individual growth trajectories). Previous research
has consistently found that the saturated residual variance-
covariance structure (i.e., freely estimating the variance and
covariances of repeated measures) has promising performance
when searching for the accurate growth shape in simulations
(Wu and West, 2010; Kim et al., 2016). However, existing
recommendation has been made upon previous simulations,
assuming that all growth latent factors are exogenous variables
in the population models. That is, no studies have investigated
whether existing recommendation is still applicable to the case
that growth latent factors are both exogenous and endogenous
variables at the same time. When the possible covariates are
excluded in the model, the latent growth models is regarded to
be misspecified given that the paths from the covariates to the
growth factors are constrained to be 0. When the influential
covariates are existing but not considered in the step of searching
for the accurate growth trajectory, little is known about (a) which
starting model performs best in searching for the optimal growth
trajectory and (b) which model selection criteria can be used to
successfully search for the best growth trajectory.

In the present study, we aim to investigate the optimal model
search strategy for finding for the accurate growth shape in
simulations when there is a significant covariate associated with
the growth trajectory. Specifically, we focus on time-invariant
covariates (e.g., gender, years of education, ethnicity) in the
current study. Under the framework of LGM, we employ the
four different starting models in terms of the complexity of mean
and residual variance structure following the previous research
by Kim et al. (2016): (1) the simplest mean and the error variance
structure, (2) the most complex mean and the simplest residual
variance structure, (3) the simplest mean and the most complex
error variance structure, and (4) the most complex mean and the
error structure. Specifically, we examine (1) which starting model
performs best in model specification search, (2) which model
evaluation index shows successful performance in finding the
population growth shape, and propose the optimal model search
strategy given the results of the two research questions. We use
a Monte Carlo simulation study to investigate the effectiveness
of different starting models on the search for the correct mean
trajectory. An illustrative example is also presented to apply the
model search strategy.

Mean and Residual Variance
(Variance-Covariance) Structures in LGM
There are three model components in LGM: mean structure,
between-subject variance-covariance (V-CV) structure, and

within-subject V-CV structure. A general model formulation in
LGM can be written as:

y = τy + 3yη + ε, (1)

where y refers to a vector of outcome variables (t × 1, where
t is the number of repeated measures), τ refers to a vector
of intercepts of ys (t × 1; typically fixed to zero for model
identification purpose), 3 represents a factor loading matrix for
ys (t × p, where p is the number of latent growth factors), η is a
vector of latent growth factors (p × 1), and ε represents a vector
of errors for each y across the repeated measures (t× 1). η can be
further written as follows:

η = α + Γηw+ ζ, (2)

where α contains the vector of population initial status and

growth parameters (e.g.,

[

α0

α1

]

for a linear growth model), Γ

represents a matrix of regression coefficients of time-invariant
covariate w, and ζ represents the deviation of the corresponding
individual values from the mean estimates of those growth
factors, respectively. Mean structure is the expected value of y
[i.e., E(y) = 3yα + 3yΓηE(w)

1], which represents the average
growth trajectory and the covariate effect on the change rates. In
the current study, we aim to correctly search for the structure of
growth shape (i.e., 3yα) while omitting the covariate effect part
[i.e., 3yΓηE(w)] by using an unconditional model in the search
procedure. The variance-covariance (V-CV) of y in Equation (1)
can be written as:

V(y) = Σ = 3yΨ 3′
y + Θε, (3)

whereΨ is a p×pmatrix containing the variance and covariances
of the growth related latent factors; 3’y is the transpose of the
3 matrix which captures the overall pattern of change, and Θε

represents the matrix of variances and covariance among the
errors (or unique factors). In other words, between-subject V-
CV is captured by Ψ matrix, representing the differences on the
intercepts and growth shapes among the subjects. In the current
study, we focus on the specification of within-subject V-CV
structure given that more complex structure and assumptions are
associated with the within-subject V-CV components compared
to between-subject V-CV structure (Kim et al., 2016). Within-
subject V-CV structure (also called residual variance structure
throughout this paper) is the variance and covariances of the
repeated measures for each individual (t× t matrix ofΘε), which
captures the deviations of the observed variables from a vector of
expected ys.

Model Building Process in Methodological
Studies
There have been a number of debates on how to search for
the optimal growth shape in longitudinal data analysis. When
there is no hypothesized growth shape in the absence of theory,

1A vector of τy is fixed to zero for model identification purpose.
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there are two commonly used starting points in terms of the
mean structure: the simplest mean structure (i.e., intercept-
only model) and the most complex mean structure (i.e., highest
possible polynomial growth model). The simplest intercept-only
model has been frequently used for model search process in the
longitudinal data analysis given that they follow the classic model
search strategy provided by Raudenbush and Bryk (2002) from
their classical book of hierarchical linear modeling.

Likewise, under the framework of multilevel model, Singer
and Willett (2003) suggested starting from the unconditional
model where there is a time-associated factor (e.g., age, year,
months) but no other factors or covariates in the model.
Similarly, McCoach and Kaniskan (2010) have demonstrated
a model building method by starting with an unconditional
linear growth model followed by adding time-varying covariates.
In their study, the empirical data from 277 elementary school
students over four time points are used for the demonstration.

Ryoo (2011) has conducted a simulation study for a model
building approach and recommended of using the simplest mean
structure model with no covariates as the starting point (i.e.,
intercept-only model) to search for the true growth shape. In his
simulation study, six covariates are included for data generation
while those are not included at the first step of model selection
process. Static predictors of growth trajectories are introduced
into the model at the last step after selecting the proper growth
(mean) structure. Results show that the step-up (i.e., starting
from the simplest mean structure) approach performs well to
search for the true growth shape. Meanwhile, the error variance
structure has not been discussed in the study and the default
structure (i.e., simplest Identity structure) has been used for all
simulation conditions.

On the other hand, under the framework of LGM,Mayer et al.
(2012) has illustrated a 3-step model building process using a
quadratic growth model as an example to show how to define
the latent growth components in longitudinal data analysis.
According to Mayer et al. (2012), based on a measurement model
formulated at Step 1, specifying the saturated (most complex)
mean structure is recommended for a starting model at Step
2 while covariates predicting growth components are added at
Step 3.

Inmost studies, however, model specification for the variance-
covariance structure part has been often disregarded in the
model building process because it seldom impacts the shape
of the growth trajectory itself (Kwok et al., 2007). However,
the impact of ignoring the error variance structure gets more
severe when conducting a model search because it may end
up selecting an inaccurate growth shape as the best fitting
model. Recently published study by Kim et al. (2016) shows
that specifying the simplest within-subject V-CV structure, which
is the default error structure in many statistical software, is
less likely to select the optimal growth shape as the best
fitting model. In their simulations, the average recovery rate
for finding the population growth shape is <50% when using
the simplest error variance structure, while it is above 85%
when saturating the residual V-CV structure with using certain
model evaluation criteria (e.g., LRT, 1AIC, and 1BIC). In their
study, only unconditional models without covariates are used

as a population model. There are no studies, at our knowledge,
investigating the model specification search for the population
growth shape in LGM, considering both mean and error
variance structure when covariates are regressed on the growth
factors.

Applied Studies Using LGM
Many applied studies employing latent growth models under the
multilevel modeling framework typically use the simplest within-
subject V-CV structure (i.e., Identity [ID]; constant variance
across repeated measures without allowing any covariance
between the measures) because it is the default error variance
structure in MLM software (e.g., SPSS MIXED, SAS PROC
MIXED, HLM). Although there are published tutorials available
for how to change the default within-subject error variance
structure (or level-1 residual structure in MLM framework)
(Quené and Van den Bergh, 2004), modifying the residual
structure has been rarely considered in most applied research.

We reviewed substantive studies published in Developmental
Psychology between 2010 and 2016 and found 37 studies2

employing the latent growth (or growth curve) models for
the longitudinal data analysis. Among 37 studies, 15 studies
specified a linear growth model with no search procedure due
to the limited number of repeated measures (i.e., 3 waves).
Among 22 of 37 studies containing 4 or more waves of data,
14 studies (63.6%) conducted a model comparison to find the
best fitting growth trajectory while 8 studies directly specified
their hypothesized growth shape (i.e., linear growth model for
7 studies and piece-wise growth model for one study). Among
14 studies conducting a model comparison, 8 studies contained
4 waves of data and they compared a linear growth model to a
non-linear growth model (e.g., quadratic growth model). Among
the rest of 6 studies, which conducted a model specification
search with more than 4 waves of data, three studies reported
the fit statistics (e.g., chi-square difference test, CFI, RMSEA,
and SRMR) for all compared models. Nevertheless, none of
studies reported the information regarding the specification of
residual variance structure during the model search procedure.
For the selected final model, majority of the studies (86.5%)
directly specified the simplest residual variance structure without
considering other types of V-CV structures. As shown in the
reviewed literatures, there is a lack of consensus for using a
model building approach in latent growth models to search for
the optimal growth trajectory.

STUDY AIMS

Our goal is to propose a universal starting model to search for
the best-representing growth shape for the data regardless of
the true population mean structure because, in reality, we do
not know the true or accurate growth trajectory. We followed
Kim et al. (2016) to set up the four starting models in terms
of the mean and the residual structures in LGM. Figure 1

presents the four possible starting models for 4 wave data as an
example: (1) the simplest mean (intercept-only) with the simplest

2A list of studies is provided on the first author’s website as an Appendix.
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FIGURE 1 | Four starting models for 4 wave data.

ID error variance structure, (2) the most complex mean (e.g.,
highest possible polynomial growth term) and the simplest ID
structure, (3) the simplest mean and the most complex UN error
variance structure, and (4) the most complex mean and the error
structure.We extend the previous study to consider more general
conditions, in which there is a covariate effect on the growth
trajectories. While it has been found that saturating the within-
subject V-CV structure performs successfully to search for the
true growth trajectory without considering covariates (Wu and
West, 2010; Kim et al., 2016), the starting point for the mean
structure has shown no consistent results. Given that the previous
research used no covariates for the true model setting, we expand
it to more general model with covariates and examine whether
the consistent results can be found in more general conditions.
We have two specific research questions in the current study.

Q1: Which starting model performs best in searching for the correct

growth trajectory?

We examine the performance of four unconditional growth
starting models to search for a population growth shape under
the LGM framework. Based on the previous research, we
hypothesize that the model specified with the most complex

residual variance structure will perform successfully in searching
for the growth shape. Given that the starting point for the
mean structure has shown inconsistent results, we specifically
interested in: Does specification in mean structure (the most
complex vs. the simplest) affect the recovery rate for detecting the
true growth trajectory?

Q2: Which model selection criteria performs successfully to search

for the true growth trajectory?

We use six commonly used model evaluation criteria (i.e., LRT,
1CFI, 1RMSEA, 1SRMR, 1AIC, and 1BIC) with two different
model building approaches (i.e., step-up and top-down). We
expect that LRT and two information criteria (i.e., 1AIC and
1BIC) will outperform the other fit indices based on the previous
research finding (Kim et al., 2016).

METHODS: SIMULATION STUDY

Data Generation
Data are generated using Mplus7.1 (Muthén and Muthén, 1998-
2012) with a multivariate normal distribution. We have four
major design factors in this simulation study: (a) 2 number of
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waves and mean structure (4 and 8 for linear and quadratic
model, respectively), (b) true residual variance structure [ID,
UN(1), and AR(1)]3, (c) 3 covariate effect sizes (0.1, 0.3, and
0.5), and (d) 3 sample sizes (100, 210, and 390), yielding a total
of 54,000 datasets (2 × 3 × 3 × 3 × 1,000 replications). A
thousand replications per simulation condition is reasonable for a
simulation study in SEM given that many previous research have
used equal to or fewer than 1,000 replications. Figure 2 shows
an example of population model with 4 waves of data, which is
a linear growth model with the UN(1) error variance structure.
More details in simulation conditions for each design factor are
described in the following section.

Number of Waves and Mean Structure
We have used two conditions for the number of repeated
measures, 4 and 8, for building up the population model
of the growth trajectory. The number is based on reviewing
the substantive studies published in developmental psychology
between 2010 and 2016 as well as the previous simulation study
(Kwok et al., 2007; Kim et al., 2016). The average number of waves
used in longitudinal data analysis is 4.4 with a standard deviation
of 1.6. Among a total of 37 reviewed studies employing the latent
growth models, 24 studies have modeled a linear trend to analyze
their data while 9 studies have used a quadratic growth trajectory
to best represent their data. The rest of 4 studies have modeled
their data other than linear and quadratic (e.g., piecewise growth
model, factor loading freed non-linear model). Therefore, we
have set up a population model of 4 waves of data to be a
linear growth and 8 waves of data (i.e., approximately 2 standard
deviations above the mean number of waves) to be a quadratic
growth. Population values for both growth trajectories are set up
to be a medium effect, which have been employed in the previous
simulation studies (Kwok et al., 2007; Kim et al., 2016).

Residual Variance Structure
For generating the datasets representing the population model,
we have used three types of variance-covariance structures,
Identity (ID), Autoregressive [AR(1)], and bandedmain diagonal
[UN(1)]4, which are commonly used in many longitudinal
studies as well as simulation studies (Kwok et al., 2007; Kim et al.,
2016). Among the 37 reviewed studies, 32 studies (86.5%) have
used the simplest error V-CV structure (i.e., ID). Two studies
have allowed a correlation between the error terms and 3 studies
have estimated the time-specific variances [UN(1)]. The residual
variances of the measurement waves (i.e., θδ) were all set to be
1.00 for both ID and AR(1) structures, which was a common
practice in power analysis and simulation studies. Following
the prior simulation studies on residual variance structure, the
autocorrelation coefficient, ρ, was set to be 0.50 for AR(1)
structure. For the UN(1) structure, all the covariances were set to
zero while the residual variance of the first time point was set to
1.00 and the following residual variances were set to be the power

3ID=Identity; UN(1)=Banded main diagonal; AR(1)=Autoregressive.

4ID= σ 2
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FIGURE 2 | Linear growth model with UN(1) error variance structure with 4

waves of data to generate the true population model with a single covariate.

function of ρ = 0.80 (i.e., σ21 = 1.00, σ22 = 0.80, σ23 = 0.64, and
σ24 = 0.51 for 4 waves of data; σ21 = 1.00, σ22 = 0.80, σ23 = 0.64,
σ24 = 0.51, σ25 = 0.41, σ26 = 0.33, σ27 = 0.26, and σ28 = 0.21 for 8
waves of data), assuming that the reliability of the measurement
increases over time (Grimm andWidaman, 2010).

Between-Subject V-CV Structure
We adopted the population parameters for the between-subject
V-CV structure from the previous simulation studies in LGM
(Kwok et al., 2007; Kim et al., 2016) Given that intercept variance
has generally been larger than the variation of the change in
growth in longitudinal studies (Raudenbush and Xiao-Feng,
2001), the total variance of911 was set to 0.20 while both922 and
933 were set to 0.10 constantly for all conditions. The elements in
the matrix were set to:

9Linear =
[

911 912

921 922

]

=
[

0.20 0.05
0.05 0.10

]

and

9Quadratic =





911 912 913

921 922 923

931 932 933



 =





0.20 0.05 0.05
0.05 0.10 0.035
0.05 0.035 0.10



 ,

with the correlations (i.e., r = 9xy√
9xx9yy

, x 6= y) setting as 0.35

for all the pairs of the elements in the 9 matrix (Kwok et al.,
2007). Based on the covariate effect sizes, the size of the variance
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and covariance of the growth associated factors was adjusted to
consider the explained variance given the covariate.

Covariate Effect Size
To ease the understanding of mechanism under the model
formulation with covariates, we have used a simple model with
a single covariate in this simulation. Because adding more
predictors is a function of increasing the total effect size, which
decreases the size of residual (unexplained) variance, we have
used three different sizes of covariate effects on the mean growth
structure: 0.1 (small), 0.3 (medium), and 0.5 (large) while keeping
a single covariate. The covariate, w, is generated to have a mean
of 0 and a standard deviation of 1 with a normally distributed
variance. The covariate effects are equally regressed on each
growth-related term. For example, for the true linear growth
model condition, a covariate has the same coefficient on the
intercept and the slope.

Sample Size
We have used three sample sizes, which are 100, 210, and 390,
for small, medium, and large sample size conditions, respectively,
following the previous simulation study (Kim et al., 2016). Thus,
the total number of observations ranged from 400 (4 wave× 100
subjects) to 3,120 (8 wave × 390 subjects). We expect that the
model stability will increase as sample size increases, indicating
better chance of finding the correct mean trajectory.

Evaluation Criteria
We have evaluated three types of model selection criteria on
the performance of finding the correct mean growth trajectory:
(a) Likelihood Ratio Test (LRT), (b) 1Goodness of Fit Indices
[1GFI; i.e., Comparative Fit Index (CFI), Root Mean Square
Error of Approximation (RMSEA), and Standardized Root Mean
Residual (SRMR)], and (b) 1Information Criteria [1IC; i.e.,
Akaike Information Criteria (AIC) and Bayesian Information
Criteria (BIC)]. These model selection criteria are commonly
used by applied researchers because most statistical software
for SEM provide these fit statistics in the output (e.g., Mplus,
Lisrel, Amos). The difference in GFI and IC between the two
competing models (i.e., constrained model vs. relaxed model) is
calculated for each of the model fit index. Previous research has
shown promising results for using both LRT and 1IC in model
specification search (Kim et al., 2016), whereas the 1GFI showed
inconsistent results. Following Kim et al. (2016), we have used the
six model fit indices for evaluation criteria.

For information criteria (i.e., AIC and BIC), we have set up an
absolute value to select a better fitting model over the competing
model. Burnham and Anderson (2004) suggested using 4 for
AIC to decide whether a model fit is significantly improved by
adding additional parameter. Similary, Raftery (1995) suggested
using 2 for BIC to compare the models. In other words, when the
difference on the information criteria between the two competing
models is minimal (i.e., 1AIC < 4; 1BIC < 2), we have selected
the simpler model even when the more complex model showed
smaller value of AIC and BIC. Similarly, we have adopted more
stringent cutoff criteria for the GFIs proposed by Chen (2007).
When the difference on CFI between the simpler and more

complex model is <0.01, the simpler model was selected over the
more complex model. The cutoff for 1RMSEA and 1SRMR are
0.015 and 0.01, respectively.

Model Search Process
For each dataset, four sets of model search procedure have
been conducted using the four different starting models. Step-
up refers to starting from the simplest mean structure (i.e.,
intercept-only model) by adding one more growth related factors
at a time. For example, the intercept-only model with ID
structure is compared to the linear growth model with the same
residual variance structure using each of six different model
evaluation criteria. If the model is significantly improved by
adding a linear growth term, then the linear growth model
is compared to the quadratic growth model in the next step,
and so on. When the model is not improved any more, model
search process is stopped and the simpler model between the
two competing models is selected to be the optimal growth
trajectory. If the selected growth trajectory is matched with the
true (generated) growth structure, “hit” is coded as 1, while the
incorrect growth trajectory is coded as 0. Since this process is
independently conducted by six model evaluation criteria, the hit
rates are varied across the model evaluation criteria. In a similar
manner, top-down refers to starting from themost complexmean
structure (i.e., cubic growth model for 4 wave; sextic (6th-order
polynomial) growth model for 8 wave) by removing the highest
growth related factor at a time. If the more complex model
significantly fits better to the data, search has been stopped and
the more complex model has been selected as the best fitting
model.

Dependent Variable
The primary dependent variable was the hit rate of the true
mean model being successfully identified by the model selection
indices across the different starting models. For this dependent
variable, correct model recovery was coded as a binary variable
(i.e., 0 for a miss and 1 for a hit) for all replicates by all
conditions. The hit rate (i.e., percentage of replicates reaching
the true mean model) was summarized according to the
performance of different starting models and model selection fit
indices.

RESULTS: SIMULATION STUDY

Before using the model search process, we first analyzed the
correctly specified model in terms of both mean and within-
subject V-CV structures to validate the data generation process.
Results show that all simulations for linear and quadratic
growth models with the corresponding true error variance
structures [i.e., ID, AR(1), and UN(1)] are properly converged
with the accurate parameter estimates indicating that the data
were adequately generated. Next, for each true model, four
different starting models have been utilized to search for the true
mean structure: (1) the simplest mean (intercept-only) with the
simplest ID error variance structure, (2) the most complex mean
(e.g., highest possible polynomial growth term) and the simplest
ID structure, (3) the simplest mean and the most complex UN
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error variance structure, and (4) the most complex mean and the
error variance structure. We present the results of our simulation
studies by two research questions.

Which Starting Model Performs Best in
Searching for the Correct Growth
Trajectory?
Table 1 presents the average hit rates (i.e., percentage of
replicates reaching the true growth shape) across all six model
fit evaluation criteria when using the four different starting
models. Although each fit index is used independently for
model search, we average the hit rates of all six fit indices
to clearly compare the performance of the four starting
models corresponding to the research question. The first three
columns provide the information regarding the analyzed model
using different starting points5. For the within-subject V-CV
structure, ID [identity] is the simplest structure while UN
[unstructured] is the most complex structure. For the mean
structure in the next column, step-up refers to starting with
the simplest mean (i.e., intercept-only model) while top-down
refers to starting with the most complex mean model (i.e.,
cubic growth model for 4 wave data; 6th-order polynomial
growth model6 for 8 wave data). The next two columns
give the information about the true model conditions for the
covariate effect size and sample size. The 6th to 11th columns
report the average hit rates under six different true model
conditions.

As shown in Table 1, starting model (4), which is specified
with the most complex mean and residual variance structure,
performs best in searching for the population growth trajectory.
The average hit rate is 82.3% across all simulation conditions and
all model selection criteria. The average hit rates for six different
population models range between 75.6 and 87.3% indicating
relatively stable performance across all simulation conditions.
As covariate effect size and sample size increase, the percentage
of finding the true growth shape slightly increases when using
the starting model (4). Following Model (4), Model (3) that
uses the intercept-only with the most complex UN structure
as the starting point shows 70.5% of average hit rate with
a range between 47.8 and 90.8%. While Model (3) performs
relatively well for searching for the linear growth model (ranged
between 88.3 and 90.8%), hit rates are substantially decreased
for the quadratic growth model (ranged between 47.8 and
53.9%). As shown in Table 1, as covariate effect size increases,
hit rates for Model (3) decreases across different sample size
conditions and error variance structures. Results for each fit
index show that the fit statistic difference between the intercept-
only model and linear growth model is minimal, which leads
to select the intercept-only model as the better fitting model
than the linear growth model. Although Model (3) outperforms

5Given the limited space, we present the summary of the simulation results. Result

tables for six true model conditions including covariate effect size and sample size

information are available from the first author upon request.
6Instead of the seventh-order polynomial model, we used the sixth-order

polynomial model as the most complex mean model given that the seventh-order

polynomial model resulted in serious nonconvergence issue.

Model (4) for the true linear growth model, it shows unstable
results for the true quadratic mean structure, which indicates
that Model (3) is sensitive to the true mean structure while
Model (4) is relatively robust to the true growth shape. More
specifically, hit rates for Model (3) substantially decreases when
the sample size becomes smaller and covariate effect size gets
larger.

Meanwhile, Model (1), which is the most commonly used
starting model in practice, shows the worst performance in
searching for the accurate growth shape with overall average
hit rate of 50.1% (ranged between 21.0 and 81.5%). Only
when the true model is a linear growth model with the ID
structure, Model (1) shows a good performance (81.5% hit
rate). Given that not only the true mean structure is adjacent
to the starting mean structure (i.e., a linear growth model
and an intercept-only model) but also the V-CV structure
is correctly specified (i.e., ID), it can be well expected that
Model (1) performs successfully under this specific condition.
Similarly, Model (2) (i.e., the most complex mean with the
simplest V-CV structure model) shows no promising results
in searching for the true mean structure with the average hit
rate of 53.1% (ranged between 22.9 and 90.9%). Model (2)
shows a good performance only when the true V-C structure
is the true ID structure; the average hit rates are 88.0 and
90.9% for the linear and quadratic growth model, respectively.
However, when the true V-CV structure is not ID but UN(1)
or AR(1), both Model (1) and (2) show poor performance
in detecting the true shape of the growth. Notably, Model
(1) and (2) perform worse as sample size increases, which
can be an evidence of the unstable model results (Kim et al.,
2016).

Which Model Selection Index Performs
Well in Searching for the Accurate Growth
Shape?
Table 2 presents the average hit rates for six model selection
fit indices across all simulation conditions. As shown in the
table, 1BIC shows the highest average hit rate (84.4%) across
all simulation conditions followed by 1AIC (average hit rate
of 73.3%). The average hit rate of LRT across all simulations
is 67.5% followed by 1SRMR (57.4%), 1CFI (53.6%), and
1RMSEA (48.2%). Specifically, 1BIC and 1AIC using the
starting Model (4) show outstanding performance to search for
the true growth shape with the average hit rate of 97.1% (ranged
between 96.8 and 97.7%) and 95.2% (ranged between 93.9 and
96.7%), respectively. As shown in Table 2, using 1BIC for Model
(4) shows consistently good performance regardless of other
design factors, which are, true mean and covariance structure,
covariate effect size, and sample size. Although LRT and 1GFI
(i.e., 1CFI, 1RMSEA, and 1SRMR) show no advantages over
the information criteria, when starting with Model (4), hit rates
for 1CFI and LRT notably increase with an average hit rate
of 93.8 and 85.5%, respectively. In summary, 1BIC and 1AIC
perform optimally to search for the accurate growth shape when
starting with the most complex mean structure with the saturated
error variance structure.
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TABLE 1 | Average percentage of finding the correct mean structure by four starting models.

Linear growth Quadratic growth

Starting modela Cov spec Mean spec Effect size n Average hit ID UN(1) AR(1) ID UN(1) AR(1)

(1) ID Step-up 0.1 100 56.0 76.1 65.6 51.1 64.0 49.8 29.3

(1) ID Step-up 0.1 210 48.1 80.9 57.5 31.7 65.1 36.7 16.8

(1) ID Step-up 0.1 390 41.2 83.9 45.5 14.2 65.3 25.6 12.6

(1) ID Step-up 0.3 100 57.7 78.3 68.3 51.5 64.4 53.8 29.9

(1) ID Step-up 0.3 210 50.2 81.6 61.6 32.2 65.3 42.1 18.1

(1) ID Step-up 0.3 390 43.3 84.5 50.7 14.4 65.1 30.9 14.2

(1) ID Step-up 0.5 100 58.6 79.4 70.1 51.9 64.9 53.5 31.8

(1) ID Step-up 0.5 210 51.1 82.6 65.1 32.8 65.4 40.9 20.0

(1) ID Step-up 0.5 390 44.6 86.1 56.2 14.6 65.1 29.3 16.0

Model (1) Average hit 50.1 81.5 60.1 32.7 64.9 40.3 21.0

(2) ID Top-down 0.1 100 56.6 71.3 62.2 49.3 86.3 41.8 28.7

(2) ID Top-down 0.1 210 50.7 76.5 55.6 31.0 91.7 32.5 16.7

(2) ID Top-down 0.1 390 45.5 80.0 44.9 14.1 93.9 27.7 12.2

(2) ID Top-down 0.3 100 58.5 73.6 64.8 49.6 86.7 45.7 30.5

(2) ID Top-down 0.3 210 52.7 77.2 59.7 31.4 91.9 35.9 20.2

(2) ID Top-down 0.3 390 47.6 80.9 50.1 14.3 94.1 30.4 15.8

(2) ID Top-down 0.5 100 60.4 74.7 66.6 50.1 87.5 49.1 34.6

(2) ID Top-down 0.5 210 55.2 78.5 63.2 31.9 92.1 40.1 25.6

(2) ID Top-down 0.5 390 50.7 83.0 55.5 14.4 94.0 35.9 21.6

Model (2) Average hit 53.1 77.3 58.1 31.8 90.9 37.7 22.9

(3) UN Step-up 0.1 100 73.8 81.0 84.1 83.3 66.7 69.1 58.7

(3) UN Step-up 0.1 210 83.4 88.3 89.1 91.5 79.5 80.6 71.6

(3) UN Step-up 0.1 390 86.3 90.6 91.5 93.7 83.6 83.8 74.4

(3) UN Step-up 0.3 100 64.2 85.7 86.4 88.3 43.0 44.6 37.4

(3) UN Step-up 0.3 210 73.4 88.8 89.8 91.7 58.2 59.0 52.6

(3) UN Step-up 0.3 390 77.9 91.4 92.4 93.8 64.6 64.3 60.6

(3) UN Step-up 0.5 100 52.0 86.7 87.4 89.2 16.8 16.9 15.1

(3) UN Step-up 0.5 210 58.1 89.8 90.8 91.9 25.5 26.8 23.6

(3) UN Step-up 0.5 390 65.8 92.3 93.1 94.0 38.6 39.9 36.6

Model (3) Average hit 70.5 88.3 89.4 90.8 52.9 53.9 47.8

(4) UN Top-down 0.1 100 76.6 67.8 70.7 71.2 82.8 83.8 83.3

(4) UN Top-down 0.1 210 82.5 75.0 75.9 80.8 87.2 88.1 87.7

(4) UN Top-down 0.1 390 85.3 78.7 79.8 84.9 89.4 89.3 89.7

(4) UN Top-down 0.3 100 78.8 72.4 72.9 76.2 83.2 84.2 83.8

(4) UN Top-down 0.3 210 82.9 75.7 76.8 81.1 87.5 88.2 87.9

(4) UN Top-down 0.3 390 85.8 79.8 81.0 85.2 89.4 89.4 89.7

(4) UN Top-down 0.5 100 79.5 73.2 73.8 77.0 83.7 84.6 84.4

(4) UN Top-down 0.5 210 83.5 76.9 77.9 81.6 87.8 88.5 88.1

(4) UN Top-down 0.5 390 86.2 81.0 81.9 85.7 89.5 89.5 89.7

Model (4) Average hit 82.3 75.6 76.7 80.4 86.7 87.3 87.1

aModel (1): intercept-only with the simplest Identity V-CV structure, Model (2): highest-order polynomial growth (i.e., cubic for linear growth and sextic for quadratic growth population

model) with the Identify V-CV, Model (3): intercept-only with the most complex UN V-CV structure, Model (4): highest-order polynomial growth with the UN V-CV structure.

APPLIED STUDY

To illustrate the use of the proposed model search strategy,
we have examined the longitudinal trajectories of depressive
symptoms among Mexican American elders in the U.S. using

the Hispanic Established Population for Epidemiological Studies
of the Elderly (EPESE), which is retrieved from Inter-university
Consortium for Political and Social Research (ICPSR). The first
wave of interviews was conducted between September 1993
and June 1994 (Markides, 1993-1994), with 3,050 Mexican
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TABLE 2 | Average percentage of finding the correct mean structure by different model evaluation criteria.

Linear growth Quadratic growth

Selection criteria Starting modela Overall average (%) ID UN(1) AR(1) ID UN(1) AR(1)

LRT (1) 53.1 95.3 65.2 29.3 94.4 28.9 5.6

(2) 45.8 95.3 65.1 29.3 80.3 2.8 2.3

(3) 85.6 94.9 95.1 95.0 76.6 78.3 73.9

(4) 85.5 90.2 90.4 90.3 80.8 80.9 80.6

LRT Average 67.5 93.9 78.9 61.0 83.0 47.7 40.6

1CFI (1) 20.9 75.1 33.4 16.9 0.0 0.0 0.0

(2) 43.4 66.0 28.4 15.9 98.5 29.0 22.5

(3) 56.3 83.0 86.2 94.9 33.6 23.8 16.4

(4) 93.8 83.0 86.2 94.9 99.5 99.7 99.8

1CFI Average 53.6 76.7 58.5 55.6 57.9 38.1 34.7

1RMSEA (1) 31.1 84.3 72.2 29.7 0.2 0.0 0.0

(2) 55.0 74.6 67.5 26.2 82.9 62.1 16.6

(3) 49.5 83.9 83.9 83.8 15.0 17.9 12.5

(4) 57.4 56.4 56.3 56.6 58.4 58.3 58.5

1RMSEA Average 48.2 74.8 70.0 49.1 39.1 34.6 21.9

1SRMR (1) 54.7 35.3 18.6 8.5 96.4 91.5 77.9

(2) 47.9 30.8 17.4 8.1 89.3 81.6 59.9

(3) 63.9 71.2 72.9 74.5 53.4 59.5 52.0

(4) 63.0 28.9 30.8 45.0 89.3 92.4 91.4

1SRMR Average 57.4 41.5 34.9 34.0 82.1 81.3 70.3

1AIC (1) 61.0 98.1 77.7 40.9 98.5 40.8 10.1

(2) 53.7 96.7 76.6 40.3 94.3 8.3 6.4

(3) 83.3 97.4 98.1 97.4 69.2 71.5 66.0

(4) 95.2 96.0 96.7 96.0 93.9 94.3 94.1

1AIC Average 73.3 97.1 87.3 68.6 89.0 53.7 44.1

1BIC (1) 83.5 99.0 98.4 81.2 100.0 86.8 35.8

(2) 75.6 98.3 97.6 80.7 98.5 45.7 33.1

(3) 81.2 97.6 98.6 97.7 64.8 67.5 61.1

(4) 97.1 96.9 97.9 97.0 96.8 97.0 97.0

1BIC Average 84.4 97.9 98.1 89.1 90.0 74.3 56.7

aModel (1): intercept-only with the simplest Identity V-CV structure, Model (2): highest-order polynomial growth (i.e., cubic for linear growth and sextic for quadratic growth population

model) with the Identify V-CV, Model (3): intercept-only with the most complex UN V-CV structure, Model (4): highest-order polynomial growth with the UN V-CV structure.

Americans aged 65 and over residing in the five southwestern
states that contain the majority of Mexican Americans: Texas,
California, New Mexico, Colorado and Arizona. Follow-up
interviews were then conducted approximately every 2–3 years,
with a supplemental sample from the same cohorts as the
original sample added in wave 5. Literature has shown that
limited English proficiency (LEP) is frequently reported to be
associated with more depression among immigrants because
language barriers can be a significant source of stress (Nwadiora
and McAdoo, 1996; Constantine et al., 2004; Sadule-Rios, 2012).
Kim et al. (in press) have investigated whether LEP is a
significant factor associated with the longitudinal trajectory of the
depressive symptoms using a latent growth model. In the current
demonstration, we illustrate the model search procedure using

the EPESE data to search for the optimal growth shape of the
depressive symptoms for older immigrants.

Specifically, we have used a total of six waves of data for
the depressive symptoms, which are measured with the Center
for Epidemiologic Studies Depression Scale (CES-D), a 20-item
self-administered questionnaire (Radloff, 1977), in the EPESE
between 1993 and 2007. Respondents were asked to assess the
frequency of depressive symptoms experienced during the past
week, based on a 4-point scale with categories in the subsequent
order: rarely or none of the time (0), some or a little of the time
(1), much of the time (2), and most or all of the time (3). The
total scores for 20 items potentially ranged from 0 to 60, with
higher scores indicating more depressive symptoms. Among a
total of 3,952 participants, 602 respondents who have all six waves
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TABLE 3 | The AIC and BIC for unconditional growth models for EPESE data.

Quartic Cubic Quadratic Linear Intercept

AIC 24,400 24,400 24,407 24,478 24,509

BIC 24,514 24,510 24,513 24,579 24,606

of data for CES-D are included in the further analysis. Mplus 7.3
usingMaximum Likelihood estimation method (ESTIMATOR=
MLR) was utilized for handling non-normality of the depression
scores.

To search for the optimal growth trajectory, we analyzed
a series of unconditional latent growth models (i.e., without
having covariates) by changing the shape of the growth and
compared the adjacent growth models using the information
criteria (i.e., 1BIC and 1AIC), which showed the best hit rate
for selecting the true population growth trajectory in simulations.
Other fit indices (i.e., CFI, RMSEA, and SRMR) were also
considered to meet the absolute fit criteria. First, based on
our finding from the simulation study above, we specified the
most complex (saturated) within-subject V-C structure (i.e., UN
structure), which allows to freely estimate all the variance and
covariance components. For the mean structure, we started
with the quartic (i.e., 4th-order polynomial) growth model as
the most complex mean structure with leaving one degree of
freedom to generate the fit statistics for 6 waves of data7.
Next, the quartic growth model with the UN error variance
structure was compared with the cubic growth model, which
has one less parameter in the mean structure to estimate. If
there is no significant difference between the two competing
models, we selected the simpler (cubic) growth model over
the more complex (quartic) growth model. Next, the cubic
growth model was compared to the quadratic growth model
by eliminating the next highest-order polynomial growth term,
and so on. When the model fit significantly got worse (i.e.,
1BIC > 2 and 1AIC > 4), the model search was stopped
and the more complex model was selected as the best fitting
model.

Table 3 presents the model fit indices including the AIC
and BIC for the series of latent growth models for the CES-
D measures. As shown in Table 3, the cubic growth model
was selected as the best fitting model by both information
criteria. Using the 1AIC, the quartic growth model shows
no improvement from the cubic growth model, whereas the
cubic growth model significantly better fits to the data than the
quadratic growth model. Likewise, the cubic growth model is
selected over the quartic growthmodel using the1BIC, and then,
the cubic growth model is compared to the quadratic growth
model, and indeed, the cubic growth model shows the better fit.
Interestingly, the cubic growth model was selected by both step-
up approach (i.e., starting from the intercept-only model) and
top-down approach (i.e., starting from the quartic growthmodel)
when specifying the saturated UN error variance structure in

7Fully saturated model in both mean and V-CV structures is just-identified model

and generates no fit evaluation statistics other than the information criteria.

the current example. In other words, both starting points (i.e.,
simplest and the most complex) in terms of the mean structure
reached to the same result in selecting the cubic growth model
as the best fitting model. Results show that older immigrants’
depressive symptoms have been decreased during the first two
waves of data and then increased for the following four waves of
data (see Figure 3). Further investigation and implication of the
findings should be referred to the work by Kim et al. (in press).

DISCUSSIONS

The purpose of the current study is to explore the optimal
model search strategy for searching for the best-fitting growth
trajectory in latent growth models (LGM). While starting with
the unconditional model without covariates has been known to
be a classical method for model building in longitudinal data
analysis (Meredith and Tisak, 1990; Singer and Willett, 2003),
there is a lack of research incorporating both mean and residual
variance structure in model search process under the framework
of LGM. In the current study, we expanded the previous
simulation study by Kim et al. (2016) by considering the time-
invariant covariates on the growth trajectory to provide a model
search strategy under more general conditions. We specifically
examined two research questions: (a) which starting model
performs best in searching for the correct growth trajectory, and
(b) which model selection index performs best in identifying
the true growth shape. Based on the results of the simulation
study, we found that (a) starting with the fully saturated model
with the most complex mean structure as well as the most
relaxed (unstructured) error variance structure, and (b) using
the information criteria (i.e., 1BIC and 1AIC) over the other fit
evaluation criteria (i.e., LRT and 1CFI, 1RMSEA, and 1SRMR)
performed best in search for the population growth shape in
LGM.

To examine the first research question, we have compared
the four starting models in terms of the complexity of the
mean structure and the within-subject variance-covariance (V-
C) structure in LGM (Figure 1). For the within-subject V-CV
structure, results of the simulations have shown that starting with
the most complex (saturated) structure (i.e., Model 3 and 4) best
recovers the true growth shape across all simulation conditions,
which is a consistent finding with the previous simulation study
(Kim et al., 2016). Unlike the previous study, however, the current
results show that starting point in the mean structure also does
matter to successfully search for the true growth trajectory.
When there is a small to moderate effect of covariates regressed
on growth trajectories, starting with the most complex mean
structure outperforms the simplest mean structure to recover the
true growth shape. This new finding is important because many
applied research have been using the simpler starting model (e.g.,
intercept-only model or linear growth model) to search for the
possibly more complex growth trajectory (e.g., quadratic growth
or cubic growth model) in practice. Based on the simulation
results, if the simpler growth model is used as the starting point,
they are more likely to select the incorrectly simpler growth
model, which may not represent their data adequately. As shown

Frontiers in Psychology | www.frontiersin.org 10 March 2018 | Volume 9 | Article 349

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Kim et al. Optimal Starting Model in LGM

FIGURE 3 | Cubic growth trajectory for depressive symptoms using CES-D measure for EPESE data.

in the results of the simulation study (Table 1), when the true
growth trajectory is a quadratic growth, the average hit rate of the
fully saturated model (Model 4) is 87.0% while the hit rate of the
simplest mean with the most complex error variance structure
model (Model 3) is 51.5%. As sample size gets smaller and the
covariate effect size gets larger, the impact of the starting point in
the mean structure on recovering the true model becomes more
substantial.

On the other hand, when the simplest ID structure is
specified for the within-subject V-CV, neither step-up method
nor top-down method successfully recovers the population
growth trajectory except when the population model is generated
to have the ID structure. Specifically, we note that the most
commonly used intercept-only model with the simplest within-
subject V-CV structure performs poorly to search for the correct
mean trajectory, which is a consistent finding with the previous
simulation study (Kim et al., 2016). When the true within-subject
V-CV is not Identity but more complex structure (i.e., UN(1) or
AR(1) in the current study), the average hit rate even decreases
as sample size increases, which is another evidence of model
instability. Given that researchers do not know the population
or true variance structure in reality, specifying the simplest V-CV
structure with no further consideration should be avoided in the
model search process based on the current research finding.

To examine the second research question, we have used six
model fit indices, which are LRT, 1CFI, 1RMSEA, 1SRMR,
1AIC, and 1BIC to select for the best fitting growth trajectory
model. Results show that there is no single fit index performing
consistently well across all starting models. On the other hand,
1BIC and 1AIC performed successfully to search for the
accurate growth trajectory with the use of the most complex
starting model. As shown in the Appendix, average hit rates

of 1BIC and 1AIC with using the Model (4) are above 95%
on average across all simulation conditions. That being said,
when researchers search for the optimal growth trajectory in
LGM, starting with the most (or possibly more) complex mean
structure with relaxing any constraints on error V-CV structure
is highly recommended.

LIMITATIONS AND FUTURE

The current study has several limitations in study designs and
conditions as with most simulation studies. First, we limited
our study conditions for polynomial one-piece growth models
(e.g., linear and quadratic growth models) in simulations based
on the literature review, where majority of the applied research
employed the polynomial growth models. While starting with a
polynomial growth model is a reasonable approach, the proposed
method might perform differently when the best model is a
family of exponential growthmodels or piecewise growthmodels.
Since the existence of multiple-piece non-linear model (e.g.,
piecewise exponential growth) is possible in reality, further
research on the effectiveness of current approach with more
complex multiple-piece models is needed. In addition, when the
number of repeated measures is 3, this approach may not be
adequate due to the limited number of testable growth models
(intercept only, linear and quadratic).

Next, we used a single covariate with effect sizes to be equally
regressed on all time factors (e.g., intercept and linear for a linear
growth model). Some predictors may have a stronger effect on
the initial time measure (e.g., intercept) than on the changing
rate (e.g., linear and quadratic growth factors) or vice versa.
Moreover, when there are multiple covariates or factors, models
get easily complicated with possible interaction effects and effect
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sizes differed. We simplified the simulation conditions to use
the constant effect sizes for the single covariate so that we can
examine the effect of time-invariant covariates in model search
process more clearly.

In the current study, we only considered the predictor(s) to
be time-invariant covariates (e.g., gender, age, years of education,
etc.) by excluding the scenarios for the time-varying covariates.
Moreover, we have limited the assumption for the time-invariant
covariates to be fully mediated by the growth parameters at the
subject level. That is, we have assumed that the direct effect
of time-invariant covariate on each time measure is equal to
zero, which is regarded as a more standard way to model the
time-invariant covariates in LGM (Whittaker and Khojasteh,
2017). While we believe that the current findings can be applied
to more complex situations, further research is warranted to
investigate the generalizability of the current research finding to
more general conditions including the time-varying covariates in
the population model.

This study has focused on the model specification search
for finding for the accurate growth trajectory while having
the search process for the residual variance structure left
questionable. Given that the misspecified error variance
structure has detrimental impacts on the inferences about
growth parameters (Ferron et al., 2002; Kwok et al., 2007),
searching for the correct or adequate error variance structure
should be followed by specifying the optimal growth trajectory.
Recently published simulation study by Ding et al. (2017)
has provided a systematic approach to facilitate identifying a
plausible covariance structure. Although they have conducted
a study based on unconditional growth models, the guideline
given in the study can be used as another starting point
for searching the adequate error variance structure in
LGM.

Implications and Practical
Recommendations
Latent growth models are a popular method for longitudinal data
analysis for decades given the flexibility of modeling the within-
and between-subject error variance structure. This simulation
study has investigated the performance of different starting
models to search for the best-fitting growth trajectory in LGM
under more general conditions than the previous simulation
study. In the absence of certainty for the growth trajectory, the
current study proposes to use the most complex (fully saturated)
starting model with the highest-order polynomial growth factors
and the most relaxed error variance structure, which performed
the best to search for the true growth trajectory. Among the
widely used fit indices for model comparisons (i.e., LRT, 1GFI,
and1IC),1BIC and1AICwith using the fully saturated starting
model showed the most promising results in detecting the
population growth trajectory over other fit indices. Based on the
optimally specified growth trajectory, researchers should follow
the next steps for model building process, such as, modeling
the time-invariant and time-varying predictors, moderating
effects, and specifying the proper covariance structures, to best
understand the data and to examine their research questions.
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