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Parkinson’s disease (PD) is a common neurodegenerative disease. PD misdiagnosis can
occur in early stages. Gait impairment in PD is typical and is linked with an increased
fall risk and poorer quality of life. Applying machine learning (ML) models to real-world
gait has the potential to be more sensitive to classify PD compared to laboratory data.
Real-world gait yields multiple walking bouts (WBs), and selecting the optimal method
to aggregate the data (e.g., different WB durations) is essential as this may influence
classification performance. The objective of this study was to investigate the impact
of environment (laboratory vs. real world) and data aggregation on ML performance
for optimizing sensitivity of PD classification. Gait assessment was performed on 47
people with PD (age: 68 ± 9 years) and 52 controls [Healthy controls (HCs), age:
70 ± 7 years]. In the laboratory, participants walked at their normal pace for 2 min,
while in the real world, participants were assessed over 7 days. In both environments,
14 gait characteristics were evaluated from one tri-axial accelerometer attached to the
lower back. The ability of individual gait characteristics to differentiate PD from HC
was evaluated using the Area Under the Curve (AUC). ML models (i.e., support vector
machine, random forest, and ensemble models) applied to real-world gait showed better
classification performance compared to laboratory data. Real-world gait characteristics
aggregated over longer WBs (WB 30–60 s, WB > 60 s, WB > 120 s) resulted in superior
discriminative performance (PD vs. HC) compared to laboratory gait characteristics
(0.51 ≤ AUC ≤ 0.77). Real-world gait speed showed the highest AUC of 0.77. Overall,
random forest trained on 14 gait characteristics aggregated over WBs > 60 s gave
better performance (F1 score = 77.20 ± 5.51%) as compared to laboratory results
(F1 Score = 68.75 ± 12.80%). Findings from this study suggest that the choice of
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environment and data aggregation are important to achieve maximum discrimination
performance and have direct impact on ML performance for PD classification. This study
highlights the importance of a harmonized approach to data analysis in order to drive
future implementation and clinical use.

Clinical Trial Registration: [09/H0906/82].

Keywords: Parkinson’s disease, gait, real-world, accelerometer, machine learning, laboratory, gait aggregation,
wearables

INTRODUCTION

Parkinson’s disease (PD) is the second most common
neurodegenerative disease after Alzheimer’s disease (Nutt
and Wooten, 2005; Feigin et al., 2019). PD prevalence has
doubled over the past 25 years and now affects approximately
10 million people worldwide (Dorsey et al., 2018). Due to the
progressive nature of PD (Dorsey et al., 2013; Emamzadeh
and Surguchov, 2018), both motor (Hobert et al., 2019) and
non-motor (Przedborski et al., 2003; Jankovic, 2008) symptoms
have a significant impact on quality of life and increased
burden on healthcare costs (von Campenhausen et al., 2011).
Currently, diagnostic criteria for PD are based on motor features
assessed with clinical scales (Jankovic, 2008; Postuma et al.,
2015). However, the diagnostic accuracy of PD in a clinical
setting is only 74% if performed by a non-expert and 80%
by a movement disorder specialist (Rizzo et al., 2016). Given
the relatively low rates of accurate diagnosis, particularly in
the early stages, there is a need for additional diagnostic aids
(Mancini et al., 2011). The application of gait analysis may be a
promising addition to the diagnostic toolkit (Buckley et al., 2019;
Viceconti et al., 2020).

Previous work has shown that an objective gait assessment
obtained in lab settings and the clinic can be used to classify
PD using machine learning (ML) approaches (Rehman et al.,
2019a,b, 2020a,b). However, assessing gait in both the lab and the
clinic has some key limitations. The patient is required to attend
specialist facilities, and assessments often do not represent the
range of challenges associated with habitual walking (Orendurff
et al., 2008). Moreover, individuals tend to perform better (walk
faster) during performance tests which reflects walking capacity
(“can do”) (Del Din et al., 2016a) compared to everyday life
which captures the functional performance (“actually do”) of the
participant (Hillel et al., 2019; Maetzler et al., 2020; Shah et al.,
2020c; Warmerdam et al., 2020; Atrsaei et al., 2021). The real
world may therefore provide a more sensitive and pragmatic
context to identify and classify PD (Shah et al., 2020c). Increasing
interest in the use of inertial measurement units (IMUs) to
monitor gait in people with PD in the lab is evident (González
et al., 2010; McCamley et al., 2012; Zijlstra and Zijlstra, 2013;
Godfrey et al., 2015; Del Din et al., 2016c), as is monitoring gait
continuously in the real world over multiple consecutive days (De
Bruin et al., 2007; Weiss et al., 2013, 2014; Godfrey et al., 2014).
However, several methodological challenges remain for a better
understanding and analysis of real-world gait data. These include
extraction of relevant gait characteristics and appropriate use of

data aggregation for analysis, e.g., averaging gait characteristics
using various WB durations.

Spatiotemporal gait characteristics [from the gait domains
of pace, rhythm, variability, asymmetry, and postural control
(Lord et al., 2013)] from lab and real-world data are significantly
different in people with PD compared to healthy controls (HCs)
(Maetzler et al., 2013; Del Din et al., 2016a). However, methods
for analysis of data obtained in real-world settings rely on
selecting the protocol for gait assessment (e.g., environment and
duration) and data aggregation by walking bout (WB) duration
(e.g., aggregating all WB’s or selecting an optimal bout duration)
(Del Din et al., 2016a,b, 2019; Shah et al., 2020a; Warmerdam
et al., 2020). All these options impact on the quantification
of spatiotemporal gait characteristics and subsequent results
(Del Din et al., 2016b).

Real-world gait consists of a variety of WBs of different
durations, the majority of which are short (<10 s, approximately
50%) with only 3% over 60 s for both PD and HC (Del Din
et al., 2016a). In contrast, lab-based gait assessments are based
on standardized walking distances such as 4 or 10 m (Del Din
et al., 2016a,c; Van Ancum et al., 2019) or duration (e.g., 2 min)
(Rehman et al., 2019a,b; Del Din et al., 2020). Comparison of data
obtained in the lab and in the real-world is therefore challenging.

In previous work, ML classifiers have been trained on
data from lab-based gait assessments (Rehman et al., 2019a,b,
2020a,b). The impact of environment (lab vs. real-world) and
data aggregation by WB duration on PD classification has
not been thoroughly explored. Different WB durations also
influence the distribution of gait characteristics. Therefore, ML
models need to be able to account for multiple distributions
(due to inclusion of a variety of short and long WBs) of
real-world gait characteristics. To the best of the authors’
knowledge, the impact of WB durations on the classification
of PD using machine learning approaches has not yet
been investigated.

The aims of this study are therefore to: (i) investigate the
impact of environment (gait assessment in lab vs. real world)
and (ii) data aggregation by WB duration on gait characteristics
and performance of ML models to accurately classify PD.
Based on current available univariate analyses (Del Din et al.,
2016a, 2019; Shah et al., 2020c), we hypothesized that: (i) real-
world gait would be more sensitive for performing the ML
based classification of PD compared to lab gait assessment; (ii)
associations between lab-based and real-world gait would vary
depending on WB duration; and (iii) ML model performance
would be influenced by WB duration.
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MATERIALS AND METHODS

Participants
In this cross-sectional analysis, 52 HCs and 47 people with PD
were included from the 18 month time point of the “Incidence of
Cognitive Impairment in Cohorts with Longitudinal Evaluation–
GAIT” (ICICLE-GAIT) study (Khoo et al., 2013; Yarnall et al.,
2014). ICICLE-GAIT is a study nested within ICICLE-PD
which recruited participants between June 2009 and December
2011 (Khoo et al., 2013). PD participants were recruited
from local movement disorders clinics (Khoo et al., 2013)
and had a diagnosis of idiopathic PD according to the
United Kingdom Brain Bank Criteria (Khoo et al., 2013;
Yarnall et al., 2014). PD participants who have Parkinsonism
disorders or an atypical form of Parkinson’s disease, with poor
knowledge of working English language, or with cognitive
impairment (Mini-Mental State Examination score < 24) were
excluded from the study. The HC participants were recruited
from the local community and included provided that they
were able to walk independently and were without significant
motor, mood, or cognitive impairment. ICICLE-GAIT received
ethical approval from the Newcastle and North Tyneside
Research Ethics Committee (REC No. 09/H0906/82). Study
procedures were conducted according to the Declaration of
Helsinki and all participants gave written informed consent prior
to participating.

Demographics and Clinical
Characteristics
Participant demographics such as sex, age, mass, height, and BMI
were recorded. The Montreal Cognitive Assessment (MoCA)
was used to measure global cognition (Nasreddine et al., 2005).
Balance confidence was assessed using the Activities Specific
Balance Confidence scale (ABC) (Powell and Myers, 1995). PD
motor severity was assessed with Part III of the Movement
Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS III) (Goetz et al., 2008) and disease stages were also
recorded according to Hoehn and Yahr (1998). The levodopa
equivalent daily dose (LEDD; mg/day) was also calculated
(Tomlinson et al., 2010; Lawson et al., 2016).

Gait Assessment
Equipment and Protocol
Gait assessment was performed in the lab and real-world
using a tri-axial (x: vertical, y: mediolateral, z: anteroposterior)
accelerometer (Axivity, AX3, sample frequency: 100 Hz, range:
±8 g) on the lower back, as shown in Figure 1A. In the
lab, a 2 min continuous walk around an oval circuit was
performed (Rehman et al., 2019b). PD participants’ gait was
assessed while optimally medicated (approximately one hour
after medication intake). In the real-world, gait was monitored
continuously for 7 days (Del Din et al., 2016a,b, 2019).
This took place following the lab assessment. Participants
were instructed to perform their usual activities. Further
details can be found in previous work (Godfrey et al., 2014;
Del Din et al., 2016a, 2019).

Data Processing and Extraction of Gait
Characteristics–Lab
Data from the accelerometer was downloaded to a computer for
offline processing in MATLAB (R2019a). The vertical component
of the transformed acceleration signal was filtered first to 20 Hz
with a 4th order Butterworth filter (Moe-Nilssen, 1998; Zijlstra
and Hof, 2003; McCamley et al., 2012). To detect the events
within each gait cycle (Figure 1B), the initial contact (IC, heel
strike) and final contact (FC, toe-off) points were identified with
the help of a Gaussian continuous wavelet transform. Additional
temporal gait characteristics (step time, swing time, and stance
time) were quantified based on IC and FC (McCamley et al., 2012;
Godfrey et al., 2015; Del Din et al., 2016c). For the evaluation
of spatial characteristics (step length) the inverted pendulum
model was utilized (Zijlstra and Zijlstra, 2013) and step velocity
was calculated as the ratio of step length and step time (Del
Din et al., 2016c). Variability was calculated as the standard
deviation from all steps and asymmetry as the absolute difference
of alternative steps (left and right) (Del Din et al., 2016c).
The detailed method for the evaluation of spatiotemporal gait
characteristics is described in previous work (Lord et al., 2013;
Godfrey et al., 2015; Del Din et al., 2016c).

Fourteen spatiotemporal gait characteristics (Figure 1C) were
extracted based on ICs and FCs and mapped onto five domains:
pace (step velocity, step length, swing time variability), rhythm
(step time, swing time, stance time), variability (step velocity
variability, step length variability, step time variability, swing
time variability, stance time variability), asymmetry (step time
asymmetry, swing time asymmetry, stance time asymmetry),
and postural control (step length asymmetry) (Lord et al., 2013;
Godfrey et al., 2015; Del Din et al., 2016c).

Data Processing, Extraction of Gait Characteristics,
and Data Aggregation–Real-World
For the real-world gait assessment, data was downloaded
to a computer for offline processing in MATLAB (R2019a).
Accelerometry data was segmented into each calendar day and
WBs were detected based on the magnitude and standard
deviation of the acceleration signal (Del Din et al., 2016d; Hickey
et al., 2016). A WB was defined as the continuous length of
time spent during walking (Godfrey et al., 2014), with at least
three steps (Del Din et al., 2016a, 2019). No resting period
thresholds between consecutive WBs were set so that each WB
was individually considered (and not merged to other WBs)
(Barry et al., 2015). Gait characteristics were firstly evaluated for
each WB by combining all steps within a WB. Then, all WBs
were combined for each day to provide a daily average. Finally,
each day was combined to provide a 7 day average for each gait
characteristic (Del Din et al., 2016a, 2019). The same fourteen gait
characteristics were extracted from the real-world (Lord et al.,
2013; Godfrey et al., 2015; Del Din et al., 2016c) for comparison
with lab-based gait (Figure 1C).

To investigate the impact of real-world data aggregation
by WB duration on gait characteristics and ML models, a
comprehensive approach was adopted. WB of various durations
(seconds) were considered and aggregated over the 7 days
(Figure 1A). In total, fourteen WB durations were chosen,

Frontiers in Aging Neuroscience | www.frontiersin.org 3 March 2022 | Volume 14 | Article 808518

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-808518 March 18, 2022 Time: 17:54 # 4

Rehman et al. PD Classification From Real-World Gait

FIGURE 1 | Overall workflow from gait assessment to classification: (A) Gait assessment protocol, (B) WB detection and gait characterization, (C) 14 gait
characteristics (Var, variability; Asy, asymmetry), (D) Classification modeling.
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and the average of all WBs was used to describe each
gait characteristic. The six most optimal and distinct WB
durations without having redundant information by combining
the incremental WBs (i.e., WBs ≤ 10 s, 10 < WBs ≤ 30 s,
30 < WBs ≤ 60 s, 60 < WBs ≤ 120 s, WBs > 60 s, WBs > 120 s)
are presented in the manuscript to reduce the data for clear
message. However, the remaining WB durations (i.e., WBs ≤ 5 s,
WBs ≤ 30 s, WBs ≤ 60 s, WBs ≤ 90 s, WBs ≤ 120 s,
5 < WBs ≤ 10 s, 60 < WBs ≤ 90 s, 90 < WBs ≤ 120 s) are
provided in the Supplementary Material.

Statistical Analysis
Normality of the data (gait characteristics) was checked by
plotting histograms and using the Shapiro Wilk test for each
environmental condition. In addition, rain clouds and box plots
were used to visually check the distribution for each group
and shift in distribution among groups (PD vs. HC) for each
gait characteristic. To evaluate differences between PD, HC, and
the impact of environment, a mixed ANOVA was performed
on the data aggregation by WB duration and their combined
effect (interaction) on each gait characteristic. Based on the data
distribution, student t-test and Mann Whitney U-test were used
to evaluate differences between the PD and HC groups. Given
the exploratory nature of this analysis, we used a p-value < 0.05
to guide statistical interpretation and did not make adjustments
for multiple comparisons (Rothman, 1990; Perneger, 1998). This
is due to the inclusion of mixed ANOVA for overall statistics
and area under the receiver operating characteristics curve
(AUC) analysis for each gait characteristic to investigate its
discriminatory power (PD vs. HC) under different environmental
conditions and aggregation by WB duration. In addition, the
p-values are provided to assess the statistical significance of
between group differences. The relationship between lab and real-
world gait characteristics was also assessed with the Pearson’s
correlation coefficient.

Machine Learning Classification of
Parkinson’s Disease
Three different ML models were used: support vector machine
(SVM), random forest (RF), and an ensemble of these two
classifiers (Figure 1D; Rehman et al., 2019a,b). The ensemble
model made the decision based on soft voting (probability)
(Pedregosa et al., 2011). Due to the variety of data distributions,
instead of training a separate model for each WB threshold, ML
models were trained by combining all WB duration data. This
allowed one single model to be developed, which could cater for
the distribution of the entire dataset. Training performance of the
models was evaluated using a 10-fold cross-validation technique
on 70% of data, and separate testing was done on each WB
duration threshold by keeping 30% of the data for testing. This
rigorous training and testing process was repeated 10 times based
on different random seed values. Classifier performance was
evaluated in terms of accuracy, F1 score, AUC, sensitivity, and
specificity (Rehman et al., 2019a, 2020a,b). In addition, influential
gait characteristics were also identified based on their importance
in RF and recursive feature elimination (RFE) technique with

SVM-linear (Rehman et al., 2019a,b). Model hyperparameters
were optimized with grid search. The standard python library
SciKit learn was used for ML analysis.

RESULTS

Demographic and clinical characteristics are summarized in
Table 1. There were no significant differences between the PD
and HC groups for sex, age, height, mass, and BMI. People with
PD had lower cognitive scores (MoCA) and reduced Activities-
Specific Balance Confidence (ABC) score compared to HC
(p < 0.05). PD participants had an average disease duration of
26 months, the majority of which were Hoehn and Yahr stage II
with an average MDS-UPDRS III score of 31.5± 9.8.

Impact of Environment and Data
Aggregation on Gait Characteristics
Overall Statistics
The distribution of WB depending on duration is shown in
Figure 2 and the distribution of step velocity is shown in
Figure 3. Distributions for the remainder of gait characteristics
are reported in Supplementary Figures 1, 2. Overall, mixed
ANOVA statistical analysis results are presented in Table 2.
Statistical differences between PD and HC are displayed with a
heat map in Figure 4.

There was a significant interaction (Table 2) between
environment (lab and real-world, including data aggregation by

TABLE 1 | Demographics and clinical measures of the Parkinson’s disease (PD)
and healthy controls (HC) group.

Characteristics HC (n = 52)
Mean ± SD

PD (n = 47)
Mean ± SD

p

M/F (n) 28/24 32/15 0.083

Age (years) 70.39 ± 6.88 68.36 ± 8.98 0.216

Height (m) 1.69 ± 0.08 1.70 ± 0.08 0.542

Mass (kg) 81.13 ± 15.15 80.27 ± 15.67 0.786

BMI (kg/m2) 28.29 ± 4.23 27.62 ± 4.62 0.455

MoCA 27.61 ± 2.39 26.28 ± 3.60 0.037

ABCs (0–100%) 91.02 ± 11.65 80.88 ± 16.18 0.003

Medication (LEDD,
mg/day)

415.08 ± 212.61

Time from Clinical
Diagnosis (months)

26.42 ± 5.48

Hoehn and Yahr (n) HY I–7 (15%)

HY II–38 (81%)

HY III–2 (4%)

MDS-UPDRS III 31.53 ± 9.79

(HY I–16.6 ± 4.73)

(HY II–33.28 ± 8.81)

(HY III–35.5 ± 0.71)

M, Males; F, Females; BMI, Body Mass Index; MoCA, Montreal Cognitive
Assessment; ABCs, Activities Specific Balance Confidence scale; LEDD, Levodopa
Equivalent Daily Dose; MDS-UPDRS, Movement Disorder Society Unified
Parkinson’s Disease Rating Scale. Bold values mean a significant difference
between PD and HC.
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TABLE 2 | Mixed ANOVA results: main effects and interactions between gait assessment environmental conditions (lab vs. real-world) and groups (PD vs. HC) for each
gait characteristic.

Gait characteristics Between participant factor:
Group (HC, PD)

Within participant factor:
Gait data (Lab, real-world, and all WB)

Interaction:Group × Gait

F p η2 F p η2 F p η2

Step Velocity (m/s) 9.46 0.003* 0.089 73.36 <0.001* 0.431 5.47 0.001* 0.053

Step Length (m) 9.95 0.002* 0.093 138.22 <0.001* 0.588 2.56 0.058 0.026

Swing Time Variability (s) 6.83 0.01* 0.066 158.35 <0.001* 0.62 2.25 0.085 0.23

Step Time (s) 5.45 0.022* 0.053 42.58 <0.001* 0.305 4.83 0.001* 0.047

Swing Time (s) 6.85 0.01* 0.066 66.63 <0.001* 0.407 3.67 0.007* 0.036

Stance Time (s) 4.64 0.034* 0.046 37.07 <0.001* 0.276 4.54 0.002* 0.045

Step Velocity Variability (m/s) 0.22 0.638 0.002 128.51 <0.001* 0.57 1.49 0.218 0.015

Step Length Variability (m) 1.58 0.211 0.016 58.31 <0.001* 0.375 2.11 0.097 0.021

Step Time Variability (s) 5.15 0.026* 0.5 173.13 <0.001* 0.641 2.81 0.04* 0.028

Stance Time Variability (s) 5.79 0.018* 0.056 170.86 <0.001* 0.638 3.14 0.023* 0.031

Step Time Asymmetry (s) 4.44 0.038* 0.044 1018.75 <0.001* 0.913 1.11 0.342 0.011

Swing Time Asymmetry (s) 7.79 0.006* 0.074 1117.42 <0.001* 0.92 2.64 0.047* 0.026

Stance Time Asymmetry (s) 5.05 0.027* 0.05 986.81 <0.001* 0.911 2.04 0.113 0.021

Step Length Asymmetry (m) 0.18 0.671 0.002 911.29 <0.001* 0.904 2.29 0.051 0.023

Partial eta squared (η2) represents effect size; F statistic (F); significance (p) indicated as *.

WB duration) and group (HC, PD) for seven characteristics
(step velocity, step time, swing time, stance time, step time
variability, stance time variability, and swing time asymmetry).
However, the main effect of within participant factor revealed
that all the gait characteristics evaluated in the lab setting were
significantly different from those evaluated in the real-world
setting and for all data aggregations. Similarly, the main effect
of between-participant factor revealed that there were significant
differences between PD and HC for all the gait characteristics
except step velocity variability, step length variability, and step
length asymmetry.

Impact of Environment [Lab vs. Real-World (All
Walking Bouts)] on Between-Group Differences
(Parkinson’s Disease vs. Healthy Control)
Lab vs. Real-World (All Walking Bouts)
During the 2-min continuous walk in the lab, both groups walked
faster with a shorter step time and longer step length compared
to when in the real-world regardless of WB duration. Even for
the longest WB (>120 s), these characteristics (step velocity
and step length) were reduced compared to the 2-min (120 s)
continuous walk in the lab. As an example, the distribution
of step velocity for both groups and environmental conditions
under different data aggregation by WB durations is shown in
Figure 3. Gait variability (swing time, step time, stance time,
step length, and step velocity) was reduced when measured in
the lab compared to the real-world. Gait was more symmetrical
when measured in the lab (step time, stance time, swing time,
and step length) for both PD and HC compared to real-world gait
irrespective of WB duration.

Parkinson’s Disease vs. Healthy Control
Both in the lab and real-world conditions, when combining all
WB durations, PD participants walked slower, with slower step

time and shorter step length compared to HC (Supplementary
Figure 1). Step velocity and step length were significantly
different (p < 0.05) between PD and HC in both lab and real-
world conditions (Figure 4). In the real-world, PD participants
had significantly lower swing time variability compared to HC
(p = 0.033). None of the asymmetry-based gait characteristics
measured in the lab were significantly different between
PD and HC, except for step length asymmetry (Figure 4).
Similarly, for asymmetry-based characteristics in the real-world,
only swing time asymmetry, based on the combination of
all WBs, was significantly higher for PD compared to HC
(p= 0.006) (Figure 4).

Effect of Real-World Data Aggregation on Gait
Distribution of Data Aggregation by Walking Bout Durations
All PD and HC participants had WBs across all duration
thresholds. The distribution of WBs are shown in Figure 2 and
Supplementary Figure 3. The majority of WBs (87% for PD and
85% for HC) were of shorter duration (≤10 s), with relatively few
WB per day found over 120 s (1.8% for PD and 1.9% for HC).
Overall, HC had a greater number of WB (total n= 170,368 from
52 HC) over 7 days of continuous assessment compared to the
PD group (total n= 134,156 from 47 PD).

Effect of Data Aggregation by Walking Bout Durations on
Between Group Differences
For both PD and HC groups, the slowest speed was observed
during very short WBs (≤10 s) compared to long WBs > 10 s
(Figure 3 and Supplementary Figures 2, 4). The most significant
(p < 0.01) group differences between PD and HC were found
in longer WBs (>60 s or 120 s) as compared to shorter WBs
(Figure 4). Similarly, reduced step length and shorter step time
were observed in short WBs (≤10 s) as compared to long WBs.
Step time was significantly slower for PD in longer WBs such
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FIGURE 2 | Distribution of all detected walking bouts (WBs) in Parkinson’s disease (PD) and healthy control (HC) groups in the real-world assessment of 7 days. WB
are categorized intro 14 thresholds based on time in seconds followed by their average of 7 days.

as >60 s (p = 0.001) and >120 s (p < 0.001) compared to
HC. Interestingly, gait variability in the longer WBs (>60 s and
>120 s) resulted in significant differences between the groups
for swing time variability, step length variability, step time
variability, and stance time variability. All the asymmetry-based
gait characteristics behaved differently in short and long WBs.
For example, in the longer WBs (>120 s), asymmetry-based gait
characteristics were similar or close to lab-based gait asymmetry
characteristics.

To summarize, in the real world, significant group differences
(PD vs. HC) were identified for WBs longer than 60 or 120 s
for all gait characteristics apart from asymmetry-based gait
characteristics.

Association Between Gait Characteristics Collected
in the Lab vs. Real-World
The association between lab and real-world gait characteristics
is shown in Figure 5. In general, lab and real-world gait
characteristics showed either no correlation or weak-to-moderate

association with one another. However, stronger correlations
were noted for the PD group compared to HC with correlations
>0.5 observed for step length, step time, and stance time. Stance
time resulted in the strongest correlations, followed by step
time, compared to other gait characteristics, with the strongest
correlation of 0.59 observed for WBs of 10–30 s and 30–60 s.
Real-world gait speed resulted in a weak correlation for both
PD and HC (max 0.388) with lab-based gait speed in the longer
WBs > 60 or >120 s. Short WBs (≤10 s) had weak correlation
compared to longer WBs (>10 s). Variability characteristics
were negatively correlated between the lab and real-world gait
assessments. Results for all WB durations are presented in
Supplementary Figure 5.

Impact of Environment and Data
Aggregation on Classification of
Parkinson’s Disease
Results showing the impact of environment and data aggregation
by WB durations on each individual gait characteristic
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FIGURE 3 | Distribution of step velocity (m/s) into different WB thresholds and average of 7 days.

and ML models for classification of PD are presented in
Figures 6, 7 (Supplementary Figures 6–8) and Table 3
(Supplementary Table 1).

Machine Learning Performance in the Lab vs.
Real-World
Based on the AUC for each gait characteristic discriminating PD
from HC (Figure 6), real-world gait characteristics combining all
WBs had relatively low AUC values compared to gait assessed
in lab settings. However, the asymmetry-based characteristics
in lab had lower AUC (0.51–0.57) as compared to real-world
asymmetry-based gait characteristics (AUC= 0.61–0.68).

For the classification of PD, various gait characteristics were
statistically significant between the groups (PD vs. HC) in lab
and real-world settings. Therefore, the classifiers were trained
on the overall 14 gait characteristics. During the training phase,
performance of the classifiers was based on the 10-fold cross-
validation and ranged between 72 and 95% (Supplementary
Figure 7). These trained classifiers were tested separately on
the 30% average lab and real-world test data. Random forest
performed better under both environment conditions. When
combining all WBs, real-world gait gave lower classification
performance (accuracy: 60.67 ± 10.65) compared to lab-based
gait (accuracy: 64.67 ± 15.02). This lower performance from

real-world data (all WBs combined) was observed (Figure 7
for F1 score) in all the three models (random forest, support
vector machine, and ensemble model). However, only RF
performance was statistically significant from SVM under both
environmental conditions.

Impact of Data Aggregation by Walking Bout
Duration on Machine Learning Performance
Real-world gait characteristics had higher AUC compared to lab-
based gait assessment for selected WB durations (Figure 6). The
maximum AUC of 0.765 was observed for step velocity in real-
world gait assessment from longer WBs (>120 s), followed by
the lab-based step velocity (AUC of 0.721), 30 < WBs ≤ 60 s
(AUC of 0.714), and WBs > 60 s (AUC of 0.709). All the rhythm-
based gait characteristics (step time, swing time, and stance
time) had an AUC around 0.7 when aggregated across longer
WBs > 60 s or > 120 s. A maximum AUC of 0.703 was found
in 30 < WBs ≤ 60 s for swing time asymmetry. To summarize,
the maximum AUC from real-world gait characteristics were
found in the longer WBs (30 < WBs ≤ 60 s, WBs > 60 s,
and WBs > 120 s).

Data distribution for different thresholds of WB duration
varies. Therefore, classifiers were trained on the combined
data to accommodate all distributions. In addition, because
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FIGURE 4 | Comparison of effect of environment (lab vs. real-world) and WB duration (threshold) on discrimination between PD and HC participants (Dark
highlighted color means lower p values).

there were differences in gait characteristics (discriminating PD
vs. HC) for different thresholds of WB duration, classifiers
were trained on all 14 gait characteristics. During the training
phase, the performance of the classifier based on the 10-fold
cross-validation ranged between 72 and 95% (Supplementary
Figure 7). Overall, RF performed better on the new data set (30%)
used for testing as compared to other classifiers (Figure 7). In
addition, RF classification performance was significantly different
from SVM in all WB durations except WBs < 10 s, while
RF was only significantly different from ensemble model in
10 < WBs < 30 s and WBs > 120 s. Longer WBs > 60 s
gave a better classification performance in discriminating PD
from HC as compared to other WB durations in the real-
world data. However, the classifier performance varies with
different data aggregation by WB durations, which indicates
that comparing gait performance from the same participants
in different environments (and WB durations) can influence
the classifiers. Maximum testing performance of the classifiers
were obtained from 30 < WBs ≤ 60 s, WBs > 60 s, and
WBs > 120 s (Table 3).

Influential gait characteristics were similar to those
characteristics with a higher AUC (e.g., step velocity, step
length, step time, swing time, stance time, and swing time
variability; Supplementary Figure 9). Based on the importance
of characteristics in the RF classifier, swing time, step velocity,
stance time, swing time variability, and step length were identified
as the top five characteristics. Similarly, based on the RFE with
support vector machine, step velocity, step length, stance time,
step time, and swing time were identified. Based on the common

characteristics in the top five, step velocity, step length, swing
time, and stance time were identified by both classifiers.

DISCUSSION

This is the first study to comprehensively investigate the impact
of environment and data aggregation by WB duration on
ML performance for the classification of PD. Based on the
results, environment and aggregation of real-world data by
WB duration influenced each individual gait characteristics for
both groups and subsequent performance of ML models. We
found a weak to moderate association between lab and real-
world gait for both PD and HC. Based on the AUC of each
gait characteristic compared to the lab, real-world gait better
discriminated PD from HC, with step velocity in longer WBs
(>120 s) providing the highest AUC of 0.765. In terms of PD
classification, ML performance using real-world data gave better
results compared to lab-based gait assessment for selected WB
durations (WBs > 60 s; 30 < WB ≤ 60 s; > 120 s). Our findings
show that testing environment and data aggregation (by WB
duration) influence accuracy of ML performance and, therefore,
classification of PD.

Impact of Environment and Data
Aggregation on Gait Characteristics
Lab vs. Real-World
In the present study, gait assessed in the lab appeared to
give different values and results compared to the real-world
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FIGURE 5 | Association between lab-based gait characteristics with real-world gait. Pearson’s correlation r values for both PD and HC.

gait assessed for 7 consecutive days across all gait domains
(pace, rhythm, variability, asymmetry, and postural control).
These findings align with previous work (Del Din et al., 2016a),
where PD and HC gait was assessed in the lab (10 m walk in
a straight line) and in the real world for over 7 days. A major
factor explaining the differences observed between environments
is that in the lab, gait is measured under controlled settings
during scripted tests (reflecting capacity), whilst real-world gait
is characterized by natural walking behavior executed under
variable settings and conditions (reflecting performance) (Del
Din et al., 2016a,b, 2019; Shah et al., 2020c). People tend to walk
faster with longer steps, lower variability, and higher asymmetry
in the lab compared to real-world (Del Din et al., 2016a), which
is evident from the present findings and in agreement with
others (Takayanagi et al., 2019). Findings from this study support

previous work showing that real-world gait is more variable than
lab-based gait (Del Din et al., 2016a,b, 2019).

We found that the association (correlation) between lab-
based and real-world gait characteristics was weak to moderate,
irrespective of WB duration, suggesting real-world and lab-
based gait are measuring different aspects and constructs
(i.e., performance vs. capacity) of walking (Maetzler et al.,
2020). These results concur with previous work showing that
walking speed during a 4 m walk had low correlation with
real-world gait (Van Ancum et al., 2019). One reason for
the low correlation could be the heterogeneous distribution
of real-world characteristics. Moreover, other gait activities,
such as turning, were not accounted for. For example,
people with PD tend to turn, on average, >60 times every
hour (El-Gohary et al., 2014) rather than walk in perfectly
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FIGURE 6 | Discrimination of PD from HC based on each individual gait characteristic with area under the receiver operating characteristics curve (AUC).

FIGURE 7 | Accuracy of trained classifiers based on the lab and real-world assessment of gait grouped by WB durations (N means average testing accuracy across
all tests on independent dataset).

straight lines in the real-world (Galperin et al., 2019; Hillel
et al., 2019), which cannot be evaluated using a tri-axial
accelerometer alone.

There are many other factors influencing the complexity
of real-world gait. Real-world gait is intrinsically dual task
and is cognitively demanding due to complex and challenging

Frontiers in Aging Neuroscience | www.frontiersin.org 11 March 2022 | Volume 14 | Article 808518

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-808518 March 18, 2022 Time: 17:54 # 12

Rehman et al. PD Classification From Real-World Gait

TA
B

LE
3

|E
va

lu
at

io
n

m
et

ric
s

(a
cc

ur
ac

y,
se

ns
iti

vi
ty

,a
nd

sp
ec

ifi
ci

ty
)o

ft
he

tr
ai

ne
d

cl
as

si
fie

rs
on

th
e

la
b

an
d

re
al

-w
or

ld
te

st
da

ta
un

de
r

va
rio

us
w

al
ki

ng
bo

ut
(W

B
)d

ur
at

io
ns

.

La
b

/W
B

d
ur

at
io

ns
R

an
d

o
m

fo
re

st
S

up
p

o
rt

ve
ct

o
r

m
ac

hi
ne

E
ns

em
b

le
cl

as
si

fi
er

A
cc

ur
ac

y
S

en
si

ti
vi

ty
S

p
ec

ifi
ci

ty
A

cc
ur

ac
y

S
en

si
ti

vi
ty

S
p

ec
ifi

ci
ty

A
cc

ur
ac

y
S

en
si

ti
vi

ty
S

p
ec

ifi
ci

ty

La
b

(2
m

in
)

64
.6

7
±

15
.0

2
81

.6
2
±

11
.9

8
50

.2
7
±

19
.0

3
51

.3
3
±

5.
58

88
.8

7
±

5.
56

18
.1

2
±

11
.6

5
60

.6
7
±

5.
96

88
.7

9
±

3.
62

35
.7

7
±

10
.7

1

R
ea

l-w
or

ld
A

ll
W

B
60

.6
7
±

10
.6

5
79

.5
5
±

15
.9

4
43

.8
9
±

12
.1

4
52

.6
7
±

7.
23

82
.9

5
±

17
.9

0
26

.7
1
±

5.
33

53
.3

3
±

7.
07

80
.0

2
±

18
.8

5
30

.7
2
±

7.
91

W
B

<
10

s
58

.6
7
±

9.
60

78
.0

9
±

9.
99

41
.9

9
±

17
.8

7
58

.6
7
±

6.
06

87
.9

4
±

9.
20

32
.9

1
±

11
.8

4
56

.0
0
±

2.
79

83
.7

5
±

12
.0

4
31

.7
2
±

7.
58

10
<

W
B
≤

30
s

64
.6

7
±

10
.4

4
76

.5
9
±

15
.0

1
54

.3
0
±

10
.2

5
52

.6
7
±

5.
96

79
.4

1
±

9.
52

29
.0

4
±

6.
68

52
.0

0
±

6.
06

71
.3

0
±

14
.7

8
35

.4
3
±

1.
48

30
<

W
B
≤

60
s

72
.6

7
±

7.
96

80
.5

5
±

11
.1

9
65

.3
5
±

12
.4

6
56

.6
7
±

11
.3

0
79

.9
8
±

15
.3

6
36

.2
3
±

12
.9

6
62

.0
0
±

10
.9

5
79

.6
9
±

11
.7

9
46

.3
7
±

16
.4

7

60
<

W
B
≤

12
0

s
68

.0
0
±

8.
03

78
.9

7
±

10
.7

6
58

.0
6
±

8.
63

60
.0

0
±

6.
24

73
.8

7
±

10
.6

3
47

.8
8
±

8.
92

60
.6

7
±

5.
96

75
.2

2
±

8.
75

47
.8

1
±

9.
31

W
B

>
60

s
76

.2
7
±

4.
68

84
.0

6
±

6.
36

70
.7

8
±

10
.4

5
64

.1
3
±

2.
56

79
.8

5
±

12
.0

7
50

.3
7
±

9.
98

68
.9

3
±

2.
09

83
.5

1
±

6.
46

56
.0

3
±

6.
24

W
B

>
12

0
s

70
.6

7
±

2.
79

83
.6

2
±

9.
25

59
.9

0
±

10
.5

1
56

.0
0
±

2.
79

82
.1

9
±

7.
92

32
.9

9
±

8.
49

62
.0

0
±

3.
80

84
.8

7
±

8.
15

41
.7

8
±

8.
04

B
ol

d
va

lu
es

m
ea

n
hi

gh
er

ac
cu

ra
cy

fo
r

P
D

cl
as

si
fic

at
io

n.

environments in comparison to scripted gait lab tests when
attention is heightened (Robles-García et al., 2015; Del Din
et al., 2016a). Another important factor, especially in PD,
is that medication affects gait (Ghoraani et al., 2019; Evers
et al., 2020) and this is difficult to account for in the
real-world where medication regimes and intake may be
unknown and will impact on gait and motor fluctuations.
In the present study, the lab-based gait assessment was
performed one hour after medication intake in the practically
defined “on” state. Therefore, we may expect to see an
individual’s optimal capacity. Conversely, in the real-world,
walking may take place at all points of the medication
cycle, resulting in on-off fluctuations in motor function and,
consequently, in gait (Ghoraani et al., 2019). This can act as
a confounding factor when averaging gait characteristics across
different WB durations and identifies an important area for
future work to understand the effect of medication on real-
world gait.

Parkinson’s Disease vs. Healthy Control
Gait characteristics extracted from the 2-min walk in the lab
were statistically different for PD and HC compared to the real-
world when combining all WBs together, except for asymmetry
characteristics. These findings are difficult to compare with
previous work where different protocols for gait assessment in
the lab have been utilized [e.g., 10 m (Del Din et al., 2016a)
or 7 m walk (Shah et al., 2020c)]. In real-world conditions,
pace characteristics, such as step velocity and step length, were
significantly different between PD and HC across all WBs > 10 s.
Other gait characteristics (variability and asymmetry) behaved
differently depending on WB duration, with differences in gait
between PD and HC present for medium-to-long WB, but not
for shorter WB. One possible reason for these discrepancies could
be related to the algorithm, i.e., the performance of gait and
step detection algorithms in shorter WBs may be challenged
by noisy signals and presence of shuffling and weight transfer
activities (Del Din et al., 2016a,c; Atrsaei et al., 2021). The
other possible reason could be methodological: the choice of WB
duration across which results are averaged may impact on gait
differences, i.e., between-group gait differences found in medium
WBs (which represent a high percentage of the total number
of WBs) may drive results even when data are combined with
results from longer WB durations as these represent a lower
percentage and may offer reduced statistical power when making
group comparisons (Supplementary Figures 1, 2, 6). Moreover,
asymmetry that is quantified during shorter walking bouts in
the real world may be linked to necessary gait adaptations to
navigate complex environments. Results from medium duration
WBs (e.g., 30–60 s) were comparable to those from longer
WBs (>60 or >120 s) even though the latter represented
only a small percentage [1.83% (PD) and 1.89% (HC)] of
the total WBs. Gait characteristics, from every domain, were
significantly different between PD and HC for medium-to-
long WBs (30–60 s, >60, >120 s). These results are in line
with previous work where the largest differences between the
PD and HC groups were found in the longer WBs (>120 s)
(Del Din et al., 2016a).
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Impact of Environment and Walking Bout
Duration on Parkinson’s Disease
Classification
Parkinson’s disease (PD) classification was more accurate for lab-
based gait assessment than the real-world when all the WBs
were combined. Our findings for step velocity and step length
yielded greater AUC, while previous work, which focused on
other biomechanical characteristics, showed that foot strike angle
resulted as the gait characteristic providing highest AUC (Shah
et al., 2020a,c). This could be due to the different protocol (2-
min walk vs. 7 min walk), cohort characteristics, and sample size
(our study group mean MDS-UPDRS III score: 31; PD n = 47
while Shah’s group mean MDS-UPDRS III score: 35 with PD
n= 29). Discrepancies between studies show how, depending on
the PD cohort disease severity, stage, sample size, and different
gait characteristics may lead to higher classification performances
as reflecting various level of impairment and progression. In
addition, novel insights from our work showed that gait was
more asymmetrical in the real-world, and this domain resulted
in higher AUC than lab-based asymmetry results.

Because real-world gait presents a heterogeneous distribution,
combining all WBs may increase spread of the data thereby
“masking” significant differences between groups (Del Din et al.,
2016a,b, 2019; Shah et al., 2020a,c,b; Atrsaei et al., 2021). As
indicated previously, gait assessment conditions, such as lab and
real-world, directly influence gait characteristics (Del Din et al.,
2016a, 2019; Van Ancum et al., 2019; Shah et al., 2020c) with
optimal walking capacity found under brief testing conditions
(lab) compared to real-world performance (what people actually
do during everyday activities) (Maetzler et al., 2020). ML models
are directly influenced by gait features obtained under these
different environments, which in turn impact classification
accuracy. Therefore, combining all walking bouts obtained in
the real-world can result in less optimal performance in the ML
classifiers explaining our findings.

Data Aggregation by Walking Bout Duration
No previous study has investigated the impact of WB durations
on the classification of PD using ML approaches. However, within
univariate gait analysis, based on Del Din et al. (2016a), longer
WBs were found to be better at discriminating PD from HC. This
is in contrast to Shah et al. (2020a) where 90% of participants
presented with WBs less than 53 strides. Therefore, only gait
characteristics from short WBs < 12 strides (<24 steps) were
found to be reliable and more sensitive when discriminating
PD from HC. However, due to the small sample size in Shah
et al. (2020a), the effect of longer WB was possibly dampened
(e.g., WBs > 60 s long can have more than 53 strides) and
had not been comprehensively investigated. Other factors, such
as the algorithms, sensor location, and the protocol used and
experimental set-up all influence the findings. In the present
study, the sensor was attached on the lower back, and for
Shah et al. (2020), sensors were attached to the ankles. The
comprehensive approach taken in this study (i.e., quantifying
various WB durations with reasonable sample size), highlighted
that longer WBs were better for discriminating PD from HC.

Overall, the random forest classifier gave better classification
performance as compared to SVM (Rehman et al., 2019a). ML
models gave optimal performance from WBs > 60 s followed
by 30 < WBs ≤ 60 s and WBs > 120 s compared to lab
and short WBs (<30 s). As discussed, real-world walking leads
to various WB durations with a variety of gait speeds (Del
Din et al., 2016a, 2019). In real-world conditions, both PD
and HC groups performed a large number of very short WBs
(e.g., <10 s) rather than prolonged WBs (e.g., >120 s). Short
WBs most likely reflect habitual behaviors and moving in a
constrained environment, such as a house, while longer WBs may
represent walking outdoors which influence gait characteristics
and ultimately the accuracy of the classifier. This is evident from
the present results as shorter WBs (<10 s) demonstrated poor
discriminative performance compared to longer (>60 s) WBs
(accuracy of 56–59% vs. accuracy of 68–76%).

The most influential characteristics for the classification of PD
were related to pace and rhythm. Particularly, step velocity, step
length, swing time, stance time, swing time variability, and step
time, which were identified by both random forest and SVM. The
results are in line with previous work (Rehman et al., 2019a,b,
2020a) which showed that pace (step velocity and step length)
are the most common and influential characteristics for not only
differentiating early-stage PD in univariate fashion (e.g., t-test
or with AUC), but also in ML classifiers. In addition, based
on the AUC values, pace characteristics (e.g., step velocity, step
length) gave optimal performance in both lab and real-world
data. However, the best results were obtained in the real-world
for longer WBs (30–60 s, >60 s, and >120 s). The results from
this study are in line with the previous work (Shah et al., 2020a,c)
where the effect of WB duration influenced the AUC, and real-
world gait was found to be more sensitive for discrimination
purposes.

Key Insights With Clinical Implications
• During the 2-min continuous walk in the lab, both PD

and HC groups walked faster, with quicker and longer
steps, lower variability, and higher asymmetry than when
in the real-world, regardless of WB duration. Lab based
assessment represents gait capacity, whereas real-world
data reflect gait performance.
• Group differences (PD vs. HC) in gait, both in the lab and

real-world conditions when combining all WBs, showed
that PD participants walked slower, with shorter steps
than HC. However, in the real world, significant between-
group differences were influenced by WB duration (i.e.,
identified for WB longer than 60 or 120 s for all gait
characteristics apart from those related to asymmetry).
From a clinical perspective, the assessment in the clinic
and outside the clinic can contain similar information.
However, walking performance assessed over longer walks
can offer increased sensitivity.
• Lab and real-world gait assessments assess different

aspects of gait. No correlation or weak-to-moderate
association was observed between the assessments.
In routine clinical practice, these two streams of
information can reflect different gait constructs and

Frontiers in Aging Neuroscience | www.frontiersin.org 13 March 2022 | Volume 14 | Article 808518

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-808518 March 18, 2022 Time: 17:54 # 14

Rehman et al. PD Classification From Real-World Gait

therefore provide complementary information to support
clinical decision making.
• Individual gait characteristics measured in the real-world

and averaged across all WBs (univariate analysis) had
relatively low AUC values compared to gait assessed in
the lab. However, specific real-world WB durations (i.e.,
longer 30–60 s, >60 s, >120 s) give higher AUC compared
to lab-based gait assessment. This reinforces the need
to consider the impact of real-world data aggregation
levels for targeting specific clinical questions/aspects (e.g.,
classification of PD).
• With ML-based multivariate analysis, choice of

environment (lab vs. real-world) and data aggregation
by WB durations clearly impacted on the ML classifier
performance. Our findings suggest that ML-based
models should be tested on the real-world longer
WBs in clinical practice as an informed pre-screening
decision-making tool for PD.
• Gait assessed with wearables in the real-world paired with

ML gave reasonably accurate classification performance
at early stages compared to current gold standard PD
clinical diagnostics. This inexpensive and objective solution
motivates its adoption in clinical practice and could be a
promising addition to the current clinical diagnostic toolkit
and complement clinical decision-making. An accurate
early diagnosis of PD is important to ensure that timely
and targeted treatments (both pharmacological and non-
pharmacological) can be provided.

LIMITATIONS AND RECOMMENDATIONS
FOR FUTURE WORK

There are limitations to this work. From the lab-based gait
assessment, only 2 min of continuous walking were utilized
and compared to 60 < WBs ≤ 120 s or 90 < WBs ≤ 120 s
(Supplementary Figures 1, 2) of real-world gait data. However,
real-world walking comprises additional complexity, with
varying visual stimuli (i.e., day, night), cognitive load (single
and dual task), and motor demand (i.e., uphill, downhill),
which is not reflected in lab-based gait assessments. The
context (e.g., indoor vs. outdoor walking) in which short and
long walking bouts happen is not measured in this work.
Future work is required to develop methods for characterizing
contextual information. Understanding under what scenarios
gait assessment could improve the classification results. In the
lab, PD participants were assessed one hour after medication
intake. However, in the real-world gait assessment, we could
not objectively control and assess the effect of medication on
gait performance. Future studies should investigate this and the
effect that medication “ON” and “OFF” states could have on
the results. The ML-based findings from this early PD cohort
with an average disease duration of 26 months may not be
generalizable to advanced PD stages. In this work, only 14
clinically relevant gait characteristics based on the heel strike
and toe-off gait events were considered. In future studies,
other signal-based characteristics independent of foot contact

detection should be compared. Furthermore, in routine clinical
practice, misdiagnosis of PD can delay subsequent intervention
and treatments. Therefore, future work should look at ML
classification of PD vs. atypical parkinsonian disorders (i.e.,
Multiple System Atrophy and Progressive Supranuclear Palsy) to
identify discriminatory gait features.

CONCLUSION

In this study, we investigated the impact of environment and
data aggregation by WB duration on gait characteristics and
on the performance of ML models for the classification of
PD. Real-world gait characteristics aggregated over medium
to long WBs (e.g., WBs > 30 s) gave better discrimination
performance (0.51 ≤ AUC ≤ 0.77) compared to lab-based
gait characteristics (0.51 ≤ AUC ≤ 0.72), with real-world step
velocity showing the highest AUC (0.77). Gait data aggregation
by WB durations influenced ML classification performance. ML
models applied to real-world gait showed better classification
performance compared to lab data. Overall, RF trained on 14
gait characteristics aggregated over WBs > 60 s gave better
performance (F1 score = 77.20 ± 5.51%) as compared to lab-
based data. Findings from this study suggest that choice of
environment and data aggregation by WB duration are important
to achieve maximum discrimination performance and have a
direct impact on ML performance for PD classification.
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