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Abstract

Predicting 30-day procedure-related mortality risk and 30-day unplanned readmission in

patients undergoing lower extremity endovascular interventions for peripheral artery dis-

ease (PAD) may assist in improving patient outcomes. Risk prediction of 30-day mortality

can help clinicians identify treatment plans to reduce the risk of death, and prediction of 30-

day unplanned readmission may improve outcomes by identifying patients who may benefit

from readmission prevention strategies. The goal of this study is to develop machine learn-

ing models to stratify risk of 30-day procedure-related mortality and 30-day unplanned read-

mission in patients undergoing lower extremity infra-inguinal endovascular interventions.

We used a cohort of 14,444 cases from the American College of Surgeons National Surgical

Quality Improvement Program database. For each outcome, we developed and evaluated

multiple machine learning models, including Support Vector Machines, Multilayer Percep-

trons, and Gradient Boosting Machines, and selected a random forest as the best-perform-

ing model for both outcomes. Our 30-day procedure-related mortality model achieved an

AUC of 0.75 (95% CI: 0.71–0.79) and our 30-day unplanned readmission model achieved

an AUC of 0.68 (95% CI: 0.67–0.71). Stratification of the test set by race (white and non-

white), sex (male and female), and age (�65 years and <65 years) and subsequent evalua-

tion of demographic parity by AUC shows that both models perform equally well across

race, sex, and age groups. We interpret the model globally and locally using Gini impurity

and SHapley Additive exPlanations (SHAP). Using the top five predictors for death and mor-

tality, we demonstrate differences in survival for subgroups stratified by these predictors,

which underscores the utility of our model.

Introduction

Peripheral arterial disease (PAD) of the lower extremities affects over 200 million people

worldwide [1] and is associated with significant morbidity and mortality [2,3]. PAD may
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progress to severe limb ischemia, requiring endovascular interventions or surgical procedures

in order to achieve limb salvage. Unfortunately, despite their “minimally invasive” nature,

lower extremity endovascular procedures for critical limb ischemia have a significant peri-pro-

cedural mortality rate of 0.5%-3% [4], and more than 1 in 6 patients who undergo endovascu-

lar revascularization have unplanned readmission within 30 days [5]. Identification of PAD

patients at substantially increased risk for procedure-related mortality may be helpful in setting

realistic expectations for procedural outcomes, and/or making alterations in the therapeutic

plan to decrease the risk of death. Identifying patients at high risk for 30-day unplanned read-

mission may allow clinicians to focus on patients who would benefit from strategies to avoid

readmission such as telephone-based care management [6], home visits [7], partnering with

community physicians [8], and more complex, multidisciplinary interventions [9]. Further-

more, explanations of risk at the individual patient level will allow health systems to differenti-

ate between potentially preventable readmissions and readmissions that are likely to occur due

to the natural course of vascular disease.

In addition to generating risk scores to guide patient-level medical decision-making, global

explanations of death and readmission projections over all patients may also be useful in

informing prevention strategies on a large scale. If novel intervenable factors that contribute to

increased risk of mortality and readmission can be identified, health systems may be able to

selectively target these indicators to decrease mortality and readmission risk. These factors

may also serve as targets for future research in the implementation of strategies to reduce pro-

cedure-related mortality and unplanned readmission.

Mortality and readmission after revascularization procedures have been studied in many

previous cohort studies [5,10–14] using traditional statistical methods such as logistic regres-

sion and Cox proportional hazards. Machine learning has the potential to improve upon these

methods by finding generalizable predictive patterns in the data without being constrained by

limitations of statistical methods such as a priori assumptions and difficulty addressing inter-

actions [15,16]. Machine learning-based software offered by companies such as Viz.ai, Aidoc,

Siemens Healthineers, and many others have demonstrated the ability to improve patient care

through the use of machine learning [17–19]—therefore, we aim to use machine learning to

develop models for the tasks of predicting 30-day procedure-related mortality and 30-day

unplanned readmission.

The goal of this study is to develop interpretable machine learning models to stratify 30-day

procedure-related death and 30-day unplanned readmission in PAD patients undergoing

lower extremity endovascular revascularization procedures. We used the American College of

Surgeons National Surgical Quality Improvement Program (ACS-NSQIP)—a large, multihos-

pital database—to develop and evaluate machine learning models for mortality and readmis-

sion. We interpreted each model to identify key risk factors. We additionally performed

testing to determine the robustness of each model across different demographic groups (race,

sex, and age) to ensure that this model is applicable in multiple care settings with divergent

patient populations.

Methods

Four machine learning models were evaluated for their ability to predict 30-day mortality and

readmission outcomes: Support Vector Machines (SVM), Random Forests, Extreme Gradient

Boosting (XGBoost), and Multilayer Perceptrons (MLP).

Data to develop the model was obtained from the American College of Surgeons National

Surgical Quality Improvement Program (ACS-NSQIP) database, a database containing demo-

graphics, laboratory results, clinical variables including lab values and disease progression
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variables, and 30-day postoperative outcomes. This data was collected from electronic health

records from approximately 700 hospitals across the United States. The procedures included

in this study were performed from the years 2011 to 2018. The ACS-NSQIP dataset excludes

minor cases, cases in which the patient was under 18 years old, cases in which the patient has

been assigned an ASA score of 6 (brain-death organ donors), cases involving Hyperthermic

Intraperitoneal Chemotherapy (HIPEC), trauma cases, transplant cases, cases that exceeded

the limit of three of the following procedures for a single patient (Inguinal Herniorrhapy,

breast lumpectomy, laparascopic cholecystectomies, TURPS and/or TURBTs), cases beyond

the required number specified in the NSQIP site’s contract, returns to the operating room

related to an occurrence or complication of a prior procedure, and cases in which the patient

already has a NSQIP-assessed procedure entered within the previous thirty days. We subset

the data using CPT codes to include only patients who underwent lower extremity endovascu-

lar infrainguinal interventions for PAD. The CPT codes for inclusion are listed in S1 Table.

The ACS-NSQIP database also offers a targeted vascular module with pre- and post-opera-

tive variables specific to vascular disease and the type of procedure, which was merged with the

previously selected cases to provide additional granular details about the procedure performed.

In total, a table of 14,444 rows and 316 columns was obtained. A full list of features in the

ACS-NSQIP database and the targeted vascular module can be found online in the NSQIP

Participant Use Data Files (PUFs) [21]. Features were reduced to 80 demographic, clinical,

and laboratory features according to clinical advice, 56 of which were feature variables, and the

rest were outcomes. Feature variable used are listed in S2 Table. The data was split into train-

ing (9,429 cases from 2011–2015), validation (1978 cases from 2016), and independent testing

(5,037 cases from 2017–2018). The training, validation, and testing set years were selected to

allow a large training set size while leaving sufficient cases of death and readmission for

evaluation.

76 out of 80 features contained missing values. Missing values in the ACS-NSQIP data have

been found to be missing not at random [20], and therefore removal of patients with incom-

plete data may introduce unwanted bias. For this reason, missing values were imputed using

Optimal Imputation, an imputation method that has demonstrated statistically significant

gains in performance over state-of-the-art optimization methods [21].

Extraneous features may reduce model performance by leading to overfitting [22]. To avoid

this problem, we selected features for inclusion in the machine learning model using Mini-

mum Redundancy Maximum Relevance (mRMR), a method that selects features that are max-

imally relevant to the outcome and minimally redundant with other selected features [23]. To

select the optimal number of features, we applied an incremental feature selection algorithm:

for each k, where k is a value from 1 to the total number of predictive features (non-outcomes),

mRMR was used to select features and develop a new model, and the new model was tested on

the validation set. The model that returned the highest area under the receiver operating char-

acteristic curve (AU-ROC), a measurement of a model’s ability to discriminate between clas-

ses, was selected. This algorithm was applied for both death and readmission outcomes

separately, and it was applied for each of the four machine learning models tested.

Class imbalance can decrease model performance and lead to over-classification of the

majority class [24]. To resolve this problem, for both death and readmission models, oversam-

pling of the minority class was performed with ADASYN [25], a method that generates syn-

thetic examples of the minority class.

To determine optimal hyperparameters for each model, we employed a grid search opti-

mized for area under the receiver operating characteristic curve (AU-ROC). Parameters tuned

include: For SVM—regularization parameter and gamma, for Random Forest—number of

estimators, tree depth, maximum number of features, minimum number of samples required
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to split a node, and minimum number of samples required at each leaf node, for XGBoost—

learning rate, maximum tree depth, minimum sum of instance weight needed in a child,

gamma, subsample ratio of the training instances, and L1 regularization term, and for MLP—

the size and number of hidden layers, the activation function, the L2 regularization term, and

the learning rate.

The model was evaluated using the metrics area under the receiver operating characteristic

curve (AU-ROC), sensitivity, and specificity. The model was interpreted using two methods:

Gini impurity and SHapley Additive exPlanations (SHAP). Gini impurity measures the aver-

age reduction in impurity at splits in the decision tree—in other words, the ability of each fea-

ture in the random forest to split a group of mixed labeled cases into two pure class groups.

SHAP is a game-theoretic approach to explain model predictions by generating models with

different coalitions of features to determine the contribution of each feature to the final predic-

tion. This allows for both global and local interpretation of the models [26].

To ensure that our model is equally accurate for different demographic groups, the test set

was stratified by race (white and non-white), sex (male and female), and age (�65 years and

<65 years). The random forest models we developed for 30-day mortality and 30-day readmis-

sion were used to predict risk of death and readmission for each subgroup. AUC, accuracy,

sensitivity, and specificity were used to evaluate the models. To compare the performance of

the model within each demographic category and identify statistically significant differences in

performance, we applied DeLong’s test for AU-ROC curve difference [27].

We extracted survival times from all cases including training, validation, and testing. We

stratified all cases based on the top identified predictors according to Gini impurity. For

30-day mortality this included physiologic high-risk factors, elective surgery, functional status,

HCT, creatinine, and INR. For 30-day readmission this included open wound/wound infec-

tion, major reintervention of treated arterial segment, elective surgery, claudication, and diabe-

tes. We then performed Kaplan-Meier analysis on subgroups for each predictor. The log-rank

test was used to test for significant differences in survival among patient subgroups for each

predictor.

The model was developed and evaluated using Python version 3.7.2 (packages: scikit-learn,

interpretableai, pymrmr, imblearn, shap, lifelines, pandas, numpy, matplotlib) and R (pack-

ages: pROC [28]). The full procedure is illustrated in Fig 1. This study was approved by the

Mass General Brigham Institutional Review Board. The data were analyzed anonymously and

consent was waived for this study.

Results

Cohort

14,444 patients were included in this study. Table 1 provides characteristics of the training

and testing cohort. Overall, the mean (SD) age of patients included in model development was

69.1 (11.4) years. The majority of patients in the cohort were male (59%), and over 80% of

patients were classified as ASA class 3 or higher. 83.1% had a cardiac comorbidity (use of

hypertensive medication or history of chronic heart failure�30 days prior to surgery) and

10% had a renal comorbidity (acute renal failure�24 hours, or use of renal replacement ther-

apy�2 weeks prior to procedure). 53.3% of the cohort had diabetes. 138 (1%) patients died

and 1,699 (11.8%) were readmitted to the hospital within 30 days.

Mortality

For 30-day procedure-related mortality prediction, our best-performing machine learning

model was the random forest, which achieved an AU-ROC of 0.75 (95% CI: 0.71–0.79),
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accuracy of 0.87 sensitivity of 0.77 and specificity of 0.68 on the test set. On the training set, the

model achieved an AU-ROC of 0.89, accuracy of 0.88, sensitivity of 0.69, and specificity of

0.88. The results of all models on the testing set are shown in Table 2. The AU-ROC curve is

pictured in Fig 2A. 18 features are used in this model: Physiologic high-risk factors, hemato-

crit, blood urea nitrogen (BUN), creatinine, claudication, albumin, age, elective surgery desig-

nation, white blood cell count, serum glutamic oxaloacetic transaminase (SGOT),

international normalized ratio (INR), alkaline phosphatase, bilirubin, platelet count, functional

status, renal comorbidities, dyspnea, and open wound or wound infection.

The random forest model is an ensemble machine learning model consisting of many indi-

vidual decision trees that are generated independently of one another, and the output of all

decision trees are averaged to make a prediction. The trees are generated by taking subsamples

of the dataset and finding optimal features to split on to minimize node impurity. The impu-

rity criterion used for the random forest is Gini Impurity, calculated as the following:

Gini impurity ¼ 1 � ½ðP1Þ
2
þ ðP0Þ

2
�

Where P1 is the probability of a death or readmission class and P0 is the probability of a

non-death or readmission class. A weighted Gini impurity is calculated with the following

Fig 1. Flow chart illustrating the phases of model development.

https://doi.org/10.1371/journal.pone.0277507.g001
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Table 1. Patient population demographics.

Testing Training p

n 5037 9407

Clinical Comorbidities and Presenting Symptomatology

Obesity (%) 1737 (34.4) 2956 (31.4) <0.001

Diabetes (%) 2847 (56.5) 6123 (54.3) 0.010

Recent Smoking History (%) 1426 (29.0) 2922 (30.0) 0.222

Pulmonary Comorbidity (%) 522 (10.4) 1010 (10.7) 0.487

Cardiac Comorbidity (%) 4234 (84.1) 8033 (85.4) 0.032

Dyspnea (%) 544 (10.8) 1020 (10.8) 0.937

Recent Steroid Use (%) 272 (5.4) 593 (6.3) 0.029

Renal Comorbidity (%) 501 (9.9) 950 (10.1) 0.771

Emergent Procedure (%) 194 (3.9) 367 (3.9) 0.782

ASA Class 3–5 (%) 4701 (93.3) 8231 (87.4) <0.001

Age (mean (SD)) 69.4(11.2) 68.9 (11.5) 0.012

Asymptomatic (%) 272 (5.4) 492 (5.2) 0.664

Claudication (%) 1523 (30.2) 2960 (31.5) 0.128

Critical Limb Ischemia w/ Rest

Pain (%)

933 (18.5) 1863 (19.8) 0.063

Critical Limb Ischemia w/

Tissue Loss (%)

2172 (43.1) 3767 (40.0) <0.001

Symptoms Unknown (%) 86 (1.7) 126 (1.3) 0.080

Dependent Functional Status

(%)

612 (12.1) 965 (10.2) <0.001

Bleeding Disorder (%) 1624 (32.2) 3082 (32.8) 0.523

Recent Weight Loss (%) 44 (0.9) 82 (0.9) 0.991

Demographics Testing Training

Male (%) 3080 (61.1) 5443 (57.9) 0.002

Female (%) 1906 (37.8) 3765 (40.0) 0.002

American Indian or Alaska

Native (%)

17 (0.3) 33 (0.4) 0.896

Asian (%) 79 (1.6) 138 (1.5) 0.633

Black or African American (%) 1003 (19.9) 1701 (18.1) 0.007

Native Hawaiian or Pacific

Islander (%)

6 (0.1) 8 (0.08) 0.531

Race Unknown (%) 653 (13.0) 999 (10.6) <0.001

White (%) 3279 (65) 6519 (69.3) <0.001

Pre-Op Labs Testing Training

Sodium (mean (SD)) 138 (3.2) 138.2 (3.3) <0.001

BUN (mean (SD)) 23.7 (14.0) 23.2 (13.5) 0.035

INR (mean (SD)) 1.15 (0.34) 1.15 (0.32) 0.406

PTT (mean (SD)) 35.8 (12.2) 35.6 (12.5) 0.546

Creatinine (mean (SD)) 1.63 (1.7) 1.63 (1.7) 0.982

Albumin (mean (SD)) 3.59 (0.53) 3.62 (0.52) 0.002

Bilirubin (mean (SD)) 0.55 (0.27) 0.56 (0.35) 0.040

WBC (mean (SD)) 8.36 (1.0) 8.27 (3.8) 0.167

HCT (mean (SD)) 36.4 (6.2) 36.5 (6.0) 0.116

ALKPHOS (mean (SD)) 96.9 (42.2) 96.0 (52.8) 0.294

Platelet count (mean (SD)) 249 (92.4) 241 (87.8) <0.001

Death (%) 47 (0.01) 91 (0.01) 0.840

https://doi.org/10.1371/journal.pone.0277507.t001
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equation:

Weighted Gini impurity ¼ wiGi � wlGl � wrGr

Where wi is the weight of the current node, Gi is the Gini impurity of the current node, wl

is the weight of the left node, Gl is the Gini impurity of the left node, wr is the weight of the

right node, and Gr is the Gini impurity of the right node.

To interpret the model, we used both Gini impurity and Shapley Additive exPlanations

(SHAP). Gini impurity enables us to understand feature relevance at a global level, while a

SHAP summary plot allows us to visualize feature contributions at the individual patient level

and overall feature contribution patterns. According to Gini impurity values, the most impor-

tant predictors of 30-day mortality were physiologic high-risk factors (New York Heart Associ-

ation class III/IV congestive heart failure, left ventricular ejection fraction < 30%, unstable

angina, or myocardial infarction within 30 days), elective surgery, functional status, hematocrit

(HCT), and creatinine. A full list of features in order of importance as determined by

Gini impurity is pictured in Fig 3A. The most important predictors identified by SHAP were

physiologic high-risk factors, elective surgery, INR, diabetes, and claudication. The SHAP

summary plot depicting feature importance and the direction of feature influence is shown in

Fig 3B.

Readmission

For 30-day unplanned readmission prediction, our best performing model was also the ran-

dom forest model, which attained an AU-ROC of 0.69 (95% CI: 0.67–0.71), sensitivity of 0.76,

and specificity of 0.55. The results of all models are shown in Table 3. The AU-ROC curve is

pictured in Fig 2B. 16 features are used in this model: Major reintervention of treated arterial

segment, hematocrit, albumin, claudication, creatinine, critical limb ischemia with tissue loss,

open wound or wound infection, renal comorbidities, alkaline phosphatase, INR, BUN, physi-

ologic high risk factors, elective surgery designation, diabetic status, American Society of Anes-

thesiologists (ASA) physical status greater than 3, and sodium.

According to Gini impurity values, the most important predictors of unplanned readmis-

sion include open wound/wound infection, major reintervention of treated arterial segment,

elective surgery, claudication, and diabetes. A full list of features in order of Gini impurity is

pictured in Fig 4A. The most important features according to SHAP were open wound/

wound infection, diabetes, INR, claudication, and major reintervention of treated arterial seg-

ment. The SHAP summary plot is shown in Fig 4B. Evaluation metrics for both mortality and

readmission are shown in Table 4.

Fairness

DeLong’s test comparing the two models’ performance on racial, gender, and age subgroups

indicates that both models perform equally well on white and non-white patients (30-day

Table 2. Performance metrics of all models on the testing set.

AUC Accuracy Sensitivity Specificity

Random Forest 0.75 0.87 0.77 0.68

Support Vector Machine (SVM) 0.75 0.70 0.84 0.49

Multilayer Perceptron (MLP) 0.72 0.97 0.09 0.98

Extreme Gradient Boosting (XGBoost) 0.74 0.92 0.76 0.49

https://doi.org/10.1371/journal.pone.0277507.t002

PLOS ONE Interpretable machine learning for 30-day procedure-related mortality and unplanned readmission prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0277507 November 21, 2022 7 / 18

https://doi.org/10.1371/journal.pone.0277507.t002
https://doi.org/10.1371/journal.pone.0277507


mortality: DeLong p-value = 0.322, 30-day readmission: DeLong p-value = 0.939), male and

female patients (30-day mortality: DeLong p-value = 0.804, 30-day readmission: DeLong p-

value = 0.130), and age� 65 and < 65 years (30-day mortality: DeLong p-value = 0.804,

30-day readmission: DeLong p-value = 0.130). AU-ROC curve comparisons for each subgroup

are pictured in Fig 5.

Fig 2. Receiver-operating characteristic curves for a) 30-day mortality and b) 30-day unplanned readmission

models.

https://doi.org/10.1371/journal.pone.0277507.g002
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Fig 3. Gini impurity and SHAP scores for mortality. a) Gini impurity scores for features included in the 30-day

mortality model. Higher values indicate increased effectiveness of features at separating those at risk of 30-day

mortality from those not at risk of 30-day mortality. b) A Shapley summary plot. Color indicates feature value (red:

High, blue: Low) and position.

https://doi.org/10.1371/journal.pone.0277507.g003
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Table 3. Performance metrics of all readmission models on the testing set.

AUC Accuracy Sensitivity Specificity

Random Forest 0.68 0.73 0.70 0.59

Support Vector Machine (SVM) 0.62 0.57 0.65 0.55

Multilayer Perceptron (MLP) 0.65 0.56 0.66 0.55

Extreme Gradient Boosting (XGBoost) 0.68 0.87 0.68 0.61

https://doi.org/10.1371/journal.pone.0277507.t003

Fig 4. Gini impurity and SHAP scores for unplanned readmission. a) Gini impurity scores for features included in

the 30-day unplanned readmission model. Higher values indicate increased effectiveness of features at separating those

at risk of 30-day unplanned readmission from those not at risk of 30-day unplanned readmission. b) A Shapley

summary plot. Color indicates feature value (red: High, blue: Low) and position along the x-axis indicates magnitude

and direction of the feature’ impact on model predictions.

https://doi.org/10.1371/journal.pone.0277507.g004
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Survival

Survival analysis on subgroups obtained from the top five identified predictors for 30-day

mortality by Gini impurity shows significant differences in survival time between those who

had physiological high-risk factors (p< 0.001), those who underwent elective versus non-elec-

tive procedures (p< 0.001), those who were independent versus those who were totally or par-

tially dependent (p< 0.001), HCT <30% versus HCT of 30% or greater (p < 0.001), and those

who had serum creatinine at levels indicating CKD stage 1 or 2 versus those with serum creati-

nine at levels indicating CKD stage 3 or above (p< 0.001). Survival analysis of subgroups

obtained from the top five most important predictors for 30-day readmission shows significant

differences in readmission time between those who had an open wound/wound infection ver-

sus those who did not (p< 0.001), those who were undergoing a major reintervention of the

treated arterial segment versus those who were not undergoing reintervention (p< 0.001),

those underwent elective surgery versus non-elective procedures (p< 0.001), those with clau-

dication versus those without claudication (p< 0.001), and those with diabetes versus those

without diabetes (p< 0.001). Survival curves for 30-day mortality and 30-day unplanned read-

mission are pictured in S1 Fig.

Discussion

In this study, we have developed two machine learning models to stratify risk in PAD patients

undergoing lower extremity endovascular procedures: one to identify patients at risk of 30-day

procedure-related mortality and the other to identify patients who will be readmitted to the

hospital within 30 days. The models were shown to perform well for both death (AUC: 0.75)

and unplanned readmission (AUC: 0.68). We interpreted the models using Gini impurity and

SHAP in order to gain an understanding of the importance and direction of influence of each

feature. Among patients undergoing lower extremity endovascular procedures, the most

important predictor of death was physiologic high-risk factors. The most important predictor

of readmission was an open wound or wound infection. For each of the top five features for

each outcome, we split the cohort into subgroups and performed survival analysis, including

the log-rank test to identify differences between curves. We also demonstrated that the model

is fair toward different demographic groups by stratifying the test set by race, sex, and age and

evaluating the model on each group, yielding equivalent performance within each demo-

graphic category.

We compared the performance of several different machine learning models on the task of

predicting 30-day procedure-related mortality and 30-day unplanned readmission: SVMs,

XGBoost, Random Forests, and MLPs. For mortality, the random forest and SVM performed

Table 4. AUC, accuracy, sensitivity, and specificity of the random forest models.

Mortality Readmission

AUC Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity

Training Data 0.89 0.88 0.69 0.88 0.71 0.76 0.42 0.80

Testing Data 0.75 0.87 0.77 0.68 0.68 0.73 0.70 0.59

White 0.77 0.87 0.62 0.75 0.69 0.74 0.62 0.64

Non-white 0.70 0.86 0.67 0.69 0.67 0.71 0.75 0.56

Male 0.75 0.85 0.63 0.73 0.70 0.72 0.69 0.60

Female 0.76 0.88 0.65 0.75 0.67 0.76 0.61 0.65

Age> = 65 0.75 0.85 0.66 0.69 0.67 0.76 0.60 0.63

Age< 65 0.72 0.89 0.58 0.79 0.71 0.71 0.79 0.58

https://doi.org/10.1371/journal.pone.0277507.t004
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similarly well on the AU-ROC metric, but the specificity of the SVM and XGBoost models

were both low at 0.49. A low specificity value indicates that the SVM model generated a large

number of false positives, which can potentially mislead patients and clinicians when selecting

Fig 5. Model performance on demographic subgroups of the test set, demonstrating equivalent performance on race (white and non-white), sex (male

and female), and age (under age 65 and 65 and older) groups.

https://doi.org/10.1371/journal.pone.0277507.g005
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interventions. Conversely, the multilayer perceptron achieved high specificity but low sensitiv-

ity, demonstrating an inability to perform the key task of identifying patients at risk of death.

For readmission, the random forest model achieved the highest AUC at 0.68, with a balance of

good sensitivity and specificity compared to the SVM and MLP, which both have low specific-

ity at 0.55. The random forest and XGBoost models perform similarly, with only slight differ-

ences in performance. These results indicate that tree-based methods may be most suitable for

the purpose of predicting mortality and readmission, possibly due to the ability of tree-based

methods to consider nonlinear associations between variables in the ACS-NSQIP database.

Several models currently exist for predicting death and unplanned readmission for patients

undergoing lower extremity infrainguinal endovascular interventions [5,11,12] and machine

learning models have been developed for death and readmission prediction following other

types of procedures and medical events [29–33]. Models for predicting mortality and

unplanned readmission for patients undergoing infrainguinal endovascular interventions spe-

cifically, however, have been largely limited to multivariate logistic regression models, which

may fail to account for nonlinear relationships in the data. These studies also focus solely on

identifying risk factors for mortality and unplanned readmission, whereas our model, which

outputs a numerical risk score, is able to be used for clinical decision-making in addition to

understanding predictive factors for mortality and unplanned readmission risk. Using the

numerical risk score for mortality and readmission as generated by our models, clinicians may

be able to optimize treatment decisions as well as identify which patients are at the highest risk

of readmission to implement strategies to reduce this risk.

Model interpretability is important for machine learning applications for medical decision-

making, as model transparency is one of the major practical issues surrounding the implemen-

tation of AI into clinical workflows [34]. Model interpretability methods also enable clinicians

to uncover novel clinical insights from machine learning models, such as predictors for death

and readmission that are currently underappreciated in the clinic. Our model uses mRMR,

which allows us to identify the features most highly correlated with death and readmission

before model development, and we use both local (SHAP) and global (SHAP, Gini) explana-

tory methods to understand both the importance of each feature across all predictions as well

as the direction of influence of each feature for individual predictions post-development. The

most important variables we have identified align with current knowledge about the causes of

death and readmission, which further highlights the usefulness of our model. For example,

physiologic high-risk factors are the most important predictor for mortality. These high-risk

factors include New York Heart Association class III/IV congestive heart failure, left ventricu-

lar ejection fraction < 30%, unstable angina, or myocardial infarction within 30 days. The

association between PAD and cardiovascular mortality is well-known [35,36], corroborating

our model’s identification of physiologic high risk factors as the most important predictor.

Another important predictor for mortality, elective surgery designation, also demonstrates the

clinical relevance of the model, as patients undergoing elective procedures are likely to have a

more thorough pre-operative evaluation and optimization while having inherently less severe

disease. Functional status, another predictor for mortality, has been shown to be associated

with mortality in other studies of surgical outcomes [37–40] For readmission prediction, the

identification of an open wound or wound infection as the most important feature also aligns

with current knowledge, as an open wound and/or wound infection has been associated with

readmission in multiple previous studies of surgical outcomes [11,41,42]. Another important

predictor for readmission was a major reintervention of the treated arterial segment, which is

a known predictor of readmission, as complex procedures which result in complications often

require multiple admissions to manage the sequela of the initial complication. Our model

emphasizes the importance of these variables and others while also allowing us to identify
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factors that have been previously underutilized such as alkaline phosphatase and INR. Our

model recognizes correlations between these variables and 30-day mortality and readmission

outcomes that—though not necessarily causal—may be useful as indicators of death and read-

mission risk. The survival analysis further highlights the importance of these features by dem-

onstrating a statistically significant difference between subgroups of patients stratified by

feature values.

The integration of machine learning models into healthcare settings has the potential to

perpetuate pre-existing biases in the data and widen health disparities [43–45]. Therefore, it is

important to ensure fairness to different demographic groups during the development of

machine learning models for healthcare. Fairness is a complex social and mathematical con-

cept with multiple conflicting definitions [46], and the problem of ensuring fairness in

machine learning may not be solvable by computation alone [47]. Therefore, our demonstra-

tion of fairness—in this case demographic parity—must be understood as one part of an inves-

tigation into a complex web of biological and social factors impacting mortality and

unplanned readmission in this patient population. The equal treatment of our model for all

demographic groups is promising, and due to the complexity of fairness, is also a critical area

for further study.

Another area of further study includes identifying modifiable risk factors for the prevention

of death and readmission, as well as identifying effective strategies to target these factors to

reduce mortality and unplanned readmission in patients undergoing lower extremity endovas-

cular interventions for PAD. It may also be useful to further analyze underutilized variables

that have been selected as predictors of mortality and readmission to determine their utility as

markers of death and readmission risk. Future research also includes external validation of this

model. As the next step, we propose a shadow evaluation method to test the model against real

data without interfering with clinical decisions, a method that has been proposed in previous

literature discussing translation of machine learning models in healthcare [48,49]. With this

method, the model will output individual risk scores for death and readmission for each

patient which will not be revealed to clinicians but later compared to 30-day outcomes to eval-

uate the model’s effectiveness. The model should also be tested on other datasets containing

patients undergoing lower extremity endovascular interventions. This work may additionally

be enhanced by the inclusion of time series data, which could facilitate the use of Long Short-

Term Memory Networks (LSTM) to incorporate changes over time and improve

performance.

There are several limitations to this study. The ACS-NSQIP database is implemented

mostly at large teaching hospitals that have more quality-related accreditations and financial

resources to conduct data collection [50]. Therefore, the data in the ACS-NSQIP database may

not be representative of all surgical cases in the United States. Additionally, the ACS-NSQIP

database tracks only 30-day outcomes, which prevents analysis on longer-term mortality and

unplanned readmission. ACS-NSQIP also does not include all potentially relevant clinical vari-

ables such as vessel intervened, operator experience, and differences in procedure perfor-

mance. Another limitation lies in the CPT code filtering process, which assumes equivalence

between all procedures performed. Furthermore, as evidenced by the differences between

training and testing model performance, our model somewhat overfits the training data. This

was possibly caused by the data imputation step generating synthetic examples from a limited

number of known observations [21,51]. However, our models perform well on an independent

test set, indicating that this issue may be of limited concern. The feature selection and interpre-

tation steps of our model with SHAP establish only a correlation between the selected variables

and the studied outcomes and cannot be used to establish causal relationships.
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Conclusion

In conclusion, we have developed random forest models to output risk scores for 30-day mor-

tality and 30-day unplanned readmission in patients undergoing lower extremity endovascular

infrainguinal interventions for peripheral arterial disease. These models may help us personal-

ize the medical decisions of patients with PAD to reduce the risk of mortality and readmission.
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S1 Fig. Survival curves for subgroups stratified by top predictive features. (30-day mortal-

ity: Physiologic high-risk factors, elective surgery, functional status, HCT, and creatinine,
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treated arterial segment, elective surgery, claudication, and diabetes).
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