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ABSTRACT Here, we report the draft genome sequences of three Candida glabrata
clinical isolates, 040, 044, and OL152. The isolates were recovered from patients ad-
mitted to Centro Hospitalar de S. João (CHSJ) in Porto, Portugal. Isolates 040 and
044 were taken from blood samples, while isolate OL152 was collected from urine.

Candida glabrata, a yeast belonging to the Nakaseomyces genus from the Saccha-
romycetes class and Ascomycota phylum, is a major cause of candidemia world-

wide (1). In this announcement, we present the draft genome sequences of three
clinical isolates of C. glabrata. These draft genome sequences will contribute to our
understanding of the genetic variability among C. glabrata isolates and provide clues
on genomic evolution in this species. These isolates are part of a collection previously
screened for azole resistance (2, 3). Isolate 044 was previously used to study azole
resistance acquisition in vitro (4).

Isolates were grown overnight in liquid yeast extract-peptone-dextrose (YPD) me-
dium at 30°C with orbital shaking (250 rpm) and reinoculated in fresh YPD medium until
early log phase. Genomic DNA (gDNA) was extracted using the NZY microbial gDNA
isolation kit (NZYTech), following the manufacturer’s instructions. Genomic DNA was
sequenced on an Illumina HiSeq X platform, producing 2 � 150-bp paired-end reads.
Library preparation (Nextera XT) and sequencing were carried out by Admera
Health, LLC.

Illumina sequencing produced 79,811,816, 93,096,166, and 81,058,166 raw paired-
end reads for isolates 040, 044, and OL152, respectively. Low-quality bases and adapters
were removed using Trimmomatic (v0.38) (5). Read duplicates were removed using
PRINSEQ (v0.20.4) (6). Ultimately, 66,145,112, 76,825,456, and 67,787,160 high-quality
reads were used for subsequent analysis for 040, 044, and OL152, respectively.

The draft genomes were assembled into scaffolds using SPAdes (v3.12.0) (7). Scaf-
folds smaller than 500 bp were filtered out, and the remaining sets of scaffolds were
used as draft assemblies (BioProject no. PRJNA525402). Assembly quality was analyzed
using Quality Assessment Tool for Genome Assemblies (QUAST; v4.6.3) (8). The 040
assembly consists of 38.54% GC content, 202 scaffolds, a total length of 12.24 Mb, an
N50 value of 400 kb, a longest scaffold of 854 kb, and an average coverage of 584�. For
044, the assembly consists of 38.51% GC content, 158 scaffolds, a total length of
12.24 Mb, an N50 value of 404 kb, a longest scaffold of 1.3 Mb, and an average coverage
of 678�. For OL152, the assembly consists of 38.52% GC content, 207 scaffolds, a total
length of 12.25 Mb, an N50 value of 272 kb, a longest scaffold of 1.14 Mb, and an
average coverage of 583�. The assemblies align 97.6% to 98% against the reference
genome (C. glabrata CBS138) (9) obtained from the Candida Genome Database (http://
www.candidagenome.org/).
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Genome annotation was performed by submitting the assemblies to the Yeast
Genome Annotation Pipeline (YGAP), based on the Yeast Gene Order Browser (v7) (10).
Annotation was performed specifying a post-whole-genome duplication (post-WGD)
species and predicted 5,279 genes in 040, 5,278 genes in 044, and 5,287 genes in
OL152.

Single nucleotide polymorphisms (SNPs) were identified against the reference ge-
nome using the Burrows-Wheeler Aligner (BWA; v0.7.17) (11) and the Genome Analysis
Toolkit HaplotypeCaller (v4.0.8.1) (12). Low-quality variants were filtered out using
BCFtools (v1.9) (13). The number of variants identified were 28,270, 37,158, and 37,743
for 040, 044, and OL152, respectively.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession no. SKBI00000000, SKBJ00000000, and
SKBK00000000. The versions described in this paper are the first versions,
SKBI01000000, SKBJ01000000, and SKBK01000000. Raw reads are available at
SRR8953802, SRR8953803, and SRR8953804.
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