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Encoder-decoder recurrent neural network models (RNN Seq2Seq) have achieved

success in ubiquitous areas of computation and applications. They were shown to be

effective in modeling data with both temporal and spatial dependencies for translation

or prediction tasks. In this study, we propose an embedding approach to visualize and

interpret the representation of data by these models. Furthermore, we show that the

embedding is an effective method for unsupervised learning and can be utilized to

estimate the optimality of model training. In particular, we demonstrate that embedding

space projections of the decoder states of RNN Seq2Seq model trained on sequences

prediction are organized in clusters capturing similarities and differences in the dynamics

of these sequences. Such performance corresponds to an unsupervised clustering of

any spatio-temporal features and can be employed for time-dependent problems such

as temporal segmentation, clustering of dynamic activity, self-supervised classification,

action recognition, failure prediction, etc. We test and demonstrate the application of the

embedding methodology to time-sequences of 3D human body poses. We show that

the methodology provides a high-quality unsupervised categorization of movements. The

source code with examples is available in a Github repository1.

Keywords: spatiotemporal feature, interpretable AI, sequence to sequence (Seq2Seq), clustering,

action recognition

1. INTRODUCTION

Recurrent Sequence to Sequence (Seq2Seq) networkmodels use internal states to process sequences
of inputs (Hochreiter and Schmidhuber, 1997; Cho et al., 2014; Sutskever et al., 2014; Luong et al.,
2015). The speciality of Seq2Seq is that these models consist of encoder and decoder components.
The encoder typically processes input sequences and constructs a latent representation of
the sequences. In addition, the encoder passes the last internal state to the decoder as an
“initialization” of the decoder. With this information the decoder transforms or generates novel
sequences with a similar distribution. Such an architecture and its variants, e.g., attention-based

1https://shlizee.github.io/interpretseq2seq/
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Seq2Seq (Cho et al., 2014), showed compelling performance in
applications of machine translation (Sutskever et al., 2014),
speech recognition (Graves et al., 2013), and human motion
prediction (Gui et al., 2018).

While Seq2Seq and its variants achieve strong performance
on various applications, a consistent interpretation of how
the encoder-decoder structure is capable to embed the data
for general time-series data (i.e., multi-dimensional ordered
sequences) and how such interpretation can be used to estimate
the performance of the model is an active research topic. In
this paper, we propose a dimension reduction approach to
visualize and interpret the representation within the Seq2Seq
model of general time-series data. The main contribution of
this paper is to provide constructive insights on the properties
which allow the encoder and the decoder components to
operate optimally and to propose a low dimensional visualization
method of the representation that the encoder and the decoder
construct. With our embedding method, we find a remarkable
property of Seq2Seq: the network being trained to predict the
future evolution of a sequence self-organizes the hidden units
representation into separate identities (clusters or classes). The
clusters are embedded in the embedding space as attractors to
which embedded encoder trajectories lead. We show on data of
poses of the human body, how the organization of the attractors
provides an unsupervised easy means for clustering sequential
data into distinct identities.

Interpretability has been an important aspect of any artificial
neural network (ANN) and is expected to provide generic
methodologies to assess the capabilities of different models
and evaluate the performance of models for given tasks.
Associating interpretability with various types of ANN is
often a challenging undertaking since the typical state-of-
the-art network models are high dimensional and include
many components and processing stages (layers). The problem
becomes more challenging when dealing with RNN sequence
models and in unsupervised tasks such as synthesis and
translation, in which encoder-decoder networks where found
to be prevalent. In these tasks, interpretability is aimed to
capture the model synthesis procedures and to demonstrate how
these are being improved during training and since learning is
unsupervised, interpretation methodologies have the potential to
provide a framework to assist with enhancing the optimization
and learning.

Typically, existing interpretation methods applicable to ANNs
are application-oriented. For Convolutional Neural Networks
(CNN), models were explained within images (Zeiler and Fergus,
2014; Alain and Bengio, 2016; Kim et al., 2017). For RNN,
interpretation and visualization tools focus on natural language
processing applications (Karpathy et al., 2015; Collins et al.,
2016; Foerster et al., 2017; Strobelt et al., 2019). Our proposed
work is based and inspired by these works and extends the
methodology to generic sequences, in which textual sequences
are a sub-class with special time dependence (semantics). Generic
multidimensional time series are spatio-temporal sequences
including non-trivial correlations in space and time. Beyond
text data, there are works inspired by neuronal networks
investigating the dynamics of RNN (Recanatesi et al., 2018;

Farrell et al., 2019). In our work, we aim to provide an
interpretation of encoder-decoder (Seq2Seq) network models for
general spatiotemporal data.

We test our methods on prediction tasks of synthetic data
and of typical movements of human body joints. There are
several RNN-based Seq2Seq models that achieve success on
humanmotion prediction (Martinez et al., 2017) and outperform
the previous non-Seq2Seq based RNN models such as ERD
(Fragkiadaki et al., 2015) and S-RNN (Jain et al., 2016). Recently,
Generative Adversarial Networks (Gui et al., 2018) have achieved
better performance on this task, with the predictor network being
RNN Seq2Seq.

We show that Seq2Seq optimization with gradient descent
based methods forms a low dimensional embedding of internal
states. The embedding can be mapped and visualized through
Proper Orthogonal Decomposition (POD) of concatenated
encoder and decoder internal states - the interpretable
embedding. Within this embedding, the decoder evolution
for each distinct sequence (decoder trajectory) is separable from
other distinct sequences. Furthermore, each distinct decoder
trajectory preserves both the spatial and the temporal properties
of the sequence. The encoder trajectory initiated from various
starting points connects them in the interpretable embedding
space with the appropriate decoder trajectory. Monitoring
the interpretable embedding space and projected trajectories
in it during training shows the effect of training on data
representation and assists to identify an optimal regime between
under- and over- fitting. We construct synthetic data examples
to demonstrate the construction of the interpretable embedding
space. Next, we apply the construction of the interpretable
embedding and analyze Seq2Seq performance on human joints
movements datasets: Human 3.6 million (H3.6M) that contains
15 different types of real body movement sequences, such as
walking, eating, etc. (Ionescu et al., 2014). To show generality and
example application for the proposed approach, we apply it to
the CMU Motion capture dataset and perform an unsupervised
action recognition task.

1.1. Setup and Spatiotemporal States of
the Seq2Seq Model
RNN Seq2Seq model is utilized for sequence prediction
(synthesis of a new sequence based on input sequence) or
translation (mapping the input sequence to a new representation)
(Figure 1). For general time series prediction, given a sequence
of spatiotemporal data as input, Seq2Seq predicts the future
sequence. We stack the sequence of input to the encoder as
a matrix and call it the encoder input matrix X ∈ R

Te×M ,
where each row xt ∈ R

1×M is a time step of the input
sequence at time t, Te is the number of time steps and M
is the number of dimensions in the input data. Similarly, we
construct the target sequences as target output matrix Y ∈

R
Td×M , where Td is the number of output sequence steps to

be predicted.
In addition, forward propagation of the input in RNN Seq2Seq

computes the internal states of the encoder at each time step.
We concatenate and denote them as the encoder states matrix
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FIGURE 1 | Seq2Seq architecture: We consider the inputs, encoder states, decoder states and outputs as spatiotemporal matrices X,E,D, Ŷ , respectively. Here, the
recurrent network block is Gated Recurrent Unit (GRU).

E ∈ R
Te×N , where each row et ∈ R

1×N represents the states of all
N internal units at time t. Similarly, we also define the decoder
states matrix D ∈ R

Td×N . Typically, there is an additional fully
connected linear map transforming the decoder states to the
dimensions of the output space. We denote the decoder output
matrix Ŷ ∈ R

Td×M , where ŷt is the predicted ŷt output at time t.
Figure 1 demonstrates the structure of the components of RNN
Seq2Seq matrices. In the figure, the encoder and the decoder are
single layer GRU networks that can share or not share parameters
with each other depending on applications. Our approach is
applicable to general types of networks, such as LSTMs/GRUs,
and variable number of layers. In our setup, the decoder uses the
output of a previous time step as an input to the current time
step in both training and testing, except for the initial time step
in which it receives its input from the last step of the encoder.
This setup can vary as well. In terms of time series prediction task,
the cost function is typically defined as the MSE between target

outputs and decoder outputs, J = 1
Td

∑Td
t=1(yt − ŷt)

2, however,

other norms or cost functions can be considered.

1.2. Proper Orthogonal Decomposition of
Spatiotemporal Matrices
Since forward propagation within RNN Seq2Seq can be
represented through spatiotemporal matrices, we propose
to apply the POD method as a dimensionality reduction
algorithm to construct a low dimensional interpretable
embedding (Shlizerman et al., 2012). Specifically, we use the
Singular Value Decomposition to decompose the matrices
into orthogonal spatial modes (PCs) and time-dependent
coefficients and singular values (scaling) associated with each
mode. Particularly, given a matrix A ∈ R

T×N , we first perform a
normalization where we subtract the mean of that column from
each entry and obtain Ac. The normalization ensures that each
column has the same mean (zero). We then apply SVD such
that Ac = U6VT , where U ∈ R

T×T is an orthogonal matrix of
time-dependent coefficients, 6 ∈ R

T×N is the matrix of singular
values and V ∈ R

N×N is the matrix of spatially dependent
components. To determine the number of PCs, we compute
the singular value energy (SVE), SVE =

∑n
i=1 σ

2
i where σi is

singular value corresponding to PC mode i. We compute the
number of modes such that 90% or 99% of the energy is retained

(SVEk =
∑k

i=1 σ
2
i ,

SVEk
SVE ≤ p where k is the number of modes

and p is the percentage). With the number of dominant spatial
features, we can truncate Ac by projecting it onto the PC modes
to get a low dimensional matrix A(PC=n) ∈ R

T×n, where (PC=n)
denotes n principal components are retained. If we choose
n = 2 or 3, we can visualize the representation in 2D or 3D. The
axes are the orthogonal PC modes.

1.3. Clustering
While visualization of projected dynamics could be
informative (Maaten and Hinton, 2008), 2D or 3D visualized
dynamics do not reveal the intricacies in the representation of
different datasets. In particular, here we would like to evaluate
the separability of projections of distinct trajectories in the
interpretable embedding space. We thereby propose to augment
the embedding with clustering approaches such as K-means++,
an extended version of the standard K-means algorithm (Arthur
and Vassilvitskii, 2007) or agglomerative clustering, a bottom
up approach of hierarchical clustering. Since the number of
trajectories and time steps are known, we can use the Adjusted
Rand Index (ARI) to evaluate the clustering performance.

2. INTERPRETABLE EMBEDDING FOR
Seq2Seq NETWORKS

The generic goal of RNN Seq2Seq model is to continue (predict)
the evolution of each given input sequence chosen from a (test)
dataset which includes K different types of multidimensional
time series. Such a goal is challenging as it requires the network
to generate a sequence which superimposes the typical dynamics
of that particular type and the individual dynamics of the given
tested input sequence. We show that the methods described
above can be applied to construct an interpretable embedding
for the RNN Seq2Seq model. To illustrate the embedding
properties we use an example, depicted in Figure 2, containing
three types of time series sequences. We show further examples
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FIGURE 2 | POD is performed on Ek and Dk , obtained for each type of data k and stacked to S. Three distinct trajectories are shown in the low dimensional

embedding space. The encoder trajectories (black) start from the origin and diverge in different directions. The decoder trajectories (attractors; red) are hence placed

in separate locations in the space. The last point of each encoder trajectory (green) connects the encoder and the decoder trajectories.

with more sequences in the section of “Human Body Joints
Movements Data.”

To construct the embedding space basis we concatenate the
matrices E and D for each single forward propagation into a
states matrix

S =
[

E
D

]

∈ R
(Te+Td)×N , S =

[

S1
...
SK

]

.

Concatenation of forward propagation evolution for all
considered time series in the dataset will result with a global

states matrix denoted as S. POD application on S provides the
PC modes which are the axes of the interpretable embedding
space. Dimension reduction of the embedding space is performed
by considering only n PCmodes (denoted as PCn) which singular
values are included in the representation of particular total SVE
(e.g., 90% or 99%) and truncating the rest of the modes.

To inspect the propagation of single time series through the
network, we can project the matrices E, D, or S onto the low
dimensional space spanned by PCn modes. As we show below,
we find that the dimension of the embedding space can be very
low even for high dimensional data. We depict the structure
of such projections onto PC3 embedding space in Figure 2,
bottom. Encoder trajectories (black, left) start from initial points
projected to the embedding space (we choose initial states as
zeros and therefore the trajectories are always initiated at the
origin) and evolve in different directions in the space. Decoder
trajectories (red, middle) appear as attractors in the space, and
clustering approaches are used to determine (e.g., K-means) how
separable they are in the space. The encoder and the decoder
connect via a single time step which corresponds to a point
(green, right). Composition of the three types of projections
corresponds to an interpretation of the propagation in RNN

Seq2Seq. In particular, we show that the encoder trajectory
takes the sequence from an initial point and evolves it to the
corresponding starting point on the decoder trajectory (we call
it attractor or cluster). The decoder continues the evolution
from there. As we show below, it appears that the gradient
descent training succeeds to organize the decoder attractors in
the embedding space such that they are easily clustered. Such an
arrangement explains the uniqueness of RNN Se2Seq training in
which the cost function minimizes the error between the decoder
output and the actual output and there is no minimization on
the encoder. Therefore, the decoder is trained to predict different
features for different types of inputs (training to optimize
clustering of types of data and capture unique features) with the
encoder trajectory (and not only the last time step of it) being a
sequential constraint that connects the cluster to the initial state.
In practice, the length of the encoding sequence should be set
such that the encoder can capture enough information but not
be sensitive to the vanishing gradient problem. We discuss the
encoding sequence length parameter choices and show clustering
results in Supplementary Materials.

It is possible to monitor the construction and the changes in
the embedding space and projected trajectories within it during
training. Specifically, at each training iteration i, for each type
of data, we construct the matrices Ei,Di, Si and perform the
aforementioned procedures. The pseudo code is shown in the
Algorithm 1.

3. INTERPRETABLE EMBEDDING SPACE
APPLIED TO SYNTHETIC DATA

We first create two types of synthetic 2D trajectories which
follow a circumference of (i) a unit circle Xcircle (ii) an ellipse
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Algorithm 1: Interpretable Embedding and Clustering on
Seq2Seq Networks

Input: RNN Seq2Seq model F
Data: Time series data X1, . . . ,XK

1 Initialize S and D be empty lists [ ]
2 for k in (1, ...,K) do
3 Forward propagate Xk through F to obtain Ek,Dk

4 Sk =
[

Ek
Dk

]

5 AppendDk to D
6 Append Sk to S
7 if Visualize Single Sequence On 3D then

8 Normalize Sk
9 Apply SVD to have Sk = Uk6kV

T
k

10 Sk ← SkVk[:, : 3]
11 Plot Sk

12 if Clustering then
13 Normalize D
14 if Clustering On Dimension n then

15 Apply SVD to have D = UD6DV
T
D

16 D← DVD[:, :n]

17 Apply Clustering Algorithm (e.g., K-means) on D.

18 if Visualize All Sequences on 3D then

19 Normalize S

20 Apply SVD to have S = US6SV
T
S

21 S← SVS[:, : 3]
22 Plot S

Xellipse. The encoder input is binned into Te time steps such that

Xcircle,Xellipse ∈ R
Te×2 with Te = 50 such that it completes a

full period. Given full circle or ellipse dynamics as the encoder
input, the objective is to predict another full circle or ellipse
by the decoder, i.e., the target sequence Y is expected to be
the same as the input sequence (Y ≡ X) and the decoder

output matrix Ŷ has the same dimension as Y and X. The

cost function J = 1
Td

∑Td
t=1(yt − ŷt)

2 is the MSE between the

target and the prediction with Td = Te. For both the encoder
and the decoder we use a single layer GRU with 16 neurons
(E,D ∈ R

Te×16) and the ADAM optimizer to train the model
for 5, 000 iterations where the cost function almost converges
to zero such that the model can predict the trajectory with
high accuracy.

We show in Figure 3 the projections of forward propagation
in RNN Seq2Seq trained on (i) circle (ii) ellipse (iii) both circle
and ellipse. In each model, we obtain the PC3 embedding space
from the matrix S and examine the projections of the encoder
states matrix E, decoder states matrix D onto the space and
also show the decoder output matrix Ŷ projected onto x −
y space. We observe that the projections of the encoder and
the decoder states are deformed and not necessarily preserve
the same form as the input and the output, however, linear
transformation of the decoder deforms the trajectory to be
correctly represented in the x − y space. Notably, all encoder

projections start near the origin since our initial states are zero
by default.

The last state of the encoder in NLP applications is typically
considered to contain the information of all previous states,
however, our results indicate that the full encoder sequence
is important and the last encoder state is simply providing a
starting point for the decoder to continue. Such an effect of the
encoder is easily observed in considering continuous time series
(as we show in the prediction of human movement data) and
deviates from the interpretation of the encoder role in textual
semantic sequences.

We focus on the model trained on both the circle
and the ellipse to better understand how RNN Seq2Seq
can predict both spatio-temporal series in an unsupervised
way without any guidance. Specifically, we show projected
trajectories in the PC embedding space (right column of
Figure 3). Encoder projections indicate that the two trajectories
corresponding to distinct types of output sequences, start
from points near the origin, however, diverge as the sequence
evolves, and end up at more distant points. The projected
trajectories of the decoder states start from these distinct
points and continue to perform prediction in completely
separable shapes. Effectively we observe that the decoder states
projections are clustered in the embedding space. Application
of agglomerative clustering and cosine similarity indeed verify
these observations.

To visualize how Seq2Seq learns to differentiate the two
shapes with training, we keep track of the evolution of the
representation of the states and depict in Figure 4 the three
projections as in Figure 3 at iterations i = 10, 100, 1, 000, 3, 000.
At the beginning of training (i = 10), all projections of the
two shapes are similar. Projections of the decoder states appear
to be distinct for a few several initial points but when the
sequence evolves forward, the trajectories appear to converge
to the same point. When the model undergoes additional
training, after i = 100, Seq2Seq appears to have learned a
single pattern (ellipse like), however, is unable to generate two
distinct predicted shapes. At i = 1, 000 the two trajectories
separate and obtain accurate predictions at the same time. The
evolution during training reveals that the model learns one
general pattern first and then gradually evolves into two different
separable patterns.

Notably, during training, the loss is inverse proportional to
the clustering performance (ARI). This means that with training
the RNN Seq2Seq model learns to recognize the type of input
sequence. We conjecture that separability is correlated with
successful training and test the conjecture by repeating the same
prediction task with an additional one-hot encoding label for
the circle and the ellipse. Indeed, with the additional labels,
the model learns these two sequences much faster and they
appear separable in the embedding space (Figure 5, top). We also
verify that the RNN Seq2seq model can encode both spatial and
temporal features in the embedding space. For spatial features,
we train the model to learn centered and shifted circles. While
both trajectories are circles, RNN Seq2seq and the projections
of its decoder states to the embedding space distinguish the
trajectories well (Figure 5, bottom left). For temporal features, we
train the network to predict two centered unit circles, sampled
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FIGURE 3 | Projected trajectories in the embedding space spanned by PC3 for the encoder states, decoder states and decoder outputs matrices. Dashed and solid

lines represent Xcircle and Xellipse, respectively. Opaque and transparent points denote the starting and the ending points of the trajectory.

FIGURE 4 | Snapshots of the evolution of trajectories projected to the interpretable embedding space when they undergo training. We use similar line identifiers and

colors as in Figure 3. At the beginning of the training, two trajectories are very similar and positioned close to each other. As training proceeds the two type of

trajectories emerge and separate from each other.

with different rates of Te = 50 and Te = 25 (different
rotation speeds on the circle). While both circle trajectories
coincide in x − y space, RNN Seq2seq and the projections of
its decoder states to the embedding space result with separable
attractors with apparent temporal feature difference between
the first and second cycles (Figure 5, bottom right). These
investigations help us to conclude that the embedding space
can be effectively used with clustering to represent and assist
in the evaluation of different types of learned spatial and
temporal features.

4. HUMAN BODY JOINTS MOVEMENTS
DATA

To test the proposed interpretable embedding methodology on
realistic data, we use the Human 3.6 million (H3.6M), which
is currently one of the largest publicly available data sets of
motion capture data (Ionescu et al., 2014). It includes 7 actors
performing 15 various activities such as walking, sitting, and
posing. Each movement is repeated in 2 different trials. We
use different people for training and testing; 6 of the actors’
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motion as the training set and the other actors’ motion as a
testing set. The human pose is represented as an exponential
map representation of each joint, with a special pre-processing
of global translation and rotation. The number of features of
body joints dynamics is M = 54. We find that choosing
Te = 50 frames of input data to predict the next Td = 50
frames corresponds to the best performance. We show results
for other lengths of sequences in the Supplementary Materials.
As a result, the actual input matrix, actual output matrix

and decoder output matrix will be X,Y , Ŷ ∈ R
Td×54.

Seq2Seq model was shown to be successful in such a prediction
task (Martinez et al., 2017). We use a similar setup with a
single layer GRU of N = 1, 024 units sharing the weights
between the encoder and the decoder. We find that the setup
which shares the weights between the two components converges
faster than the setup which does not. However, clustering
performance evaluated after the training process converged is
similar in both setups. The encoder and the decoder states

are E,D ∈ R
Te×N . The cost function is the mean square

error between the ground truth and the predicted output

FIGURE 5 | Top: Left: Decoder states embedded projection with one-hot encoding; Right: The inverse correlation between loss (loss) and clustering performance

(blue) of unit circle and ellipse with one-hot encoding (solid line) and without (dashed line). Bottom: Left: decoder representation of centered (dashed) and shifted

(dotted) circles. Right: decoder representation of same circle with different rotation frequency: Te = 50 (dashed) and Te = 25 (dashed-dotted).

FIGURE 6 | Types of human joint movements and corresponding decoder states projected onto the interpretable embedding space.
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J = 1
Td

∑Td
t=1(yt − ŷt)

2. We use a batch size of B = 15 such

that every training iteration can contain all actions. We train
the model with various gradient descent based optimizers and
show our results for ADAM (the fastest converging optimizer
for this model). Here we show results with a similar network
setup as in previous work, however, our investigations indicate
that our method is applicable to other variants of RNN
Seq2seq model (e.g., non-parameter sharing RNNs, multi-layer
RNNs, etc.).

We visualize the projections onto PC3 embedding space for
every type of action. In order to see the pattern for the full action,
we train the model for prediction and then continuously perform
forward propagation on encoder and decoder sequences in a
sliding window starting from the very beginning. In Figure 6,
we show examples of the joints evolution (connected with lines)
alongside with the decoder states projection onto PC3 embedding
space. We clearly observe that each individual action has its own
trajectory evolution (attractor) pattern even in 3D. For example,
as expected, walking data corresponds to a periodic circular
pattern with a rather fixed period and actions such as sitting
correspond to non-periodic trajectories in the embedding space.
To get a better understanding of what should be the appropriate
dimensions of the embedding space, we monitor the number of
dominant PC modes to reach 90 and 99% SVE for encoder and
decoder matrices POD for every type of action during training
(Figure 7).

We observe a low number of dominant modes (< 10 and
< 20 on average for 90% and 99% respectively) needed to
span most of the energy. The number of modes increases with
training and the requirement of the energy threshold (accuracy
of the embedding). The rate of the increase depends on the
type of movement. For example, as shown in Figure 7, the
number of dominant modes for “sitting” is much smaller than for

walking. Furthermore, the number of dominant modes required
to reach 90% SVE increases more slowly than the number of
modes to reach 99%. These results indicate that the model learns
additional details with training. However, most of the main
features captured in (90%) are learned in the first iterations.
Such an observation is supported by analyzing the gradients

TABLE 1 | Comparison of clustering results on Encoding states, Decoding States,

and Joints (RAW) data marked by black, red, and blue colors respectively.

ARI (%)
Training iterations Dimension

Mean Std

dim = 3 53.7 5.0

dim = 10 63.0 5.010

dim = 1,024 64.5 4.2

dim = 3 54.9 9.2

dim = 10 75.5 5.04,000

dim = 1024 76.8 2.8

dim = 3 60.1 6.6

dim = 10 81.9 3.5

Encoder states

10,000

dim = 1,024 88.6 8.8

dim = 3 26.5 7.4

dim = 10 29.9 2.510

dim = 1024 34.6 3.2

dim = 3 90.8 6.6

dim = 10 96.3 3.74,000

dim = 1,024 99.1 2.4

dim = 3 86.6 9.5

dim = 10 94.8 5.4

Decoder states

10,000

dim = 1,024 96.2 3.7

dim = 3 58.1 4.1
Joints data

dim = 54 75.3 4.6

FIGURE 7 | Left: Examples of evolution of the number of dominant modes to reach 90% and 99% in the encoder and the decoder for walking and sitting,

respectively. Right: Evolution of changes in singular values (absolute values) of the decoder states matrix during the training for prediction of “walking”.
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of the singular values during training (Figure 7, right). As
training proceeds, additional singular values are gradually being
optimized. Notably, we observe that encoder states would have
more modes than decoder states. The reason stems from the
encoder trajectory starting from the origin and connecting to
the decoder attractors in various parts of the embedding space.
Such trajectories are hence including mixed characteristics of
the attractor and of the path to it resulting in more irregular
trajectories requiring additional modes to be represented.

To understand how Seq2Seq forms distinct attractors and
differentiates various actions, we construct matrices E,D, Ŷ for
all 15 actions for which the model was trained. We apply
the K-means++ clustering to D to evaluate the separability

of Seq2Seq in the interpretable embedding space and the
dimension of the space which provides efficient clustering
property (Table 1).

We compare the clustering of the encoder and the decoder
trajectories with respect to ARI at different training iterations
and for different dimensions (dim = 3 and dim = 1, 024) of
the embedding space. In addition, we cluster the body joints data
(in dim = 3 and dim = 54). Only the clustering of the decoder
attractors is able to reach 100% clustering in both measures for
dim = 1, 024 of the embedding space. The next best clustering
performance is for the decoder attractors in dim = 3 (97% ARI
which is significantly higher than joints data for dim = 3 and
dim = 54) at iterations = 4, 000. After this number of iterations

FIGURE 8 | 3D visualization of the clustering. Left: Projected coordinates of the joints. Middle: Overfitting for walking data. Right: Decoder states at training iterations

of 2,000.

FIGURE 9 | Left: The projection of D onto the basis of S, at different training iterations. Each color represents an action type. Right: Comparison of loss (red) with

clustering (blue) during training, with one-hot encoding (dashed), and without one-hot encoding (solid).
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FIGURE 10 | Interpretable embedding of decoder states facilitates unsupervised action clustering of a sequence of human activities with varying durations

and individuals.

the attractors start to approach each other instead of diverging.
The encoder trajectories are not clustered well in any dimension
and their clustering does not significantly change with training.
In Figure 8, we visualize the clusters (for joints coordinates,
overfitted trainedmodel, trainedmodel on all movements) in 3D.
We show that even visually, the decoder attractors are scattered
in the space indicating almost perfect clustering property of PC3
space. If we keep adding the number of PCs to 10, it would be
enough to achieve the perfect clustering result.

To understand how training shapes the decoder attractors
and their clustering, we mark each distinct movement attractor
by a different color and monitor their representation in PC3
embedding space for various training iterations (Figure 9). One
of our key observations is that the clustering performance

reaches a peak after considerable training (4, 000 iterations)
which is at the same time that the validation loss reaches
its minimum point. After that, the validation loss increases
as clustering becomes inferior. Such performance is known as
over-fitting and eventually will lead to a model performing
on certain actions only. We demonstrate such a case by
training Seq2Seq with more “walking” action data and then
test the model with all actions. Indeed, no matter what type
of action is given as an input, the decoder states will always
be similar to a circular trajectory that represents the “walking”
action. Hence, we propose that the clustering property of the
embedding space could be used as an indication for sufficient

and optimal training of the model. To show the importance
of the separability of clusters, similar to the synthetic case,
we compare the results with one-hot encoding data. We find
that the model converges much faster and achieves stable high
clustering performance very early. In both cases, clustering
performance is strongly correlated with clustering property, i.e.,
when overfitting starts to occur, clustering performance starts
to deteriorate.

5. UNSUPERVISED ACTION RECOGNITION

To demonstrate the generality and a practical application for our
methodology, we utilize the embedding space of RNN Seq2Seq
and its clustering property to perform unsupervised action

TABLE 2 | Comparison of clustering performances for continuous multiple

actions sequences.

Method Accuracy (%)

LRR (Liu et al., 2010) 65.08

SSC (Elhamifar and Vidal, 2009) 76.65

ACA (Zhou et al., 2008) 84.50

TSSC-LC (Clopton et al., 2017) 86.08

Ours (Mean, Std) 95.25, 4.34

recognition on CMU human body motion capture dataset. We
evaluate our methods in two cases: (i) we randomly choose
sequences from up to eight different actions (walking, running,
jumping, soccer, basketball, washing a window, directing traffic,
have a discontinuity signal) and concatenate them together
(up to 14, 400 frames, 2 mins), following the same rule
from (Li et al., 2018), see Figure 10. (ii) Since manually
concatenated sequences have discontinuity in the prediction,
in the second case we choose trials 1 to 14 from subject
862, where each sequence contains continuous multiple actions
with variable duration. On average each sequence contains
8,000 frames and time segments of each action sequence are
annotated manually (Barbič et al., 2004). For each of the
two cases, we train various RNN Seq2Seq predictive models
to predict a future sequence task with no usage of labels in
training. Our results indicate that the Adversarial Geometry-
Aware Encoder-Decoder (AGED) model (Gui et al., 2018),
shown to be one of the state-of-art motion prediction model
based on RNN Seq2Seq as the predictor, obtains the best
prediction results. We, therefore, apply our embedding approach
in conjunction with the trained AGED model to perform
action recognition. Specifically, all sequences which include
a variety of movements, composed using approach (i) or
(ii), are scanned with AGED forward propagation performed
to collect the decoder states. The decoder states are then
projected to the embedding space. Agglomerative clustering
with single linkage and cosine similarity is then used to

2http://mocap.cs.cmu.edu/search.php?subjectnumber=86
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generate clustering (labeling similar segments to belong to a
cluster). With the embedding space and decoder attractors
within it, unsupervised activity recognition of sequences can
be performed. The only information required is the number
of unique actions (clusters) that we would like to obtain (see
Figure 10 and Supplementary Materials for examples). Testing
the algorithm on composed actions sequences produces the
following performance: in case (i), the approach achieves above
98% frame-level accuracy on average; in case (ii), we evaluate our
accuracy on by frame-level as well and compare with previously
reported methods (Clopton et al., 2017). Our method reaches
an accuracy of 95.25% on average and outperforms previous
methods (Table 2).

6. CONCLUSION

We propose a novel construction of interpretable embedding
for the hidden states of the Seq2Seq model. The embedding
clarifies the role of the encoder and the decoder components
of Seq2Seq such that encoder embedded trajectories direct the
evolution from the origin to the decoder trajectories represented
as attractors. Our findings indicate a remarkable property of
networks: the network trained to predict the future evolution
of a sequence self-organizes the hidden units representation
into separate identities. The identities are revealed through
our proposed embedding and clustering. We demonstrate the
construction and the utilization of the embedding space on both
synthetic and human body joints datasets. We show that the
embedding can inspect training and determine the goodness
of fit. Furthermore, we present an algorithm for unsupervised
clustering of any spatio-temporal features. It utilizes training
of Seq2Seq to predict future actions and analyzes the learned
representation with the interpretable embedding to generate
clustering. We show that such an approach allows performing
action recognition on human body pose data, i.e., to generate

an unsupervised time-segmentation and clustering of human
movements. The algorithm achieves significantly more robust
performance and accuracy than previously proposed approaches.
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