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A B S T R A C T   

Obesity and chronic kidney disease are two ongoing progressive clinical pandemics of major public health and 
clinical care significance. Because of their growing prevalence, chronic indolent course and consequent com-
plications both these conditions place significant burden on the health care delivery system especially in 
developed countries like the United States. Beyond the chance coexistence of both of these conditions in the same 
patient based on high prevalence it is now apparent that obesity is associated with and likely has a direct causal 
role in the onset, progression and severity of chronic kidney disease. The causes and underlying pathophysiology 
of this are myriad, complicated and multi-faceted. In this review, continuing the theme of this special edition of 
the journal on “ The Cross roads between Endocrinology and Nephrology” we review the epidemiology of obesity 
related chronic kidney disease (ORCKD), and its various underlying causes and pathophysiology. In addition, we 
delve into the consequent comorbidities and complications associated with ORCKD with particular emphasis on 
the cardio metabolic consequences and then review the current body of evidence for available strategies for 
chronic kidney disease modulation in ORCKD as well as the potential unique role of weight reduction and 
management strategies in its improvement and risk reduction.   

Introduction 

Obesity represents a major ongoing world-wide epidemic with 
increasing global prevalence [1,2]. The GBD 2015 obesity collaborators 
review of over 65 million subjects worldwide spanning ~ 195 countries 
and including both adults and children from 1980 to 2015 demonstrate 
that the prevalence of obesity doubled in more than 70 of these countries 
(including the United States). Furthermore, while the prevalence of 
childhood obesity is obviously less than in adults, the rate of increase of 
childhood obesity prevalence outpaces adult obesity with potentially 
grave public health and clinical consequences for the near future [1–4]. 

The disease morbidity and mortality associated with obesity has 
been exhaustively documented [1–4]. This is known to be consequent 
upon the direct effects of obesity itself as well as its associated comor-
bidities and complications which are protean. Conservative estimates 
suggest that obesity accounts for at least 4 million deaths annually 
worldwide and > two thirds of these deaths are due to cardiovascular 
mortality which is one of the many complications obesity brings in its 

wake [1–5]. 
It is generally less appreciated that beyond the scope and impact of 

obesity on public health and clinical morbidity and mortality there is a 
second (often silent) tandem global epidemic of chronic kidney disease 
(CKD) [6–12]. Current conservative estimates suggest that CKD afflicts 
> 1in 7 adults in the United States with an estimated prevalence of at 
least ~ 37 million. Among “enriched” populations this CKD risk is even 
greater. Among the dominant known risk factors for CKD are diabetes 
mellitus (with ~ 30 % CKD disease risk), essential hypertension(~20 % 
disease risk), atherosclerotic vascular disease (AVD), family history of 
CKD and geriatric populations (>65 years old) [6–12]. Available cross 
sectional and cohort study data also indicate a distinct racial discrep-
ancy in CKD prevalence with African American and Black subjects have 
a greater prevalence (~20 %) compared to Hispanic (14 %) non- 
Hispanic Asian (~14 %) and Non-Hispanic Caucasians (~12 %) sub-
jects [6–12]. As with obesity but to an even greater extent, CKD portends 
major associated morbidity and mortality risk with the greatest mor-
tality risk being due to the associated accelerated AVD and acute 
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coronary syndromes (ACS) [6,7,11]. Conservative estimates ascribe ~ 
1.5million deaths to CKD between 1990 and 2017, but more tellingly, 
the CKD mortality rate has increased by > 40 % over this period despite 
advances in standards of care and resources. The mortality rate from 
CKD is ~ 1.28–1.3 times higher in males than females overall. In addi-
tion, conservative estimates suggest that ~ 7.3 million years aggregate 
of living with disability (YLDs), ~ 28.5 million aggregate years of life 
lost (YLLs) and ~ 35.8 million disability adjusted life years (DALYs) are 
attributable to CKD. 

While just based on the high prevalence of the twin epidemics of 
obesity and CKD it would be anticipated that there would be a sizeable 
degree of overlap between the populations and patients burdened by 
obesity and CKD it is now very apparent that the cohabitation of obesity 
and CKD in large populations of patients is not simply from statistical 
happenstance. It is now well established that obesity is an independent 
risk factor for CKD onset and progression with growing body of evidence 
suggesting even more provocatively that it is an independent etio- 
pathogenic cause for CKD like essential hypertension, diabetes and 
chronic nonsteroidal anti-inflammatory drug (NSAID) use [6,11,12]. 
The recognition of the distinct entity of obesity related chronic kidney 
disease (ORCKD) has spurred growing interest in this unique subgroup 
of the CKD disease burden population both to better understand its 
underlying pathophysiology, management strategies and to contrast its 
clinical course and prognosis to the more commonly known forms of 
CKD. Conceptually CKD identified in obese patients can be sub-stratified 
into primary (where obesity appears to be the only identifiable clinical 
etiology) and secondary ORCKD. Included in the subset of secondary 
ORCKD are Hypertensive CKD, Diabetic Nephropathy with CKD and 
Renal stone associated CKD all of which are seen with significantly 
greater prevalence in obese patients than in the general population 
[8,9,11,13]. For the sake of clarity, secondary ORCKD can also be 
referred to as Obesity associated CKD and is not the focus of this review. 

Primary ORCKD which is the main focus of this review is a complex 
multifaceted condition which on closer review may be better described 
as a syndrome with possibly several different etiopathogenetic path-
ways, presentations and clinical manifestations [14–18]. 

Among the identified pathophysiologic mechanisms that drive the 
development of primary ORCKD are altered renal and glomerular he-
modynamics with hyperfiltration, chronic renal inflammation, oxidative 
stress and activation of the renin-angiotensin-aldosterone-Kallikrein 
system (RAAKS) [17,19]. 

Upon microscopic evaluation, patients with primary ORCKD often 
display glomerulomegaly and focal segmental glomerulosclerosis often 
referred to as Obesity related glomerulopathy (ORG) [17,19]. These 
patients are generally asymptomatic or with non-specific atypical 
symptoms early in the evolution of this disease. The main clinical feature 
to screen for prior to onset of functional renal decline is proteinuria 
which can range from microalbuminuria through sub-nephrotic to 
nephrotic range proteinuria [17,19]. 

Other contributory factors to the onset and progression of primary 
ORCKD include lipotoxicity, adipocytokine dysregulation, glomerular 
hypertension and ectopic fat accumulation in the kidneys resulting in 
pathologic evidence of renal steatosis (fatty kidney) [14,15,17,19–22]. 

It is now apparent that well before the onset/development of dia-
betes in obese patients there is a continuum of progressive decline in 
beta cell function along with insulin resistance. This “prediabetic” state 
is often associated with the dysmetabolic syndrome and is now known to 
be an independent risk factor for ORCKD [15,17,19]. Even among obese 
patients with little to no dysmetabolic derangements (so called meta-
bolically healthy obese patients) there is evidence a distinct, indepen-
dent CKD risk and ORCKD cohort still persists [20,23]. 

To provide an in-depth review of primary ORCKD we discuss in 
depth the epidemiology of obesity, CKD and their coexistence. 
Furthermore, we review the pathophysiology of ORCKD and its conse-
quent cardiometabolic comorbidities and complications as well as re-
view the body of evidence for CKD management in ORCKD. In addition, 

we also explore the unique role that weight loss and management can 
play in the management of ORCKD and its comorbidities and 
complications. 

Epidemiology of obesity and CKD 

In clinical practice, the widely accepted definition for overweight is a 
BMI of 25 – 29.9 kg/m2, obesity being defined a BMI > 30 kg/m2 and 
severe obesity classified as BMI at or above 40.0 kg/m2. 

Although BMI is widely used as a measure of body fat, it fails to 
account for factors like muscle mass, bone mass or fat distribution. At a 
given BMI level, body fat may vary by sex, age, and race. Additionally, 
the validity of some of the existing BMI cutoffs have been questioned, as 
they were not developed using diverse populations. The relationship 
between BMI and mortality is likely to be similar for all races and eth-
nicities, but the threshold BMI where excess risk begins may differ. 

Results from the 2017–2018 National Health and Nutrition Exami-
nation Survey (NHANES), using measured heights and weights, indicate 
that an estimated 42.5 % of U.S. adults aged 20 and over have obesity, 
including 9.0 % with severe obesity, and another 31.1 % are overweight. 
This is detailed below in Fig. 1 [24]. 

Non-Hispanic blacks have the highest age-adjusted rates of obesity 
(48.1 %) followed by Hispanics (42.5 %), non-Hispanic whites (34.5 %), 
and non-Hispanic Asians (11.7 %) [25]. 

Obesity is higher among middle-aged adults (age 40–59 years; 40.2 
%) and older adults (age 60 and over; 37.0 %) than among younger 
adults (age 20–39; 32.3 %) [25]. 

The estimates presented in the 5th annual World Obesity Atlas dis-
played above (Fig. 2 above) suggest that, on current trends, overweight 
and obesity will cost the global economy over US$4 trillion of potential 
income in 2035, nearly 3 % of current global gross domestic product 
(GDP) [26]. 

The estimates for global levels of overweight and obesity (BMI ≥ 25 
kg/m2), suggest that over 4 billion people may be affected by 2035, 
compared with over 2.6 billion in 2020. This reflects an increase from 
38 % of the world’s population in 2020 to over 50 % by 2035. 

The prevalence of obesity (BMI ≥ 30 kg/m2) alone is anticipated to 
rise from 14 % to 24 % of the population over the same period, affecting 
nearly 2 billion adults, children and adolescents by 2035 [26]. 

In some but certainly not all higher income countries, the rate at 
which obesity prevalence levels are rising appears to be slowing down. 
In lower income countries there are many reasons to expect rising 
obesity prevalence, including (a) trends in dietary preferences towards 
more highly processed foods, (b) trends towards greater levels of 
sedentary behavior, (c) weaker policies to control the food supply and 
food marketing and (d) less well-resourced healthcare services to assist 
in weight management and in health education in the population – all of 
which can continue to stimulate an increase in obesity prevalence. 

CKD is associated with age-related renal functional decline and is 
accelerated in settings of hypertension, diabetes, obesity and primary 
renal disorders [27]. 

According to current estimates from NHANES data from 2017 to 
2020, more than 1 in 7 US adults–about 35.5 million people, or 14 %–are 
estimated to have CKD [12,28]. Fig. 3 details the breakdown from the 
NHANES cohort regarding CKD prevalence percentages based on age, 
sex and race/ethnicity strata [12]. 

A systematic review and meta-analysis estimating global CKD prev-
alence measured by all 5 stages of CKD between 11 and 13 %, with the 
majority being stage 3 [29]. In 2017, in the Global Burdan of disease 
study, 697⋅5 million cases of all-stage CKD were recorded, for a global 
prevalence of 9⋅1% [30,31]. 

A meta-analysis of 25 cohorts, 3 cross-sectional and 19 case-control 
studies that met inclusion criteria confirmed that obesity increases the 
risk of CKD in the general population [32], suggesting a pathogenic 
association between both conditions. This systemic disease can affect the 
kidneys by at least two mechanisms: Indirectly through diabetes mellitus 
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Fig. 1. NHANES Time Course Trends in Obesity and Overweight Prevalence by Gender Strata.  

Fig. 2. World Obesity Prevalence Distribution.  
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(DM) and hypertension and directly through adipokine secretion. 
Excessive adipose tissue is associated with insulin resistance, oxidative 
stress (OS) and visceral adiposity promotes hyper filtration and hyper-
perfusion, decreased podocyte density, increased foot processes which 
may lead to glomerular hypertrophy, and the appearance of micro-
albuminuria, activates the renin-angiotensin-aldosterone system and is 
associated with high levels of pro-inflammatory cytokines [33,34]. 

The Framingham Offspring study cohort consisted of 1223 males and 
1362 females who were initially free of preexisting kidney disease. After 
a mean follow-up of 18.5 years, 244 participants (9.4 %) had developed 
kidney disease (defined as Modification of Diet in Renal Disease 
[MDRD] estimated glomerular filtration rate [eGFR] of < 64 and 59 mL/ 
min/1.73 m2 for males and females, respectively). The development of 
CKD was associated with increased age, diabetes, hypertension, smok-
ing, obesity, and lower baseline glomerular filtration rate [35]. 

Ejerblad et al, [36] showed that patients without diabetes or hyper-
tension still had a threefold increased risk for CKD if they were over-
weight at age 20 years. Hsu et al, [37] showed that higher baseline BMI 
remained an independent predictor for ESRD after adjustments for BP 
and diabetes mellitus. 

Using the Global Burden of Disease study data and methods the 
health effects of overweight and obesity in 195 countries over 25 years 
showed that CKD was the second leading cause of BMI-related disability- 
adjusted life-years in 2015; 18.0 % of disability-adjusted life-years 
occurred at a BMI of 30 or more and 7.2 % at a BMI of less than 30 [2]. 

Simply from the high population prevalence of both obesity and CKD 
the confluence of both in individual patients and subpopulations is ex-
pected, anticipated and inevitable. Beyond that though, the common-
alities of etiologic causes and contributors to the ongoing twin global 
pandemics of both obesity and CKD result in a prevalence of ORCKD that 
far exceeds just statistical coexistence of both conditions 
[6,10–12,17,28,38–40]. 

It is now apparent that the association of obesity and CKD can be 
subdivided into primary (or so called idiopathic ORCKD) where the 
exact etio-pathogenic are still somewhat unclear and subject to specu-
lation and likely multiple possibly co-interacting mechanisms (some of 
which are detailed below) and secondary ORCKD where well established 
known secondary diseases known to be associated with CKD coexist in 
patients with obesity. As a group secondary ORCKD is more prevalent 
and thus has greater public health import but this does not diminish the 

importance of the need for a better understanding of the both the 
pathophysiologic basis and long term management strategies for pri-
mary ORCKD [13,19,34,36,37,41]. Prominent among the entities 
embodied in secondary ORCKD (which wont be further discussed in this 
review) are Hypertensive Obesity related CKD, Diabetic related Obesity 
related CKD, Renal stone disease related Obesity CKD, NSAID and other 
medication related Obesity CKD and acquired cystic Obesity related 
kidney disease [6,13,39,41–50]. 

Pathophysiology and pathobiology of Primary Obesity related 
chronic kidney disease 

The exact etiopathogenesis of primary ORCKD is unknown but 
accumulating evidence from cellular basic, translational, animal model 
and various forms of human clinical studies and observations are pro-
gressively increasing the accumulated body of evidence in this regard 
and paint a complex multifaceted tapestry with different degrees of 
contributory factors in individual patients and subpopulation groups. To 
varying degrees it is now apparent that ORCKD involves elements of 
glomerular, tubular and renal parenchymal injury [18,20,51]. 

Among the main established pathophysiologic mechanisms involved 
in the development of ORCKD are the following that are discussed 
below. 

Renal fat excess and ectopic accumulation 

As Fig. 4 And 5 illustrate, the kidney is associated with multiple 
distinct fat depots in and around them. There is now evidence that 
excessive amounts of fat in any of these locations with or without ectopic 
parenchymal renal fat accumulation akin to that seen in states of 
metabolic associated fatty liver disease can result in the renal dysfunc-
tion associated with ORCKD [14,20,22]. Ectopic fatty disease accumu-
lation in the kidney is now well demonstrated to be pathogenic and is 
variously referred to as fatty kidney disease, renal steatosis and renal 
fatty infiltration [14,15,20–22]. There is some evidence from both 
human studies and animal models that renal sinus/hilum ectopic fat by 
sheer mechanical effects and compression can impair renal tissue 
perfusion as this is the entry point to the rest of the renal parenchyma for 
the renal artery, vein and lymphatics as well as the ureter and renal 
pelvis. The elevated hydrostatic pressure can also result in a degree of 

Fig. 3. NHANES CKD Prevalence percentages by age and Race + Ethnicity Strata.  
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renal outflow obstruction [52–56]. The increased renal hilum/sinus fat 
accumulation and resultant intra-renal hypertension has also been 
demonstrated to be associated with local renal hypoxia indicated by 
increased production of hypoxia inducible factor 1 alpha and conse-
quent ischemic renal tissue damage [57]. Both peri and pararenal fat 
depots have been shown to positively correlate with degree of blood 
pressure elevation, degree of insulin resistance, Hemoglobin A1C, 
albuminuria and presence of the dysmetabolic syndrome [58,59]. Fig. 6 
provides illustrative examples of renal parenchymal and tubular fatty 
infiltration. 

Among the established imaging modalities by which renal adiposity 
can be visualized and semi quantified are targeted abdominal sonogra-
phy, Computed tomography (including renal tissue density measure-
ments using Hounsfield unit scores), magnetic resonance imaging (MRI), 
nuclear magnetic resonance spectroscopy (NMRS) and renal elastog-
raphy [14,15,20–22]. These methods provide in-vivo means of renal 
adipose tissue visualization, localization and semi-quantification that 
have substantively reduced the need for percutaneous renal biopsies 
which while being the gold standard for renal adiposity documentation 
is seldom performed because of its invasive nature. Just as has been 

Fig. 4. Longitudinal Section of Kidney showing fat depots.  

Fig. 5. Transverse abdominal section at level of Kidneys showing fat depots.  
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recognized with fatty liver disease which can have alcohol and non- 
alcohol related etiologies that is now described as metabolic associ-
ated fatty liver disease (MAFLD) a subset of patients with ORCKD with 
demonstrable ectopic and excess intrarenal fat accumulation can be 
described as having metabolic associated fatty kidney disease (MAFKD). 

Altered renal hemodynamics 

Weisinger and colleagues were among the earliest to document the 
association between marked obesity and intra-renal venous hyperten-
sion which is associated with reversible proteinuria and which is one of 
the first pathophysiological steps in the onset of ORCKD [21,60]. Intra- 
renal venous hypertension is known to result in glomerular hyper-
filtration as has been demonstrated in both diabetic and hypertensive 
nephrosclerosis. This sustained over time results in a sustained glo-
merulopathy that ultimately leads to renal functional decline and CKD 
with end stage glomerular hypofiltration and chronic renal failure 
requiring renal replacement therapy [33,61–63]. 

Obesity Related Glomerulopathy (ORG) 

Subsequent studies have demonstrated the association of obesity 
with the development of a distinctive glomerulopathy characterized by 
glomerulomegaly and focal segmental glomerulosclerosis now 
commonly referred to as ORG [18,21,61,64,65]. 

The degree of proteinuria associated with ORG is variable and can 
range from mild to nephrotic range depending on various other factors 
and variables [21,40,48,60]. The evolution of ORG also includes 
glomerular basement membrane expansion, podocyte hypertrophy and 
detachment with ultimate consequent renal functional decline accom-
panied with progressively worsening proteinuria [33,34,36,61–64]. 

Renin Angiotensin Aldosterone Kallikrein System (RAAKS) Activation 

Consequent upon the renal hemodynamic pertubations detailed 
above, ORCKD has been demonstrated to be associated with both sys-
temic and local intra-renal paracrine activation the RAASK system. The 
glomerular hyperfiltration in particular results in elevated proximal 
tubular reabsorption of sodium and water with consequent reduced 
sodium delivery to the macular densa, reduced afferent arteriolar 
vascular resistance and inhibited tubuloglomerular feedback. The fact 
that several components of the RAASK system (including renin and 
aldosterone) are known adipokines provides an additional accelerant 
source of these hemodynamic changes in ORCKD [45,64,66,67]. 

Tissue inflammation and oxidative stress 

The Adipocyte excess and ectopic expression associated with fatty 
kidneys are associated with a local and systemic pro inflammatory state 
also associated with oxidative stress. This is mediated at least in part 
with the various inflammatory adipokines produced by these adipocytes 
[21,68,69]. Among the putative pro inflammatory mediators produced 
from the adipocytes are leptin, resistin, free fatty acids, TNF alpha, 
interleukin-6 and several other pro inflammatory interleukins as well as 
reduced production of the anti-inflammatory, insulin sensitizing adi-
pokine, adiponectin [21,68–70]. The diseased adipocyte tissue depots in 
ORCKD (sometimes referred to as adiposopathy is also associated with 
cellular endoplasmic reticular stress (ER stress) and over expression of 
TGF-beta which is partially mediated by leptin [14,34,64,71–74]. 
Chronic inflammation with ongoing oxidative and ER stress eventually 
leads to progressive renal fibrosis which appears to be at least TGF-beta 
mediated and can involve the entirety of the renal parenchyma 
including the glomeruli, renal tubules and renal interstitium resulting in 
permanent renal dysfunction and potentially end stage renal disease 
(ESRD). 

Renal sympathetic nervous system activation 

ORCKD is also known to be associated with activation and over-
activity of the local renal sympathetic nervous system. While the full 
details of the cause for this is unclear, leptin does appear to be 
contributory [21,22,75]. 

Role of lipotoxicity and myriad CKD risk mediators 

Beyond the induction of local and systemic inflammation as previ-
ously detailed, ectopic renal fat can also induce direct nephrotoxicity 
due to specific nephrotoxicity of ectopic fat and their expressed adipo-
kines [14,21,22,73–79]. It has also been shown that the presence of 
certain apolipoprotein L1 (APOL1) genetic variants in patients appears 
to be associated with development of ORCKD as has already been 
demonstrated in the development of both HIV associated nephropathy 
and idiopathic focal segmental glomerulosclerosis (FSGS) [80,81]. 
These APOL1 gene polymorphisms may impair reverse cholesterol 
transfer and downregulate cholesterol efflux transporters resulting in 
toxic tissue cholesterol accumulation in renal tissue especially within 
the podocytes [20,80,81]. 

As with most other forms of CKD, ORCKD is typically indolent in its 
natural history of progression over time. About ~ 10–33 % of ORCKD 
patients in the absence of d interventions typically progress to ESRD 
requiring renal transplant therapy [61,64,82,83]. 

Fig. 6. Renal Steatosis/Fatty renal infiltration; A; Renal parenchymal steatosis, B; Renal tubular steatosis.  
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Hyperinsulinemia and insulin resistance 

Insulin resistance and the compensatory hyperinsulinemia associ-
ated with it are common in obese patients. This is known to be associ-
ated with preglomerular vasodilatation and intraglomerular 
hypertension. This is also consequently associated with albuminuria and 
possible renal functional decline. Insulin has also been demonstrated to 
play a role in normal podocyte function, morphology and function. In-
sulin resistance is consequently associated with podocyte apoptosis and 
hypertrophy [84–87].There is some suggestion that Fetuin A may also be 
an intermediary mediating the transition from insulin resistance to 
ectopic fat accumulation in the liver (resulting in metabolically associ-
ated fatty liver disease) as well as potentially fatty kidney with possible 
progression to ORCKD [88–93]. 

Early markers of renal injury and functional deficits 

Well before the onset of measurable proteinuria and renal functional 
decline shown by elevated serum creatinine, Cystatin C and/or creati-
nine clearance decline, hypoxemic renal tissue damage which early on is 
predominantly in the proximal convoluted tubules is characterized by 
increased production of kidney injury molecule − 1 (KIM 1) and fibro-
blast growth factor 21 (FGF-21). Chronic renal expression of both these 
markers over time ultimately leads to renal fibrosis [94]. Urine 
neutrophil gelatinase associated lipocalin, urinary Cystatin C, urinary N- 
acetyl Beta D aminoglucosidase and serum interleukin 18 levels have 
also been reported to be elevated in subjects with early ORCKD 
[17,19,95–98]. Other potentially useful markers for use as biomarkers of 
early kidney disease in ORCKD are podocin, nephrin, podocin/nephrin 
ratio, podocalyxin, urinary alanyl aminopeptidase, urinary glutamyl 
aminopeptidase, urinary klotho, urinary osteopontin and netrin-1 
[99–104]. There is also increasing evidence suggesting a potential role 
and place for proteomics and metabolomic indices as early markers of 
renal injury in ORCKD [17]. Controversies and contention still exist 
regarding the accuracy of clinical prediction equations of creatinine 
clearance based on serum creatinine and/or cystatin C levels in patients 
with ORCKD compared to the general population [17,105–108]. 

Dysbiosis of gut microbiota and ORCKD 

Derangements of normal gut microbiota profiles have recently 
emerged as an important factor in the onset and development of several 
chronic metabolic disease. The extent to which gut microbiota changes 
observed in obesity are etiologic as opposed to correlative, associative or 
consequent complications of obesity is the subject of ongoing research 
[109–112]. Beyond the known changes in microbiota associated with 
obesity however, it is also now apparent that patients with CKD and 
ESRD have demonstrable quantitative and qualitative changes in gut 
microbiota compared to controls. It is also apparent that toxic products 
of this dysbiosis can aggravate CKD and CKD related complications 
[113,114]. In particular, with ESRD serum urea levels increase and is 
secreted into the intestines where the urease expressed by several gut 
microbes increase local ammonia production resulting in elevation of 
the local bowel Ph. This environmental change can inhibit the normal 
growth and proliferation of normal bowel commensals resulting in both 
qualitative and quantitative changes to the bowel microbiota including 
significantly increase aerobic and anaerobic bacteria in the duodenum 
and jejunum which are not significantly colonized by bacteria In normal 
healthy subjects [115,116]. Altered microbiota, low grade endotoxemia 
and “leaky gut syndrome” associated with uremia can initiate a systemic 
inflammatory state which can both initiate and/or aggravate the 
cascade leading to ORCKD development in obese subjects [117–119]. 

Histopathologic features of ORCKD 

Among the myriad potential findings associated with ORCKD on 

histologic examination of renal biopsy tissue include glomerulomegaly, 
global or FSGS, reduced glomerular density, podocyte injury and loss 
(on Electron microscopy), glomerulosclerosis/fibrosis, mesangial and/ 
or glomerular basement membrane expansion (on Electron microscopy), 
tubule-interstitial fibrosis, tubular atrophy, proximal tubular epithelial 
hypertrophy, and tubular cell apoptosis [17,120–123]. Fig. 7 illustrates 
some of these findings while Fig. 8 illustrates the salient findings of 
obesity related glomerulopathy (ORG). Fig. 9 summarizes the salient 
aspects of the known pathophysiology and pathobiology of ORCKD. 

The comorbidities and complications of obesity and CKD with emphasis on 
cardiometabolic aspects 

Both CKD and obesity are associated with myriad endocrine and 
metabolic comorbidities are complications of which the cardiovascular 
consequences are arguably the most impactful as far as chronic morbidity 
and mortality potential [124–128]. As numerous and complex as the 
associated endocrine and cardiometabolic comorbidities associated with 
CKD and obesity are separately, it is now well established that the coex-
istence of both in ORCKD exacerbates both in prevalence and intensity the 
consequent litany of endocrine, hormonal and cardiometabolic compli-
cations and comorbidities [6,17,33,34,38,39,124–129]. Table 1 below 
summarizes the major established comorbidities associated with CKD and 
by extension ORCKD [6,17,33,34,38,39,124–138]. Even more protean are 
the various comorbidities and complications known to be associated with 
obesity. There are > 200 distinct complications and comorbidities asso-
ciated with obesity and while this review wont be discussing them in 
depth as related to ORCKD the cardiometabolic and endocrine are of 
particular interest and importance [139–155]. Fig. 10 provides a pano-
ramic view of the most common comorbidities and complications of 
obesity which affect virtually every organ system of the body [139–155]. 
Of particular note and interest as well is the growing body of evidence 
demonstrating the association of obesity with increased cancer risk, 
prevalence and consequent morbidity and mortality 
[1,2,140,144,146,147,150,154–156]. In relation to ORCKD in particular 
the associated increased risk for renal cell carcinoma among other 
increased cancer risks and it is also notable to appreciate that from a 
modifiable risk perspective, obesity is now the second most prevalent risk 
factor for oncogenesis in humans exceeded only by tobacco abuse and 
exposure [1,2,140,144,146,147,150,154–156]. Figs. 11 shows the can-
cers and benign tumors with the most robust available data to date of 
being obesity related and enabled. 

Cardiometabolic burden of ORCKD 

Disease burden and complications of obesity 
Obesity is a medical disorder that leads to many comorbidities. This 

association is profoundly important for the affected individuals, but the 
associated morbidity is also economically damaging for society. Detailed 
estimates of the years of ill health and lives lost between the ages of 30 
years and 75 years because of excess weight are shown for the sub-
regions of the world in Fig. 12. 

Obesity causes cardiovascular and renal diseases through several 
mechanisms including hypertension, hyperglycemia, dyslipidemia, 
inflammation, and atherosclerosis. These disorders often coexist, espe-
cially when there is excess visceral fat, and have often been referred to as 
the “metabolic syndrome.” However, there is substantial evidence that 
excess visceral fat is the main driving force for almost all of the disorders 
associated with the metabolic syndrome, including CKD [157,158].  

1) Hypertension: Obesity is an important cause of hypertension as 
evident by multiple studies. Although the mechanisms responsible 
for obesity-induced hypertension are not fully understood, there is 
considerable evidence that abnormal kidney function plays a key 
role. Obesity causes excess renal sodium reabsorption, impaired 
renal-pressure natriuresis, and expansion of extracellular fluid 
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volume, which lead to increased arterial blood pressure [159,160]. 
Chronically elevated blood pressure coupled with renal vasodilation 
and glomerular hyperfiltration, SNS and RAAS activation, inflam-
mation and metabolic derangements eventually causes renal injury 
which, in turn, further impairs renal-pressure natriuresis and exac-
erbates hypertension and kidney injury. Structural changes in the 
kidneys occur within a few weeks after rapid weight gain. These 
glomerular changes, if progressive, could eventually impinge on the 
glomerular lumen and reduce filtration surface area, initiating pos-
itive feedback that further increases blood pressure [161].  

2) Coronary artery disease and stroke: Cardiovascular disease (CVD) 
is a major cause of morbidity and mortality among patients with 
obesity as well as patients with CKD [162]. In the general popula-
tion, obesity is associated with cardiovascular morbidity, and 
abdominal fat content predicts cardiovascular risk and CV death. The 
presence of overt metabolic syndrome further intensifies the CV 
risks. Metabolic syndrome is present in 30.5 % of stage 4 or 5 CKD 
patients and is an independent predictor of cardiovascular death, 

acute coronary syndrome, revascularization, non-fatal stroke and 
amputation [163,164]. Obesity itself probably imposes a small 
additional cardiovascular risk to patients with mild to moderate 
CKD, but the effect of obesity on the cardiovascular risk of patients 
with advanced CKD is probably the result of the concomitant meta-
bolic syndrome and coexisting cardiovascular risk factors [165]. 

3) Type 2 Diabetes Mellitus: Excess body weight and obesity are sig-
nificant risk factors for type 2 diabetes mellitus (T2DM). The lifetime 
diabetes risk in men older than 18 years increases from 7 % to 70 % 
when BMI increases from less than 18.5 kg/m to more than 35 kg/m. 
Similarly, the lifetime diabetes risk in females increases from 12 % to 
74 % with the same BMI values [166]. Diabetes mellitus is among the 
leading causes of chronic kidney disease and end-stage kidney dis-
ease in the western world. Control of diabetes mellitus is more 
challenging in patient with CKD and the risk for severe hypoglycemic 
episodes increases when GFR falls below 45 mL/min. Hypoglycemic 
episodes may develop due to reduced gluconeogenesis and counter- 
regulation in the kidneys [167,168]. 

Fig. 7. Renal Glomerular and interstitial fibrosis.  

Fig. 8. ORG showing glomerulomegaly and focal segmental glomerulosclerosis.  

M.M. Ali et al.                                                                                                                                                                                                                                   



Journal of Clinical & Translational Endocrinology 36 (2024) 100341

9

4) Non-alcoholic fatty liver disease (NAFLD): NAFLD is character-
ized by excessive fat accumulation in hepatocytes and may progress 
to non-alcoholic steatohepatitis (NASH), ultimately leading to 
advanced fibrosis and cirrhosis [169]. Experimental and epidemio-
logical data reveal some pathophysiological links between them and 
support the assertion that NAFLD may be a pathogenic factor of CKD, 
wherein CKD accelerates the progression of NAFLD [170,171]. 
Generation of lipotoxic metabolites of fatty acids typically occurred 
in parallel with lipid accumulation, which plays a critical role in the 
pathogenesis of NAFLD and CKD [171].  

5) Cancers and reproduction: Obesity is one of the most important 
known preventable causes of cancer [172]. About 10 % of all cancer 
deaths among non-smokers are related to obesity including renal 

cancer. Obesity has been associated with an increased risk of kidney 
malignancy. Several studies have concluded the increment of risk 
associated with obesity and it has been estimated that 20 % of renal 
cancer patients were obese [173]. 

In addition, both Obesity and CKD can cause disruption of the 
hypothalamic-pituitary-ovarian axis resulting in an abnormal repro-
ductive hormone profile, where the degree of disruption increases with 
CKD progression [173]. 

Fig. 9. Summary Schema of the pathophysiology of ORCKD.  
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The impact of weight loss interventions in modulating obesity and CKD 
cardiometabolic comorbidities and complications 

Dietary changes with calorie restriction have long been the corner-
stone for weight loss interventions, but use of dietary changes alone 
typically only results in modest weight loss and is frequently associated 
with weight regain [175–179]. There are few studies of the effect of 
calorie restriction on improvements in kidney function and proteinuria 
with mixed results. One study by Praga, et al. achieved an 86 % 
reduction in proteinuria via a 12 % reduction in BMI using a low-calorie 
diet, which was similar to the reduction in proteinuria seen in the con-
trol group who was treated with captopril [180]. A meta-analysis by 
Navaneethan, et al. showed that caloric restricted diets were associated 
with a BMI reduction of 3.67 kg/m2 as well as a reduction in proteinuria 
[181]. However, no difference has been seen in glomerular filtration 
rate, creatinine clearance, or rate in progression of CKD across multiple 
studies [51,180–183]. 

Dietary interventions that achieve short-term weight loss consis-
tently show improvement in multiple cardiometabolic comorbidities 
and complications. In the Diabetes Prevention Program, achieving a 
weight loss of about 7 % resulted in about 55 % lower risk of developing 
type 2 diabetes mellitus after 3 years [184]. The data on weight loss 
through dietary interventions appears mixed, with some studies 
showing weight loss reduces both systolic and diastolic blood pressures 
independently and other studies showing that the blood pressure 
reduction is only associated with dietary sodium restriction [185–190]. 
There does not appear to be any studies showing weight loss interven-
tion through caloric restriction and reduction in risk of atherosclerotic 
cardiovascular diseases [191–193]. However, a post-hoc analysis of the 

Look Ahead trial showed a reduction in risk of coronary artery disease 
events of about 20 % in the population of participants who achieved at 
least a 10 % weight loss during the trial [194]. However, this was in a 
trial of participants with type 2 diabetes mellitus and only a small per-
centage of patients with CKD [194]. In addition, there are a few studies 
that suggest that cardiometabolic parameters worsen as weight is 
regained (which is common with dietary interventions alone), including 
insulin sensitivity and blood pressure [177,180,182,195,196]. 

The current recommendation is to start medication to assist with 
weight loss in people with a BMI greater than 30 kg/m2, or a BMI greater 
than 27 kg/m2 with associated comorbidities related to obesity 
[197,198]. There are multiple different classes of medications that are 
FDA-approved to be used for long-term medical management of obesity, 
including orlistat, naltrexone-bupropion, phentermine-topiramate, and 
incretin mimetics. The trials for orlistat, naltrexone-bupropion, and 
phentermine-topiramate concluded that these medications did not 
significantly increase cardiovascular events, but none of these studies 
showed reduction in event rates [199–201]. These medications are 
associated with modest weight loss benefit of about 3–8 % [202–208]. 
Orlistat and phentermine-topiramate were consistently associated with 
reduction in systolic blood pressure without change in diastolic blood 
pressure as well as reduce the risk of developing type 2 diabetes mellitus 
[200,202–205,208–210]. Only orlistat was consistently shown to reduce 
total and LDL cholesterol levels and improve metabolic-associated fatty 
liver disease, with limited data for naltrexone-bupropion 
[200,202–205,208–210]. In addition, orlistat was able to achieve 
these cardiometabolic benefits independent of weight loss [205,210]. 
However, there is not enough data published to determine the effect of 
these medications on progression of CKD and proteinuria in participants 

Table 1 
Endocrine and Cardiometabolic comorbidities and complications of CKD and ORCKD.  

Organ/System Manifestations Suggested Pathophysiologic Mechanisms Other Comments 

Hypothalamic Pituitary 
Axis 

Hyperprolactinemia, Growth hormone deficiency and/ 
or Growth hormone resistance, Short Stature + growth 
retardation on children, secondary hypogonadism. 

?? Mediated by uremia and other Accumulated 
renal excretory metabolites  

Calcium/Phosphate, 
Mineral Balance +
Skeletal System 

Hypovitaminosis D, Secondary hyperparathyroidism, 
renal Osteodystrophy, Osteomalacia, Osteoporosis, 
Hyperuricemia, Gouty arthropathy 

Reduced renal clearance  

Skeletal Muscle System Sarcopenia Deconditioning Asthenia, Malaise, Chronic 
fatigue etc 

Altered and impaired myokine Balance including 
irisin, Electrolyte Derangements including 
hypokalemia, Hypophosphatemia, hypocalcemia 
etc  

Adipocyte tissue Depots Obesity, Visceral fat Accumulation, Cachexia, Protein 
energy Malnutrition 

?? Mediated by uremia and other Accumulated 
renal excretory metabolites  

Thyroid Subclinical hypothyroidism, Low T3 syndrome Altered Deiodinase function and distribution, 
Cytokine mediated non thyroidal illness effect on 
TSH secretion and action.  

FGF - 21 and FGF- 23 FGF - 21 involved in modulation of dysglycemia, insulin 
resistance and dyslipidemia, FGF- 23 (Phosphatonin) 
involved in phosphaturia + hypophosphatemia 

Impaired renal clearance and elevated serum levels 
of both FGF- 21 and FGF- 23 as well other pro- 
inflammatory cytokines  

Hematopoietic system +
Bone Marrow 

Normocytic anemia Ineffective erythropoiesis and reduced 
erythropoietin production.  

Cardiovascular System Atherosclerotic Cardiovascular disease (ASCVD) ; 
Chronic disease, acute vascular events, hypertension, 
RAAKS activation 

Vascular calcification, reduced endothelial 
reactivity, effects of dysglycemia, dyslipidemia and 
insulin resistance on vascular function.  

Reproductive System Menstrual irregularities, premature menopause, Male 
and female hypogonadism (primary, secondary or 
mixed), erectile dysfunction 

?? Mediated by uremia and other Accumulated 
renal excretory metabolites  

Multi - functional / Multi 
- System 

Chronic Fatigue, Malaise, Asthenia, deconditioning, 
Depression etc 

?? Mediated by uremia and other Accumulated 
renal excretory metabolites. ?? inflammatory 
cytokine mediated.  

Dermatologic Acanthosis Nigricans, Xerosis, Chronic pruritus ?? Mediated by uremia and other Accumulated 
renal excretory metabolites. Insulin resistance.  

Endocrine Pancreas Insulin resistance, hyperinsulinemia, Dysglycemia, 
Nephrogenic and Transplant associated Diabetes 

?? Mediated by uremia and other Accumulated 
renal excretory metabolites. In Transplant patients; 
effects of transplant related medications.  

Adrenal Secondary adrenal insufficiency, ?? Primary Adrenal 
insufficiency, Hyporeninemic hypoaldosteronism 

Potential roles for Renal, Adrenal and Systemic 
RAAKS activation, Adrenomedullin and renal 
prostaglandins. 

Problems with measurement and 
assays of adrenal medullary and 
Adreno - cortical hormones and 
Metabolites  
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without type 2 diabetes mellitus [51,183]. 
There are currently three FDA-approved incretin mimetics for 

treatment of obesity: liraglutide, semaglutide, and tirzepatide. These 
medications are helpful in achieving and maintaining significant weight 
loss while being taken, especially semaglutide and tirzepatide, which 
helped at least 70 % of participants achieve at least 10 % weight loss 
from baseline during the trial periods [211–214]. Each of these medi-
cations is consistently associated with reduction in systolic blood pres-
sure, total cholesterol, LDL cholesterol, and impaired glucose tolerance 
[209,211–213]. Recent studies with semaglutide showed about a 20 % 
reduction in composite MACE endpoint over placebo, which appears to 
have mainly be driven by reductions in nonfatal myocardial infarction 
[214]. The findings of the study also showed about a 20 % reduction in 
the composite nephropathy endpoint, which included death from renal 
causes, initiation of renal replacement therapy, or onset of persistent 
macroalbuminuria, but only about 20 % of the participants had an eGFR 
below 60 mL/min/1.73 m2 [214,215]. Unfortunately, most of the 
studies of incretin mimetic therapy as regards improved renal outcomes 
in a CKD population have so far been exclusively in participants with 
type 2 diabetes [216–218]. In addition, discontinuation of these medi-
cations results in mostly complete reversal of both the weight loss and 
the prior noted improvements in cardiometabolic parameters [219]. 

The current recommendation to qualify for bariatric surgery is a BMI 
greater than 40 kg/m2, or a BMI greater than 35 kg/m2 with at least one 
associated comorbidity related to obesity [197,220]. A meta-analysis by 
Navaneethan, et al. showed that bariatric surgery was associated with a 
BMI reduction of 16.53 kg/m2 and showed a significant improvement in 
glomerular filtration rate with the majority of patients included 
achieving normalization of their glomerular filtration rate [181]. 
However, there was heterogeneity between the studies due to different 
types of bariatric surgery approaches being studied, but the findings for 

kidney function were consistent across all studies included [181]. 
Multiple more recent studies continue to show the benefit of bariatric 
surgery at improving proteinuria, improving glomerular filtration rate, 
and slowing the progression of CKD by about 40 % [183,221–225]. 

Bariatric surgery consistently shows significant improvements in 
multiple cardiometabolic complications and comorbidities, including 
hypertension, hyperlipidemia, ASCVD, and impaired glucose tolerance 
[181,183,221,226]. Multiple studies have shown significant reduction 
in systolic blood pressures, with the meta-analysis by Navaneethan, et al. 
showing an average reduction of about 22 mmHg [181,226]. Multiple 
studies have shown significant reduction in cardiovascular events in 
patients undergoing bariatric surgery, compared to those who were 
receiving medical therapy for weight loss [227–231]. In addition, the 
Swedish Obese Subjects study showed a reduction in all-cause mortality 
by about 29 % [232]. These benefits are potentially due to rapid changes 
in weight loss which promotes significant improvement in inflamma-
tion, insulin sensitivity, gut microbiome, and activation of renin- 
angiotensin-aldosterone system [233–237]. 

Weight loss thus appears to consistently improve kidney function and 
reduce proteinuria in direct proportion to the amount of weight loss 
achieved [181,183,214,215,221–225]. However, the improvement in 
other cardiometabolic diseases associated with CKD and obesity appear 
to be only with the use of certain weight loss medications and bariatric 
surgery, which may be due to higher likelihood of achieving and 
maintaining significant weight loss [230]. However, there are no pro-
spective randomized studies that specifically look at the effects of weight 
loss on cardiometabolic comorbidities in an obese population with 
chronic kidney disease (that is specifically for an ORCKD population). 
Most of the studies included obese patients with chronic kidney disease, 
but these patients made up a very small portion of the overall popula-
tion, so it makes it difficult to be able to make definitive inferences about 

Fig. 10. Complications and Comorbidities of Obesity.  
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Fig. 11. Obesity associated cancers and benign tumors.  

Fig. 12. Disability-adjusted life-years (DALYs) lost as a result of obesity in men and women world-wide. Derived from James and colleagues [174].  
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the interaction and to enable firm evidence based clinical practice rec-
ommendations in this regard [183]. 

Strategies for CKD modulation in patients with ORCKD 

Beyond the propensity of data described above that suggest the 
utility of interventions geared at significant weight loss in positively 
modulating kidney function and its cardiometabolic consequences in 
patients with ORCKD, other medical and surgical interventions already 
established for management of CKD are equally applicable to patients 
with ORCKD [19,32,39,182,183,238–249]. 

Among the well established strategies in this regard are use of RAAKS 
inhibitor medications including ACE inhibitors, Angiotensin receptor 
blockers (ARBs), direct renin inhibitors and potentially Kallikrein in-
hibitors [32,67,250–252]. 

It is evident that early recognition and detection of ORCKD using 
various biomarkers by enabling early multi-pronged interventions offers 
the best prognosis for prevention of CKD progression and the potential for 
CKD reversal [14,22,34,35,72,76,79,95,96,101,117,120,122,253–257]. 

There is some available data mostly from post hoc data analyses 
suggesting the potential utility of PPAR alpha agonists (particularly 
fenofibrate) in positively modulating ORCKD. The suggested putative 
mechanism for this effect is the ability of PPAR alpha agonists to inhibit 
lipolysis and beta oxidation with the potential of thus positively 
impacting renal lipotoxicity [258–261]. 

There is also some evidence that suggests mineralocorticoid receptor 
blockers like spironolactone, eplerenone and in particular the non ste-
roidal mineralocorticoid receptor antagonist (MRA) finerenone can also 
have positive modulating capacity in ORCKD management especially 
among patients with secondary ORCKD in the setting of coexisting 
diabetes mellitus [262–264]. 

In addition, a growing body of evidence suggests that vasopressin 
receptor antagonists (aka aquaretics) especially tolvaptan which is 
already FDA approved for modulating CKD due to autosomal dominant 
polycystic kidney disease (ADPKD) may also have utility in management 
of ORCKD [265–269]. 

The rapidly expanding body of evidence for the utility of SGLT-2 
inhibitor’s positive impact in modulating CKD beyond their antidia-
betic utility and the fact that these effects have been consistently 
demonstrated in both diabetic and non-diabetic patient populations now 
make them another important tool in the armamentarium of ORCKD 
management [39,69,270–272]. Beyond their glycosuric capacity, SGLT- 
2 inhibitors have been shown to inhibit the expression of Hypoxia 
inducible factor alpha (HIF-1 alpha) in both murine and human kidney 
tissue samples. This is of significance as HIF-1 alpha is established as the 
metabolic switch responsible for transition from lipid beta oxidation to 
glycolysis thus reducing intra-renal lipid accumulation [273–276]. 
Furthermore, SGLT-2 inhibitors are known to reduce systemic and local 
tissue insulin to glucagon ratios resulting in a consequent renal tissue 
metabolic flux towards lipolysis as opposed to lipogenesis and of 
glycolysis as opposed to gluconeogenesis with the consequent reduction 
in renal tissue lipid and glucose accumulation as well as potentially of 
associated renal lipo and glucotoxicity [277–280]. 

Among the growing list of potential therapeutic options and targets 
suggested for positive modulation and management of ORCKD are CD- 
36 inhibitors. Though human studies are still pending, the observation 
that CD − 36 is involved in renal cholesterol and lipoprotein uptake into 
the renal parenchyma suggests that its modulation may have therapeutic 
utility [281,282]. This is further bolstered by the finding of CD-36 in-
hibitors in mice having positive effects on the development of renal 
inflammation and fibrosis [281,282]. 

The potential utility of statins for the specific management of ORCKD 
is still somewhat controversial as the body of evidence available has 
yielded somewhat conflicting and non-definitive results to firmly 
establish independent protective effects [283–285]. This however 
doesn’t in anyway preclude their use in patients with ORCKD and 

dyslipidemia and/or ASCVD for which they would be otherwise indi-
cated [283–285]. 

As has been the case with SGLT-2 inhibitors, GLP-1 agonists have 
been shown with a broad range of studies to have positive effects in CKD 
as a whole as well as ORCKD in particular that extend beyond their ef-
fects as antidiabetic medications. While some of these effects are clearly 
related to the significant weight loss they induce in patients, there is also 
accumulating evidence suggesting that this is also related to other 
pleotropic effects including redistribution of renal adipose tissue, 
reduced renal triglyceride, free fatty acid and cholesterol accumulation 
with consequent reduction in renal fat infiltration, and improved 
mitochondrial function via modulation of the Sirt1/AMPK/PGC1 alpha 
cascade pathway [286–294]. Their capacity to improve insulin sensi-
tivity both systemically and intrinsic to the kidney also likely plays a role 
in this observed reno-protective effect. 

Based on the known pathophysiology and pathobiology of ORCKD 
the potential utility of insulin sensitizers to counteract the associated 
insulin resistance in ORCKD as well as anti-inflammatory agents to 
inhibit the systemic and local intra-renal inflammatory state in ORCKD 
may have utility but it is difficult to distinguish these effects indepen-
dent of the various weight reduction strategies known to positively 
impact these pathogenic mechanisms. 

The potential role of gut microbiota modulation as a strategy for 
positively impacting ORCKD is still preliminary but a recent meta- 
analysis suggests that it may have a unique niche especially in non 
diabetic ORCKD patients as well as ORCKD patients with ESRD on 
dialysis [295,296]. 

Another area of clinical investigation with potential clinical utility 
for ORCKD management that has recently emerged is melatonin sup-
plementation and melatonin receptor modulation. While the majority of 
the available data on this at the moment is animal derived it does raise 
appealing prospects because of the relative ease and safety of its mod-
ulation and the suggested multifaceted effects it seems to have on 
improving ORCKD including inhibition of the NF-kappa B pathway 
(with consequent reduction of expression of inflammatory cytokines like 
IL-1β, IL-6 and TNF-α), downregulation of the RAAKS cascade and 
reduction of reactive oxygen species (ROS) expression resulting in 
reduction of systemic and local renal oxidative stress as well as reduced 
expression of the fibrogenic fibronectin (Transforming growth factor 
beta − 1; TGF-β1) [297–303]. Melatonin has pleotropic effects including 
circadian modulating effects, anti-inflammatory, anti-apoptotic and 
myriad lipid and adipocyte modulating effects including enhancing 
brown adipocyte tissue growth and beigeing of white adipose tissue. Via 
its effects of adipocyte distribution and typing it can influence energy 
expenditure and has been shown in murine models as well as obese 
diabetic and Zucker diabetic rats to increase expression of glutathione 
peroxidase, super oxide dismutase (SOD) and catalase (all of which have 
anti-oxidant effects) [297–307]. 

Among the other numerous potential target pathways and systems 
involved in renal adiposogenesis, lipid metabolism, lipid accumulation, 
disposition and signal transduction that offer other potential therapeutic 
options for ORCKD management are farnesoid X receptor (FXR) acti-
vators, anti-oxidants, endothelin receptor blockade, vitamin D receptor 
modulators such as doxecalciferol, M− Tor inhibitors and Sterol regu-
latory element binding protein 1 (SREBP-1) modulators 
[88,250,308–315]. These various targets which are the subject of 
various ongoing in vitro and in vivo studies and trials offer considerable 
promise to improving the prognosis and clinical course of ORCKD and its 
complications in the near future. Table 2 provides a global summary of 
the established and putative management strategies for management of 
ORCKD in clinical practice. 

Concluding remarks 

The ongoing epidemics of obesity and CKD has resulted in the 
increased prevalence of ORCKD which is a multifactorial disease entity 
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associated with multiple comorbidities and complications. The car-
diometabolic complications of ORCKD in particular, have considerable 
morbidity and mortality consequence with implications for both indi-
vidual patient and public health care. 

The growing range and effectiveness of medical and other manage-
ment options for obesity add an important therapeutic option to the 
management strategies for effective ORCKD management. Prevention of 
obesity, early recognition of ORCKD before it can progress to ESRD and 
aggressive multi-pronged clinical interventions can ameliorate the 
clinical course and prognosis of this increasingly prevalent cause of CKD. 
Ongoing studies offer the promise for greater range of therapeutic op-
tions with greater treatment efficacy both for obesity and for renal 
functional preservation in patients with ORCKD. 
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Table 2 
Established and future Management strategies for ORCKD.   

Antilpidemics; 
Triglyceride lowering 
medications 

Particularly in ORCKD patients 
with known persistent 
hypertriglyceridemia and/or 
confirmed renal 
steatosis on imaging/renal 
biopsy; Fibrates, niacin, 
fish oil analogs and derivatives, 
icosapent ethyl etc  

Uric acid modulators; 
Xanthine oxidase 
inhibitors and 
uricosurics 

Particularly in ORCKD patients 
with known nephrolithiasis, 
nephrocalcinois, known 
hyperuricemia and/or 
hyperuricosuria; Allopurinol, 
febuxostat, probenecid etc. 

Putative and 
Experimental 
adjuncts    

Anti-inflammatory 
agents 

Limited human clinical data; No 
FDA approved options;?? 
Colchine utility based on small 
case 
series  

Endothelin Receptor 
blockers 

Clinical trials; No clinically 
available nor FDA 
approved options  

CD-36 inhibitors Pre-Clinical and animal model 
trials  

Vasopressin Receptor 
antagonists (V1a, V1b 
and V2 receptor blockers) 

May have potential utility in 
ORCKD patients with 
associated polycystic kidney 
disease and particularly in 
ADPKD patients with 
superimposed ORCKD; 
tolvaptan, satavaptan, 
lixivaptan and conivaptan  

Fecal microbiota 
modulation 

Limited clinical data and no 
clinical practice guidelines; use 
of pre-pro and post biotic 
supplements, potential of fecal 
transplantation in 
select patients. Clinical trial 
stage.  

Melatonin 
supplementation and 
Melatonin receptor 
modulation 

Limited human clinical data and 
no clinical practice guideline. 
Not FDA approved?? utility of 
low to mid dose melatonin 
replacement therapy. Early 
clinical 
trial stage.  

FXR receptor activation Preclinical trial stage; 
experimental  

Anti-oxidants Limited clinical data. No clinical 
practice guidelines 
and no FDA approved options.  

SREBP-1 modulators Preclinical trial stage; 
experimental  

M¡Tor inhibitors Preclinical trial stage; 
experimental  

Aldosterone Synthase 
inhibitors 

Limited available human 
clinical data. No FDA approved 
options; early stages of clinical 
development. May have 
particular utility in ORCKD 
patients with coexisting primary 
aldosteronism. 
Osilodrostat, Baxdrostat, 
Lorundrostat etc.  

Vitamin D receptor 
agonists and modulators 

Limited available clinical trial 
data. In early stages of clinical 
development. May unique niche 
of utility in 
ORCKD patients with coexisting 
secondary or tertiary 
hyperparathyroidism. Calcitriol,  

Table 2 (continued )  

Antilpidemics; 
Triglyceride lowering 
medications 

Particularly in ORCKD patients 
with known persistent 
hypertriglyceridemia and/or 
confirmed renal 
steatosis on imaging/renal 
biopsy; Fibrates, niacin, 
fish oil analogs and derivatives, 
icosapent ethyl etc 

paricalcitol, 
doxercalciferol, alfacalcidol etc. 

Patients with 
ORCKD and 
ESRD 

Renal Replacement 
therapy 

Hemo and/or peritoneal dialysis 
with the unique difficulties and 
challenges of the obese ORCKD 
patient. 
Renal transplant.  
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[210] Rössner S, Sjöström L, Noack R, Meinders AE, Noseda G. Weight loss, weight 
maintenance, and improved cardiovascular risk factors after 2 years treatment 
with orlistat for obesity. european orlistat obesity study group. Obes Res 2000;8 
(1):49–61. https://doi.org/10.1038/oby.2000.8. 

[211] Rubino DM, Greenway FL, Khalid U, O’Neil PM, Rosenstock J, Sørrig R, et al. 
Effect of weekly subcutaneous semaglutide vs daily liraglutide on body weight in 
adults with overweight or obesity without diabetes: the STEP 8 randomized 
clinical trial. JAMA 2022;327(2):138–50. https://doi.org/10.1001/ 
jama.2021.23619. 

[212] Jastreboff AM, Aronne LJ, Ahmad NN, Wharton S, Connery L, Alves B, et al. 
Tirzepatide once weekly for the treatment of obesity. N Engl J Med 2022;387(3): 
205–16. https://doi.org/10.1056/NEJMoa2206038. 

[213] Wilding JPH, Batterham RL, Calanna S, Davies M, Van Gaal LF, Lingvay I, et al. 
Once-weekly semaglutide in adults with overweight or obesity. N Engl J Med 
2021;384(11):989–1002. https://doi.org/10.1056/NEJMoa2032183. 

[214] Lincoff AM, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, 
et al. Semaglutide and Cardiovascular outcomes in obesity without diabetes. 
N Engl J Med 2023. https://doi.org/10.1056/NEJMoa2307563. 

[215] Lingvay I, Brown-Frandsen K, Colhoun HM, Deanfield J, Emerson SS, Esbjerg S, 
et al. Semaglutide for cardiovascular event reduction in people with overweight 
or obesity: SELECT study baseline characteristics. Obesity (Silver Spring) 2023;31 
(1):111–22. https://doi.org/10.1002/oby.23621. 

[216] Mann JFE, Ørsted DD, Brown-Frandsen K, Marso SP, Poulter NR, Rasmussen S, 
et al. Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 2017;377 
(9):839–48. https://doi.org/10.1056/NEJMoa1616011. 

[217] Shaman AM, Bain SC, Bakris GL, Buse JB, Idorn T, Mahaffey KW, et al. Effect of 
the glucagon-like Peptide-1 receptor agonists semaglutide and liraglutide on 
kidney outcomes in patients with type 2 diabetes: pooled analysis of SUSTAIN 6 
and LEADER. Circulation 2022;145(8):575–85. https://doi.org/10.1161/ 
circulationaha.121.055459. 

[218] Heerspink HJL, Sattar N, Pavo I, Haupt A, Duffin KL, Yang Z, et al. Effects of 
tirzepatide versus insulin glargine on kidney outcomes in type 2 diabetes in the 
SURPASS-4 trial: post-hoc analysis of an open-label, randomised, phase 3 trial. 
Lancet Diabetes Endocrinol 2022;10(11):774–85. https://doi.org/10.1016/ 
s2213-8587(22)00243-1. 

[219] Wilding JPH, Batterham RL, Davies M, Van Gaal LF, Kandler K, Konakli K, et al. 
Weight regain and cardiometabolic effects after withdrawal of semaglutide: the 
STEP 1 trial extension. Diabetes Obes Metab 2022;24(8):1553–64. https://doi. 
org/10.1111/dom.14725. 

[220] Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 
AHA/ACC/TOS guideline for the management of overweight and obesity in 
adults: a report of the American College of Cardiology/American Heart 
Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll 
Cardiol. 2014;63(25 Pt B):2985-3023.10.1016/j.jacc.2013.11.004. 

[221] Palomar R, Fernández-Fresnedo G, Domínguez-Diez A, López-Deogracias M, 
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