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Menthol to Induce Non-shivering Thermogenesis via 
TRPM8/PKA Signaling for Treatment of Obesity
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Increasing basal energy expenditure via uncoupling protein 1 (UCP1)-dependent non-shivering thermogenesis 
is an attractive therapeutic strategy for treatment of obesity. Transient receptor potential melastatin 8 (TRPM8) 
channel activation by cold and cold mimetics induces UCP1 transcription and prevents obesity in animals, but 
the clinical relevance of this relationship remains incompletely understood. A review of TRPM8 channel agonism 
for treatment of obesity focusing on menthol was undertaken. Adipocyte TRPM8 activation results in Ca2+ influx 
and protein kinase A (PKA) activation, which induces mitochondrial elongation, mitochondrial localization to 
lipid droplets, lipolysis, β-oxidation, and UCP1 expression. Ca2+-induced mitochondrial reactive oxygen species 
activate UCP1. In animals, TRPM8 agonism increases basal metabolic rate, non-shivering thermogenesis, oxygen 
consumption, exercise endurance, and fatty acid oxidation and decreases abdominal fat percentage. Menthol 
prevents high-fat diet-induced obesity, glucose intolerance, insulin resistance, and liver triacylglycerol accumu-
lation. Hypothalamic TRPM8 activation releases glucagon, which activates PKA and promotes catabolism. 
TRPM8 polymorphisms are associated with obesity. In humans, oral menthol and other TRPM8 agonists have lit-
tle effect. However, topical menthol appears to increase core body temperature and metabolic rate. A random-
ized clinical control trial of topical menthol in obese patients is warranted.
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INTRODUCTION

Obesity and overweight are two of the most urgently pressing 
medical challenges facing contemporary healthcare. While the 
foundational approaches of caloric restriction and exercise focus on 
reducing energy intake and increasing activity energy expenditure, 
respectively, modifying resting energy expenditure remains a chal-
lenge. One way to do so would be to increase adipose tissue non-
shivering thermogenesis. Non-shivering thermogenesis results pri-
marily from expression of uncoupling protein 1 (UCP1), which al-
lows hydrogen ions to be transported down an electrochemical 
gradient into the mitochondrial matrix without producing adenos-
ine triphosphate, thereby dissipating the energy of the proton mo-

tive force as heat.1 This uncouples the proton motive force from 
mitochondrial respiration. 

The primary site of thermogenesis is brown adipose tissue, 
which is rich in iron-containing mitochondria that give rise to its 
distinct color. Functional brown adipose tissue appears to persist 
even into adulthood in humans,2,3 but its metabolic activity tends 
to decrease in association with age and obesity.2,4,5 In addition, 
there are distinct subpopulations of “brite” and “beige” adipocytes 
that are transcriptionally distinct from both classical brown and 
white adipocytes, and that can be stimulated to attain a brown adi-
pose tissue-like phenotype featuring uncoupled mitochondria.2,6,7 
It has been reported that human brown adipose tissue is more simi-
lar to murine beige adipose tissue than murine brown or white adi-

Copyright © 2021 Korean Society for the Study of Obesity
 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits 

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

pISSN 2508-6235
eISSN 2508-7576

Journal of Obesity & Metabolic Syndrome 2021;30:4-11
https://doi.org/10.7570/jomes20038 1 / 1CROSSMARK_logo_3_Test

2017-03-16https://crossmark-cdn.crossref.org/widget/v2.0/logos/CROSSMARK_Color_square.svg

Review



Sanders OD, et al.  TRPM8 Agonists for Non-shivering Thermogenesis

J Obes Metab Syndr 2021;30:4-11 https://www.jomes.org  |  5

Menthol to Induce Non-shivering Thermogenesis via 
TRPM8/PKA Signaling for Treatment of Obesity
Owen Davis Sanders1,*, Jayalekshmi Archa Rajagopal2, Lekshmy Rajagopal3
1Department of Biology, Portland State University, Portland, OR, USA; 2Department of Pathology, D.Y. Patil Medical College, Kolhapur; 3Oto-Rhino-Laryngology, 
College of Physicians and Surgeons, Mumbai, India

Increasing basal energy expenditure via uncoupling protein 1 (UCP1)-dependent non-shivering thermogenesis 
is an attractive therapeutic strategy for treatment of obesity. Transient receptor potential melastatin 8 (TRPM8) 
channel activation by cold and cold mimetics induces UCP1 transcription and prevents obesity in animals, but 
the clinical relevance of this relationship remains incompletely understood. A review of TRPM8 channel agonism 
for treatment of obesity focusing on menthol was undertaken. Adipocyte TRPM8 activation results in Ca2+ influx 
and protein kinase A (PKA) activation, which induces mitochondrial elongation, mitochondrial localization to 
lipid droplets, lipolysis, β-oxidation, and UCP1 expression. Ca2+-induced mitochondrial reactive oxygen species 
activate UCP1. In animals, TRPM8 agonism increases basal metabolic rate, non-shivering thermogenesis, oxygen 
consumption, exercise endurance, and fatty acid oxidation and decreases abdominal fat percentage. Menthol 
prevents high-fat diet-induced obesity, glucose intolerance, insulin resistance, and liver triacylglycerol accumu-
lation. Hypothalamic TRPM8 activation releases glucagon, which activates PKA and promotes catabolism. 
TRPM8 polymorphisms are associated with obesity. In humans, oral menthol and other TRPM8 agonists have lit-
tle effect. However, topical menthol appears to increase core body temperature and metabolic rate. A random-
ized clinical control trial of topical menthol in obese patients is warranted.

Key words: Obesity, Weight loss, Mitochondrial uncoupling proteins, Brown adipose tissue, Thermogenesis 

Received  April 25, 2020
Reviewed  May 25, 2020
Accepted  June 12, 2020

*�Corresponding author   
Owen Davis Sanders 

 
https://orcid.org/0000-0003-4093-3166

Department of Biology, Portland State 
University, 1777 NW 173rd Ave, #610, 
Beaverton, OR 97006, USA
Tel: +1-503-809-1333
Fax: +1-503-725-4882
E-mail: owensanders@gmail.com

pose tissue at the molecular level.6

Therapeutically, attempts have been made to stimulate human 
adipose tissue uncoupling and non-shivering thermogenesis to in-
crease basal energy expenditure. Cold exposure stimulates brown 
adipose tissue activation in humans.8-12 Ice pack application has 
been shown to beige subcutaneous white adipose tissue and upreg-
ulate UCP1 in lean and obese individuals.11 Pharmacologically, 
much of the efforts in this area have focused on β3-adrenergic re-
ceptors. β3-adrenoceptors are activated by norepinephrine, pro-
duction of which by the sympathetic nervous system is increased 
by cold and other stressors. Of the β3-adrenoceptor agonists tested, 
ZD7114 and ZD2079,13,14 L-796568,14,15 and TAK-677 have shown 
negative results in terms of decreasing adiposity, although TAK-
677 (0.5 mg twice daily) did significantly increase energy expendi-
ture by approximately 13 kcal/day.14,16 Mirabegron, by contrast, has 
shown positive results in human studies on the parameters of adi-
pose tissue beiging11 and metabolic activity,17 non-esterified fatty 
acid release,18 and basal energy expenditure.17,19 This provides 
proof-of-concept that stimulating adipose tissue through thermo-
genesis might be a viable complementary strategy to promote 
weight loss as part of multi-component treatment protocols to 
combat obesity. However, β3-adrenoceptors are not the only recep-
tors activated by cold to induce thermogenesis: transient receptor 
potential melastatin 8 (TRPM8) channels fulfill both of these cri-
teria as well.2,20-22 

The TRPM8 channel is the primary cold receptor of the murine 
peripheral nervous system.20 It is activated not only by cold, but 
also by icilin,23 testosterone,24 borneol (a traditional Chinese herb 
and terpene),25 and cooling agents (i.e., cold mimetics) such as 
menthol and eucalyptol.2,20,26-28 It is expressed in brown, beige, and 
white adipocytes,29-31 as well as in prostate cells, prostate cancer 
cells,24 dorsal root ganglion sensory neurons,2,24 trigeminal ganglia 
sensory neurons,2 N41 hypothalamic cells,32 and hippocampal neu-
rons.24

Emerging evidence has shown that TRPM8 activation leads to 
protein kinase A (PKA) activation, UCP1 upregulation, increased 
thermogenesis, and protection from obesity.2,20-22,26,30,33 Topical 
menthol has been shown in rodent models to increase body tem-
perature and non-shivering thermogenesis.26,34,35 However, the evi-
dence remains fragmentary, and the plausibility of translating 

TRPM8 agonists into clinical applications to treat obesity and 
overweight status remains unclear. To analyze whether TRPM8 ag-
onism with menthol or other agents may promote clinically rele-
vant weight loss in preclinical animal models and patients who are 
overweight or obese, we performed a review of TRPM8 agonism 
focusing on the cold mimetic menthol for treatment of obesity and 
overweight individuals.

We conducted a literature search in PubMed using the following 
keywords: “TRPM8 weight loss,” “TRPM8 thermogenesis,” “TRPM8 
obesity,” “TRPM8 overweight,” “TRPM8 adipocyte,” “menthol 
weight loss,” “menthol thermogenesis,” “menthol obesity,” “menthol 
overweight,” and “menthol adipocyte.” Results on the association 
between menthol cigarettes and obesity and other cardiometabolic 
risk factors36,37 were discarded. Studies about menthol in conditions 
that are not associated with overweight status or obesity (e.g., coli-
tis38) were also discarded. Preclinical, epidemiological, and clinical 
studies were reviewed.

TRPM8 CHANNELS IN ENERGY 
HOMEOSTASIS

Table 1 summarizes the effects induced by the TRPM8 agonists 
menthol and icilin. In vitro, treating mature adipocytes with 1 µM 
bioavailable menthol for one hour increased RNA expression of 
genes associated with adipose tissue beiging, namely UCP1, per-
oxisome proliferator-activated receptor γ coactivator 1α (PGC1α), 
tumor necrosis factor receptor superfamily member 9, and Ho-
meobox C10.22 Menthol was more effective at increasing UCP1 
expression and uncoupled respiration in white adipocytes than in 
brown adipocytes.39 In white adipocytes, menthol and icilin signifi-
cantly increased UCP1 mRNA and protein levels, thermogenesis, 
glucose uptake, mitochondrial membrane potential, and mitochon-
drial elongation and clustering around lipid droplets independent 
of genes involved in mitochondrial biogenesis through TRPM8 ac-
tivation and consequent Ca2+ influx.29 In cultured mouse white adi-
pocytes, menthol significantly increased PGC1α and UCP1 
mRNA levels, effects which were significantly blocked by the PKA 
inhibitor KT5720 and apparently even more effectively by the cell 
membrane permeable calcium chelator BAPTA-AM.30 Indeed, acti-
vation of TRPM8 channels with menthol was found to induce cyto-
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plasmic Ca2+ influx, Ca2+-dependent PKA phosphorylation, and 
PKA-dependent UCP1 protein upregulation in adipose tissue,21 
suggesting that TRPM8 channels activate the PKA/UCP1 path-
way.21,48

TRPM8 channels may affect energy homeostasis in non-adipose 
tissues as well. In mice, TRPM8-activated sensory nerves promote 
brown adipose tissue thermogenesis.49 Menthol upregulated UCP1 
and PGC1α mRNA expression in C2C12 myotubes and mouse 
skeletal muscle via TRPM8 activation, and dietary menthol in-
creased exercise endurance and decreased blood lactate and triglyc-
eride levels.40 Hypothalamic TPRM8 activation appears to pro-

mote glucagon release and increased energy expenditure. In mice, 
acute oral and topical menthol or icilin increased serum glucagon 
level via TRPM8 activation, and treating mature white 3T3L1 adi-
pocytes with serum from menthol-treated mice increased energy 
expenditure in a manner that was blocked by a glucagon receptor 
antagonist.44 In N41 hypothalamic cells, TRPM8 activation medi-
ated the effects on Ca2+ currents of the thyroid hormone metabo-
lite 3-iodothyronamine,32 central intracerebroventricular adminis-
tration of which increased glucagon and endogenous glucose pro-
duction.50 Glucagon has an acute hyperglycemic effect but also in-
creases energy expenditure and decreases food intake in rodents 
when co-administered with glucagon-like peptide-1.51,52

In vivo, TRPM8 knockout mice had attenuated UCP1 protein 
expression in their brown adipose tissue.53 TRPM8 inhibition de-
creased deep body temperature in mice and rats.54 TRPM8 knock-
out mice displayed hypothermia, hyperphagia, decreased fat oxida-
tion, and obesity.55 Even in thermoneutral conditions, TRPM8 ac-
tivation by topical menthol application increased oxygen consump-
tion and decreased the respiratory coefficient, suggesting that 
TRPM8 activation may promote fat oxidation.45 TRPM8 agonism 
with intragastric menthol or 1,8-cineole increased thermogenesis 
in mice.41 Topical menthol increased core body temperature, shiv-
ering, oxygen consumption, tail skin vasoconstriction, and heat-
seeking behavior in mice.35 Intraperitoneal injection of icilin in-
creased wet-dog shakes in mice,47 and dietary menthol increased 
locomotor activity in wild-type mice but not those fed a high-fat 
diet even though it increased thermogenesis in both.21 These find-
ings suggest that TRPM8 activation can increase energy expendi-
ture both by increasing locomotor activity and independent of ac-
tivity level through non-shivering thermogenesis. 

Topical menthol significantly increased basal metabolic rate de-
spite unchanged food intake in a murine model of diet-induced 
obesity.26 Dietary menthol treatment attenuated high-fat diet-in-
duced obesity and improved glucose homeostasis and white adi-
pose tissue beiging in a rodent model.30 Via the TRPM8/Ca2+/
PKA/UCP1 pathway, dietary menthol prevented diet-induced 
obesity and glucose intolerance in mice.21 In broiler chickens, sup-
plemental peppermint leaves or menthol increased body weight 
and dietary intake, decreased the percentage of breast and leg mus-
cle lost due to cooking, and decreased abdominal fat percentage.46 

Table 1. The effects induced by menthol and icilin

Drug Effect Reference

Menthol Induces adipose tissue beiging 22,30
Upregulates uncoupling protein 1 21,22,29,30,40
Upregulates peroxisome proliferator-activated receptor γ  

coactivator 1α 
30,40

Increases thermogenesis 21,29,35,41-43
Increases basal energy expenditure 26,43
Prevents liver triacylglycerol accumulation 44
Prevents insulin resistance 44
Improves glucose homeostasis 21,30
Increases glucose uptake 29
Increases mitochondrial membrane potential 29
Induces mitochondrial elongation and clustering around 

lipid droplets
29

Increases exercise endurance 40
Decreases blood lactate and triglyceride levels 40
Increases locomotor activity in normal but not high-fat diet 

fed mice 
21

Promotes glucagon release 44
Increases oxygen consumption 35,45
Decreases the respiratory coefficient 45
Increases shivering 35
Increases vasoconstriction 35,43
Increases heat-seeking behavior 35
Prevents weight gain 21,30,44
Decreases abdominal fat percentage 46

Icilin UCP1 upregulation and thermogenesis 29
Increases glucose uptake 29
Increases mitochondrial membrane potential 29
Induces mitochondrial elongation and clustering around 

lipid droplets
29

Promotes glucagon release 44
Increases wet-dog shakes 47
Induces synergistic reversal of diet-induced obesity,  

dyslipidemia, and glucose intolerance when combined 
with dimethylphenylpiperazinium

33
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Interestingly, menthol or peppermint was also associated with de-
creased mortality in these birds.46 Chronic oral (50 and 100 mg/
kg/day for 12 weeks) or topical menthol in high-fat diet fed mice 
prevented weight gain and adipose tissue hypertrophy, as well as 
liver triacylglycerol accumulation and insulin resistance.44 Combin-
ing subcutaneously injected icilin and dimethylphenylpiperazinium 
to target the appetite-suppressing nicotinic acetylcholine receptor 

α3β4 resulted in synergistic reversal of diet-induced obesity, dyslip-
idemia, and glucose intolerance.33 

Recently, Sakellariou et al.2 proposed that chronic administration 
of oral menthol to obese individuals may induce sustained weight 
loss by increasing adipose tissue thermogenesis. The TRPM8 gene 
has been found to be differentially expressed in two individuals 
with familial obesity and one non-obese individual from the same 
Thai family. Furthermore, its minor allele frequency was low, indi-
cating a possible causal variant.56 In a Turkish population, the 
rs12472151 polymorphism of the TRPM8 gene was associated 
with metabolic syndrome.57

In 16–18 healthy adult individuals, oral administration of 0.2 mL 
of a TRPM8 agonist cooling flavor in 200 mL tomato juice did not 
alter energy expenditure or substrate utilization.58 However, in sev-
en swimmers and seven physical education students, topical men-
thol decreased rectal temperature loss caused by immersion in cold 
water, suggesting that topical menthol may have increased thermo-
genesis.42 In 20 healthy adult individuals, topical menthol signifi-
cantly increased metabolic rate (18%), cutaneous vasoconstriction, 
body heat storage, and rectal temperature compared to control and 
oral menthol.43 Oral menthol underperformed relative to topical 
menthol due in part to increased glucuronidation and elimination 
of oral menthol compared to topical menthol.43

CONCLUSION

Overall, the few associated studies performed in human partici-
pants suggest that topical menthol might effectively promote in-
creased basal energy expenditure and weight loss through non-
shivering thermogenesis, whereas oral TRPM8 agonists (at least at 
the low doses used in these studies) may not.42,43,58 One explanation 
for this difference is that oral menthol is more readily glucuronidat-
ed and excreted than topical menthol.43 However, a complementa-

ry explanation is that topical menthol may reach the target adipose 
tissue more directly and thereby achieve greater concentrations 
there than oral menthol. Therefore, future studies in human partici-
pants should study the effects of topical menthol or icilin, as topical 
administration is the most promising drug delivery method. 

Another conclusion that can be drawn from this review is that 
there is a TRPM8/Ca2+/PKA/UCP1 pathway whose activation 
uncouples respiration and increases non-shivering thermogenesis, 
and it is active and physiologically relevant in adipose tissue, espe-
cially in white adipose tissue (Fig. 1).21,22,29,39,48 The pleiotropic ef-
fects of PKA activation in this context, however, warrant further 
mechanistic discussion to glean additional therapeutic insights. 
Previously, PKA activation has been shown to promote lipolysis59,60 
and β-oxidation.61 In one of the studies reviewed, menthol or icilin 
was found to not only upregulate UCP1, but also to induce mito-

Figure 1. Mechanisms of transient receptor potential melastatin 8 (TRPM8)-medi-
ated uncoupled respiration and mitochondrial elongation. Cold, menthol, icilin, and 
other cooling agents open brown, beige, and white adipocyte TRPM8 chan-
nels.2,20,31,23-30 Extracellular Ca2+ ions influx through TRPM8 channels into the adipo-
cyte cytoplasm.29 Peri-plasma membrane Ca2+ activates adenylyl cyclase 1 and 8, 
which generate cyclic adenosine monophosphate (cAMP).62 cAMP activates pro-
tein kinase A (PKA) to induce uncoupling protein 1 (UCP1) transcription.2,20-22,26,30,33 
Once translated, UCP1 proteins are imported into mitochondria and localized to 
the inner mitochondrial membrane, where they allow protons to diffuse down an 
electrochemical gradient into the mitochondrial matrix, dissipating the energy of 
the proton motive force as heat instead of generating adenosine triphosphate.1 
PKA also phosphorylates and thereby activates dynamin-related protein 1 (Drp1), 
which induces mitochondrial fusion and elongation around lipid droplets.29,63
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chondrial elongation and localization around lipid droplets via 
TRPM8 activation and Ca2+ influx.29 This probably occurred via 
PKA activation and PKA phosphorylation of dynamin-related pro-
tein 1 (Drp1).63 Drp1 is a large GTPase that executes mitochondri-
al fission, whereby mitochondria split to form two daughter mito-
chondria. PKA activation inhibits Drp1, promoting mitochondrial 
fusion and elongation (Fig. 1).63

TRPM8 activation transduces its signal into the cell via Ca2+ in-
flux and raises the mitochondrial membrane potential, making it 
more positive and promoting depolarization. This result is intrigu-
ing29 since cytoplasmic Ca2+ becomes sequestered in the mitochon-
dria, dissipating the mitochondrial membrane potential,64 increas-
ing mitochondrial reactive oxygen species (ROS) production,65 
and eventually promoting permeability transition opening and cell 
death.64 Therefore, it appears that TRPM8 activation may lead to 
mild, physiological mitochondrial Ca2+ accumulation. This would 
explain the more positive mitochondrial membrane potential, and 
it would also predict that TRPM8 activation should lead to mito-
chondrial ROS production. Consistent with this relationship, inter-
scapular brown adipose tissue activation in mice increased mito-
chondrial ROS production in this tissue.66 Furthermore, ROS were 
found to activate UCP1 by sulfenylating its Cys253 residue.66 
Moreover, experiments with antioxidants showed that mitochon-
drial ROS are required to prevent hypothermia and to increase en-
ergy expenditure upon cold exposure.66 Therefore, antioxidants 
might be contraindicated while administering topical menthol to 
ensure its efficacy, although further experiments are required to 
evaluate this possibility.

The connection between hypothalamic TRPM8 signaling and 
glucagon production32,44 is also intriguing, since cold exposure 
acutely raises glucagon level,67 and both TRPM8 channels and glu-
cagon increase PKA activity.21,68 This makes it appear as if glucagon 
were a hormone messenger of TRPM8 agonism, with both signals 
converging on PKA activation and PKA-driven catabolism.

Therefore, this literature review concludes that menthol should 
be studied further in patients to test whether it can deliver clinically-
relevant increases in non-shivering thermogenesis, basal energy ex-
penditure, and weight loss.42,43,58 Menthol raises the basal metabolic 
rate by activating the TRPM8/Ca2+/PKA, PKA/UCP1, and PKA/
Drp1 pathways in white adipose tissue, resulting in beiging.21,22,29,30,48 

Cold, menthol, and glucagon promote catabolism via PKA activa-
tion.21,32,44,67,68 A clinical trial of menthol for weight loss in obese pa-
tients is warranted.42,43,58,66
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