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Abstract Diastolic dysfunction prominently contributes to
heart failure with preserved ejection fraction (HFpEF). Owing
partly to inadequate understanding, HFpEF does not have any
effective treatments. Cardiac myosin-binding protein-C
(cMyBP-C), a component of the thick filament of heart mus-
cle that can modulate cross-bridge attachment/detachment
cycling process by its phosphorylation status, appears to be
involved in the diastolic dysfunction associated with HFpEF.
In patients, cMyBP-C mutations are associated with diastolic
dysfunction even in the absence of hypertrophy. cMyBP-C
deletion mouse models recapitulate diastolic dysfunction de-
spite in vitro evidence of uninhibited cross-bridge cycling.
Reduced phosphorylation of cMyBP-C is also associated with
diastolic dysfunction in patients. Mouse models of reduced
cMyBP-C phosphorylation exhibit diastolic dysfunction
while cMyBP-C phosphorylation mimetic mouse models
show enhanced diastolic function. Thus, cMyBP-C phosphor-
ylation mediates diastolic function. Experimental results of
both cMyBP-C deletion and reduced cMyBP-C phosphoryla-
tion causing diastolic dysfunction suggest that cMyBP-C
phosphorylation level modulates cross-bridge detachment rate
in relation to ongoing attachment rate to mediate relaxation.

Consequently, alteration in cMyBP-C regulation of cross-
bridge detachment is a key mechanism that causes diastolic
dysfunction. Regardless of the exact molecular mechanism,
ample clinical and experimental data show that cMyBP-C is a
critical mediator of diastolic function. Furthermore, targeting
cMyBP-C phosphorylation holds potential as a future treat-
ment for diastolic dysfunction.
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Background

Heart failure occurs when cardiac output cannot meet the
body’s demand. It has an estimated global prevalence of
23 M [4]. Lifetime risks for developing heart failure of a 55-
year-old European and a 40-year-old American are 30.2 and
20 %, respectively [2, 15]. Despite treatment advances, 5-year
mortality of heart failure patients remains high at 42–80 %
[49]. Heart failure can occur with left ventricular ejection
fraction (EF) of ≥50 %, which is defined as heart failure with
persevered ejection fraction (HFpEF) [29, 49]. Prevalence of
HFpEF has increased to 47 % of all heart failure cases [36].
Diastolic dysfunction is the generally accepted cause of
HFpEF [29]. Diastolic dysfunction also occurs with heart
failure with reduced ejection fraction (HFrEF) [39], defined
as EF<40 % [49]. Hypertrophic cardiomyopathy (HCM) pa-
tients progress to heart failure with type distribution of 48 %
HFpEF, 30 % HFrEF, and 22 % outflow obstruction [30].
HCMpatients with primarily diastolic dysfunction and without
outflow obstruction experience the shortest progression from
HCM diagnosis to heart failure [30]. Mere diagnosis of mild
diastolic dysfunction carries >eightfold increase in mortality
over 5 years [39]. Unfortunately, pathogenic mechanisms
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that cause diastolic dysfunction remain enigmatic. With this
perspective, this review summarizes evidence that cardiac
myosin-binding protein-C mediates diastolic function.

To facilitate understanding, this paragraph summarizes
echocardiographic Doppler measurements that are used to
quantify in vivo diastolic function. Early diastolic (Ea) is the
tissue Doppler (TD) measurement of the peak heart muscle
relaxation velocity about mitral valve annulus during early
diastole (Fig. 1). Ea is an extraordinarily reliable echocardio-
graphic measurement of diastolic function because it corre-
lates with diastolic hemodynamics indices (pressure decay
time constant, peak pressure decay rate (−dP/dt)min,
pressure/volume relationship during diastolic filling) and
monotonically decreases with worsening diastolic dysfunction
[20, 24, 32, 35, 39] (Fig. 1). Ea is also referred as e′, E′, or Em
[32]. Systolic (Sa) is the TD of peak heart muscle contraction
velocity during systole (Fig. 1). TheDoppler of the peak blood
flow velocity across the mitral valve during early diastole is
named E [20, 24, 32, 39]. E initially decreases with mild
diastolic dysfunction but increases with worsening diastolic
dysfunction due to resultant left atrial dilation leading to
increases in left atrial pressure [20, 32, 39]. Thus, increasing

E/Ea ratio indicates worsening diastolic dysfunction by cap-
turing both increasing left atrial pressure and myocardium’s
decreasing ability to relax [20, 24, 32, 39] (Fig. 1).

Need for cMyBP-C

Cardiac myosin-binding protein-C (cMyBP-C) is a part of the
thick filament of the heart muscle [28]. Although cMyBP-C is
believed to repress myosin–actin interaction by different mech-
anisms [12, 18], an important mechanism is that cMyBP-C
binding to the rod region of myosin can slow cross-bridge
detachment to impair relaxation [1, 12, 26]. Thus, cMyBP-C
mutations may lead to diastolic dysfunction. Mutations in
cMyBP-C are a leading cause of hypertrophic cardiomyopathy
(HCM) [18]. HCM patients, a significant portion of whom
carry cMyBP-C mutations, can present with diastolic dysfunc-
tion (demonstrated by slowed heart muscle relaxation velocity
Ea) before the onset of hypertrophy [19, 33, 34]. A cohort of
pediatric HCM patients, 19/27 of whom have cMyBP-C mu-
tations, demonstrates diastolic dysfunction without hypertro-
phy [37]. Another cohort of patients with three common

Fig. 1 Doppler flow schematic and patient tissue Doppler example. aE is
the peak blood flow Doppler across mitral valve during early diastolic
filling. A is the peak blood flow Doppler across mitral valve during atrial
contraction of diastole. E will initially decrease with mild diastolic func-
tion but increases with worsening diastolic dysfunction. The E/A ratio
will initially decrease with mild diastolic dysfunction but increases with
worsening diastolic dysfunction to make moderate–severe diastolic dys-
function indistinguishable from normal to enhanced diastolic function.Ea

is the peak heart muscle relaxation TD during early diastole about mitral
valve annulus. Ea monotonically decreases with worsening diastolic
dysfunction. Aa is the peak heart muscle expansion TD during atrial
contraction phase of diastole. Sa is the peak heart muscle contraction
TD during systole. bTD of a normal 62-year-old male. cTD of 66-year-
old male with severe diastolic dysfunction (note severely slowed Ea and
reduced Ea/Sa). Time scales are different between (b) and (c)
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cMyBP-C mutations found in the Netherlands exhibits hyper-
trophy with diastolic dysfunction or prehypertrophy with TD
evidence of impaired relaxation [31]. The presentation of dia-
stolic dysfunction before the onset of hypertrophy suggests that
cMyBP-C mutations cause diastolic dysfunction independent
of hypertrophy. Furthermore, a single nucleotide polymor-
phism in cMyBP-C has been found in diastolic heart failure
patients [48]. Thus, clinical evidence suggests that
nonmutated/normal cMyBP-C is needed for normal diastolic
function.

Animal models support the clinical finding that the loss of
cMyBP-C causes diastolic dysfunction. Targeting exons 3–10,
Harris et al. created the first cMyBP-C null (i.e., complete loss
of cMyBP-C expression) mouse model cMyBP-C(-/-, Ex3-
10) [17]. cMyBP-C(-/-, Ex3-10) hearts exhibit diastolic dys-
function with slowed Ea (Fig. 2a, b) and increased E/Ea ratio
similar to human patients [44] with confirmatory intracardiac
pressure measurements of slower (−dP/dt)min and longer pres-
sure decay constant τ [3]. Another cMyBP-C null mouse
model, cMyBP-C(-/-, Ex1-2), which was made by targeting
preexon-1 to exon-2, demonstrates impaired relaxation by
slower (−dP/dt)min and longer pressure decay constant τ [5].
Additionally, cMyBP-C mutation homozygous and heterozy-
gous knock-in models exhibit diastolic dysfunction with ele-
vated E/Ea ratio but faster intracellular calcium [Ca2+]i, dem-
onstrating that impaired relaxation is caused by myofilament
dysfunction, not by slowed calcium handling [13]. Further-
more, a conditional cMyBP-C knockout mouse model demon-
strates diastolic dysfunction without hypertrophy after induc-
tion of the cMyBP-C deletion [6]. Thus, the presence of
nonmutated cMyBP-C is required for normal diastolic function.

Mediation of diastolic function by posttranslational
modification of cMyBP-C

cMyBP-C phosphorylation levels have been found to be de-
creased by >50 % in explanted hearts from patients with end-
stage heart failure during heart transplant [8, 11, 21, 25]. End-
stage failing hearts have severe diastolic and systolic dysfunc-
tion along with calcium and metabolic derangements; there-
fore, it is difficult to assess the impact of cMyBP-C

phosphorylation. Samples obtained during myomectomy sur-
gery to relieve outflow obstruction showed that HCM hearts
have decreased cMyBP-C phosphorylation levels [8, 10, 21].
HCM hearts exhibit predominantly diastolic dysfunction, im-
plying that reduced cMyBP-C phosphorylation is an underly-
ing cause.

Animal models suggest that cMyBP-C phosphorylation
mediates diastolic function. Protein kinase A (PKA) can phos-
phorylate human cMyBP-C at S275, S284, and S304 [14] and
their mouse equivalents (S273, S282, S302) as confirmed by
mass spectrometry [23]. Expressing cMyBP-C with S273A,
S282A, and S302A and S273D, S282D, and S302D muta-
tions onto cMyBP-C(-/-, Ex3-10) background created
cMyBP-C(t3SA) (phosphorylation deficient) [44] and
cMyBP-C(t3SD) (phosphorylation mimetic) [7, 26] mouse
models, respectively. These mouse models allow one to elu-
cidate the impact of cMyBP-C phosphorylation at its known
PKA sites. Myosin-binding protein C (cMyBP-C)(t3SA)
hearts exhibited similar EF [7, 26, 44], reduced Ea (slowed
heart muscle relaxation TD velocity, Fig. 2), and increased
E/Ea ratio (diastolic dysfunction) [26, 44] in comparison to its
wild-type equivalent cMyBP-C(tWT) control, suggesting that
reduced cMyBP-C phosphorylation causes predominantly di-
astolic dysfunction. Furthermore, cMyBP-C(t3SA) mice re-
semble human HFpEF with shorter voluntary running dis-
tances, pulmonary edema, and elevated brain natriuretic pep-
tide levels [26]. Another cMyBP-C phosphorylation-deficient
mouse model cMyBP-C(t/t,AllP-) was made by expressing
cMyBP-C with five mutations (T272A, S273A, T281A,
S282A, S302A) onto the cMyBP-C truncation background
of cMyBP-C(t/t) [41]. Unlike cMyBP-C(t3SA), cMyBP-C(t/t,
AllP-) hearts showed ~50 % reduction in fractional shortening
and severely dilated ventricles in comparison to its cMyBP-
C(t/t, WT) control [41], suggesting that cMyBP-C phosphor-
ylation also mediates systolic function. Differences in muta-
tions and mouse backgrounds probably caused the different
phenotypes in these two cMyBP-C phosphorylation-deficient
mouse models. Subsequently, expressing combinatorial phos-
phorylation site mutations (S282A-SAS, S273A/S282D/
S302A-ADA, and S273D/S282A/S302D-DAD) onto the
cMyBP-C(t/t) background made mutant hearts that exhibit
similar EF as their control cMyBP-C(t/t, WT), providing

Fig. 2 Mouse TD of myocardium at mitral valve annulus examples. awild type, b cMyBP-C(-/-, Ex3-10), c cMyBP-C(tWT), d cMyBP-C(t3SA), and e
cMyBP-C(t3SD). cMyBP-C(-/-. Ex3-10) and cMyBP-C(t3SA) show slowed Ea and reduced Ea/Sa
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evidence that cMyBP-C phosphorylation has greater impact
on diastolic function [40]. More recently, expressing
phosphoryla t ion-def ic ient cMyBP-C mutants of
AAD(T272A,S273A,T281A,S282A,S302D) and
DAA(T272D,S273D,T281A,S282A,S302A) onto cMyBP-
C(t/t) background led to reduced EF and impaired relaxation as
evidenced by slowed heart muscle relaxation TD velocity Ea
[16]. Conversely, the phosphorylation-mimetic cMyBP-C(t3SD)
demonstrated enhanced diastolic function by faster heart muscle
relaxation TD velocity Ea (Fig. 2) and reduced E/Ea ratio
(enhanced diastolic function) [26]. Together, these findings indi-
cate that cMyBP-C phosphorylation mediates diastolic function.

Posttranslational modifications of cMyBP-C other than
phosphorylation may also affect diastolic function. Unilateral

nephrectomy and chronic deoxycorticosterone acetate
(DOCA) salt treatment will cause diastolic dysfunction [27].
Diastolic dysfunction in this mouse model was attributed to
altered myofilament calcium sensitivity due to increased
glutathionylation of cMyBP-C [27]. Tetrahydrobiopterin treat-
ment decreased glutathionylation and increased cross-bridge
cycling rate to reverse diastolic dysfunction independent of
cMyBP-C phosphorylation [22]. Thus, glutathionylation of
cMyBP-C may also mediate diastolic dysfunction.

Possible mechanism

cMyBP-C phosphorylation may mediate diastolic function by
modulating the relative cross-bridge detachment rate with

Fig. 3 Papillary muscle experiment examples. Top panels show time
course of dF/dt normalized to (dF/dt)max. Bottom panels show corre-
sponding time course of normalized intracellular calcium concentrations.
dFR=(+dF/dt)max/(−dF/dt)min. Increasing magnitude of dFR represents

acceleration of relaxation. a wild type, b cMyBP-C(-/-, Ex3-10), c
cMyBP-C(tWT), d cMyBP-C(t3SA), and e cMyBP-C(t3SD). cMyBP-
C(-/-, Ex3-10) and cMyBP-C(t3SA) muscles exhibit smaller dFRs that do
not change with increasing pacing frequency

Fig. 4 Hypothesis schematic.
Increasing [Ca2+]i moves
tropomyosin from blocked to off
state. Phosphorylated cMyBP-C
facilitates rapid cross-bridge
attachment. Transition of cross-
bridges from weakly bound to
strongly bound states with release
of Pi causes further displacement
of tropomyosin to fully activate
thin filament to on state.
Phosphorylated cMyBP-C
accelerates cross-bridge
detachment in reference to
attachment. Thin filament free of
attached cross-bridges can snap
back into the blocked state with
decreasing [Ca2+]i

454 Pflugers Arch - Eur J Physiol (2014) 466:451–457



respect to cross-bridge attachment rate (Fig. 4). Myo-
cardial stretch activation experiments [43, 44] and mo-
tility assays using native thick filament [38] demonstrate
that both cMyBP-C phosphorylation and cMyBP-C de-
letion increase cross-bridge cycling rates. Surprisingly,
cMyBP-C deletion causes diastolic dysfunction despite
its constitutively fast cross-bridge cycling rates [16, 38,
44]. Correlating echocardiographic TD measurements
(Ea, Sa) and intact papillary muscle results solves this
paradox. cMyBP-C(-/ - , Ex3-10) and cMyBP-C
phosphorylation-deficient cMyBP-C(t3SA) hearts show
characteristic slowed Ea and reduced Ea/Sa ratio
(Fig. 2) [46, 47]. Ea and Sa correspond to (dP/dt)min

and (dP/dt)max, respectively [35, 42]. Since pressure is a
function of force, then (dF/dt)min, (dF/dt)max, and deriv-
ative force ratio (dFR)=(dF/dt)min/(dF/dt)max measured
from intact papillary muscles are analogous to Ea, Sa,
and Ea/Sa, respectively. cMyBP-C(-/-, Ex3-10) and
cMyBP-C(t3SA) papillary muscles show decreased
dFR, reflecting reduced Ea/Sa [45, 46]. Increasing dFR
equates to acceleration of relaxation because peak relax-
ation rate (dF/dt)min increases exceed increases in peak
force generation rate (dF/dt)max. Increased pacing fre-
quency increases dFR only in papillary muscles with
phosphorylatable cMyBP-C (Fig. 3) [45–47]. Increased
pacing frequency causes similar shortening of [Ca2+]i
decay times in all the mouse models (Fig. 3) [45–47].
Therefore, the accelerated relaxation can be attributed to
phosphorylated cMyBP-C increasing cross-bridge detach-
ment rate faster than attachment rate but not to changes
in calcium handling. cMyBP-C(-/-, Ex3-10) lacks
cMyBP-C to modulate cross-bridge detachment causing
an inability to accelerate relaxation (slow and unchang-
ing dFR in Fig. 3) despite its fast cross-bridge cycling,
resulting in smaller Ea/Sa (Fig. 2). Similarly, cMyBP-
C(t3SA) mutants are unable to increase relative cross-
bridge detachment rate, causing depressed dFR (Figs. 3
and 4) and seen at the whole heart level by smaller Ea/Sa
(Fig. 2). Furthermore, phosphorylated cMyBP-C has
been shown to increase cross-bridge detachment rate
without affecting attachment rate [9]. Together, these
results combine to suggest that phosphorylated cMyBP-
C modulates cross-bridge detachment rate in relation to
attachment rate to mediate diastolic function.

Conclusion

Clinical evidence and animal models demonstrate that
cMyBP-C mediates diastolic function. The correlation of in-
tact papillary muscle experiments and in vivo TD measure-
ments suggests that cMyBP-C phosphorylation modulates
relative cross-bridge detachment rate with respect to attach-
ment rate to mediate diastolic function. Thus, targeting

cMyBP-C phosphorylation holds great potential for the treat-
ment of diastolic dysfunction.
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