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Fluoropyrimidine-based chemotherapies are widely used to treat gastrointestinal tract, head and neck, and breast
carcinomas. Severe toxicities mostly impact rapidly dividing cell lines and can occur due to the partial or complete
deficiency in dihydropyrimidine dehydrogenase (DPD) catabolism. Since April 2020, the European Medicines Agency
(EMA) recommends DPD testing before any fluoropyrimidine-based treatment. Currently, different assays are used
to predict DPD deficiency; the two main approaches consist of either phenotyping the enzyme activity (directly or
indirectly) or genotyping the four main deficiency-related polymorphisms associated with 5-fluorouracil (5-FU)
toxicity. In this review, we focused on the advantages and limitations of these diagnostic methods: direct
phenotyping by evaluation of peripheral mononuclear cell DPD activity (PBMC-DPD activity), indirect phenotyping
assessed by uracil levels or UH2/U ratio, and genotyping DPD of four variants directly associated with 5-FU toxicity.
The risk of 5-FU toxicity increases with uracil concentration. Having a pyrimidine-related structure, 5-FU is
catabolised by the same physiological pathway. By assessing uracil concentration in plasma, indirect phenotyping of
DPD is then measured. With this approach, in France, a decreased 5-FU dose is systematically recommended at a
uracil concentration of 16 ng/ml, which may lead to chemotherapy under-exposure as uracil concentration is a
continuous variable and the association between uracil levels and DPD activity is not clear. We aim herein to
describe the different available strategies developed to improve fluoropyrimidine-based chemotherapy safety, how
they are implemented in routine clinical practice, and the possible relationship with inefficacy mechanisms.
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INTRODUCTION

Capecitabine and 5-fluorouracil (5-FU) are anti-neoplastic
agents with activity against various tumours, including
gastrointestinal tract, head and neck, and breast carci-
nomas. 5-FU displays a dose-response relationship
regarding both its efficacy and its toxicity.1 The toxicity
induced by 5-FU may lead to ulceration of the lining of the
gastrointestinal tract, hand-foot syndrome, shortness of
breath, neutropenia, thrombocytopenia, neurotoxicity, and
even death. The reported frequency of severe toxicity is
around 30% for grade 3, 3%-5% for grade 4, and 0.1%-1%
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for grade 5 toxicity based on the Common Terminology
Criteria for Adverse Events (NCI-CTCAE).2

Over 80% of the administered 5-FU is catabolised by
dihydropyrimidine dehydrogenase (DPD).3 Partial or com-
plete DPD activity deficiency can cause severe adverse re-
actions.4 Following intravenous bolus administration, the
elimination half-life varies from 8 to 22 min. Dihydro-
fluorouracil (the metabolite of 5-FU catabolised by DPD) can
be detected within 5 min, demonstrating rapid catabolism.

Different strategies have been proposed to predict a DPD
deficiency; the two main approaches are phenotyping the
enzyme activity (directly or indirectly) or genotyping the
four main polymorphisms associated with 5-FU toxicity.

In February 2018, the French medicines agency (Agence
Nationale de Sécurité du Médicament et des Produits de
Santé, ANSM) recommended DPD genotyping for all pa-
tients receiving fluoropyrimidine-based treatment to
improve its safety. In December 2018, a new guideline from
the French cancer institute (Institut National Du Cancer,
https://doi.org/10.1016/j.esmoop.2021.100125 1
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INCa) and the French health authority (Haute Autorité de
Santé, HAS) recommended the measurement of the uracil
blood level and dose adaptation if this concentration was
between 16 and 150 ng/ml.2 For levels >150 ng/ml,
alternative regimens without 5-FU/capecitabine should be
considered. At the request of the ANSM, the European
Medicines Agency (EMA) conducted a review of the evi-
dence concerning DPD deficiency and now also recom-
mends DPD testing by assessing the presence of the four
main variants.5 The Dutch Pharmacogenetics Working
Group (DPWG) and other European scientific associations
have published these same recommendations.6,7

In contrast, the US Food and Drug Administration has
chosen not to require any regulatory review of laboratory or
genetic tests for the use of 5-FU. Clinical laboratories may
develop and validate tests in-house and market them as a
laboratory service. Some may offer assays for DPYD and
thymidylate synthase (TYMS) variant testing, and others will
measure 5-FU area under the curve.8

The Clinical Pharmacogenetics Implementation Con-
sortium (CPIC) dosing guideline for 5-FU and capecitabine
assigned for each * allele diplotype (DPYD genotype) the
probable DPD enzyme activity score (DPD phenotype); and
then linked genotype with fluoropyrimidine dosing. The
CPIC recommends an alternative drug for patients who are
poor DPYD metabolisers with an activity score of 0. In those
who are poor metabolisers with an activity score of 0.5, an
alternative drug is also recommended; however, if no other
suitable therapeutic option is available, 5-FU or capecita-
bine should be administered at a strongly reduced dose
with early therapeutic drug monitoring. Patients who are
intermediate metabolisers with an activity score of 1 or 1.5
should receive a 50% dose reduction.9

Many clinical studies using different approaches have
reported the association between a predicted DPD defi-
ciency and a higher risk of toxicity.10,11 All the recommen-
dations proposed a dose adaptation for patients at high
risk; however, the choice of the optimal biomarker to
implement in clinical practice remains unclear.

In this review, we summarise the different available
strategies aiming to improve the safety of patients treated
with fluoropyrimidine-based chemotherapy. We provide
‘take-home messages’ for each one of them.We hope that a
better knowledge of these strategies and how they have
been developed may facilitate their transfer from biologist
to clinical practice.

FLUOROPYRIMIDINE-BASED DRUG

Pharmacological activity of fluoropyrimidine

Different mechanisms of 5-FU activation into cytotoxic nu-
cleotides have been described.12,13 One of them is the
conversion of 5-FU to 5-fluoro-deoxyuridine mono-
phosphate (FdUMP) that inhibits the enzyme thymidylate
synthase (TS). Other cytotoxic mechanisms of fluoropyr-
imidines include the conversion of fluoro(deoxy)uridine
diphosphate [F(d)UDP] to fluorouridine triphosphate and
fluorodeoxyuridine triphosphate that are incorporated into
2 https://doi.org/10.1016/j.esmoop.2021.100125
RNA and DNA, respectively. All these mechanisms over-
whelm DNA repair mechanisms which leads to cell death
(Figure 1). Only up to 3% of the original dose of 5-FU me-
diates the cytotoxic effects, and which mechanism is pre-
ponderant in tumour cells remains
unclear. However, the cytotoxic activity of 5-FU is highly
dependent on the administration schedule: TS inhibition by
FdUMP prevails when 5-FU is given as a continuous infu-
sion, and fluorouridine triphosphate incorporation into RNA
is considered as being the main mechanism of action when
5-FU is administered as a bolus.14,15

Following intravenous injection, conversion of 5-FU to
FdUMP occurs via thymidylate phosphorylase (TP) to fluo-
rodeoxyuridine (FUDR) and then by the action of thymidine
kinase to FdUMP or indirectly via fluorouridine mono-
phosphate (FUMP) or fluorouridine (FUR) to fluorouridine
diphosphate and then ribonucleotide reductase (RNR) ac-
tion to fluorodeoxyuridine diphosphate and FdUMP.16

Catabolism of fluoropyrimidine

After 5-FU infusion, nearly 20% of the dose is directly
excreted in the urine and the vast majority is catabolised to
inactive metabolites.3 5-FU has a chemical structure that is
like endogenous pyrimidine molecules and is catabolised by
the same pathway. It consists of three consecutive steps:
firstly, thymine (uracil, 5-FU) is catalysed into dihydrothymine
(dihydrouracil, dihydrofluorouracil) by DPD; secondly,
dihydrothymine is catalysed into B-ureidoisobutyrate
(B-ureidopropionate, fluoro B-ureidopropionate) by dihy-
dropyrimidinase; thirdly, B-ureidoisobutyrate is metabolised
into B-aminoisobutyrate (B-alanine, fluoro B-alanine) by
ureidopropionase.16 Dihydrofluorouracil (FUH2) itself dem-
onstrates potential toxicity in some tumour lines.17

Oral drugs: capecitabine and trifluridine/tipiracil

To be effective, capecitabine should be absorbed and con-
verted by enzymes into deoxy-fluorocytidine (DFCR), FUDR,
and 5-FU.18 Oral absorption can be modified by intake of
food or partial/total gastrectomy, and a first-pass effect
plays a role in the bioavailability of capecitabine metabolites
as the enzymes carboxylesterase (capecitabine / DFCR),
cytidine deaminase (DFCR / FUDR), and thymidine phos-
phorylase (FUDR / 5-FU) are highly active in liver
tissue.19,20

Trifluridine (FTD) is a thymidine-based nucleoside
analogue with antitumour activity by incorporation into
DNA.21 When administered alone, FTD is rapidly metab-
olised by thymidine phosphorylase in the liver and the
gastrointestinal tract to inactive forms. Tipiracil inhibits TP
and has been added to the formulation to increase its ef-
ficacy. FTD is incorporated into cells, phosphorylated by
thymidine kinase to FTD-triphosphate, and incorporated
into DNA more efficiently than fluorodeoxyuridine triphos-
phate.22 While both FTD and 5-FU inhibit TS, this mecha-
nism is not considered clinically relevant for FTD as
continuous infusion is needed to do so and FTD has been
developed to be given orally twice daily.23
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Figure 1. 5-FU mechanisms of action and pyrimidine metabolism. 5-FU is converted to FdUMP which inhibits the enzyme thymidylate synthase (TS). Other
cytotoxic mechanisms of action of 5-FU include the conversion of FUDP and FdUDP to FUTP and FdUTP that are incorporated into RNA and DNA, respectively. All
this mechanism overwhelms DNA repair mechanisms and eventually leads to cell death. 5-FU catabolism consists of three consecutive steps. Firstly, 5-FU is
catalysed to 5,6 dihydrofluorouracil (DHFU) by the dihydropyrimidine dehydrogenase (DPD). Secondly, DHFU is catalysed to fluoro B-ureidopropionate by dihy-
dropyrimidinase. And then fluoro B-ureidopropionate is catalysed to fluoro B-alanine by the ureidopropionase. 5-FU, 5-flourouracil; CMP, cytidine mono-
phosphate; CTP, cytidine triphosphate; DHU, dihydrouracil; dTMP, deoxythymidine monophosphate; dUMP, deoxyuridine monophosphate; FdUDP,
fluorodeoxyuridine diphosphate; FdUMP, fluorodeoxyuridine monophosphate; FdUTP, fluorodeoxyuridine triphosphate; FUDP, fluorouridine diphosphate; FUDR,
fluorodeoxyuridine; FUMP, fluorouridine monophosphate; FUTP, fluorouridine triphosphate; UMP, uridine monophosphate; UTP, uridine triphosphate.
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FTD/tipiracil is not a substrate for DPD24 and some re-
ports suggest that it can be safely used in DPD-deficient
patients.25
Mechanisms of toxicity

Haematotoxicity, gastrointestinal toxicity, and hand-foot
syndrome. Inhibition of TS or DNA/RNA incorporation of
5-FU metabolites leads to cell death in rapidly proliferating
cell lines and explains toxicity such as ulceration of the
lining of the gastrointestinal tract, hand-foot syndrome
(HFS), and myelosuppression. HFS and myelosuppression
are generally observed after 8-9 weeks and between 9 and
14 days of fluorouracil administration, respectively.3,16,26
Volume 6 - Issue 3 - 2021
HFS pathogenesis is not fully understood and is the most
frequent side-effect of capecitabine.27

Mechanism of cardiotoxicity and neurotoxicity. Induced 5-
FU cardiotoxicity and neurotoxicity are not well charac-
terised. For cardiotoxicity, two pathophysiological mecha-
nisms are proposed. The first is ischaemia secondary to
coronary vasospasm28 and the second is related to the
direct myocardial toxicity of fluoroacetate. In the latter, 5-
FU is converted to a-fluoro-b-alanine (FBAL) and subse-
quently to fluoroacetate, the presence of which has been
correlated with cardiotoxicity and neurotoxicity syn-
dromes.29 DPD deficiency does not seem to be linked to
cardiotoxicity.
https://doi.org/10.1016/j.esmoop.2021.100125 3
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Modulation of 5-FU activity

Leucovorin (LV) treatment and uridine metabolism can
differentiate between two mechanisms of 5-FU (Figure 2).
FdUMP forms a ternary covalent complex with 5,10-
methylene tetrahydrofolate and TS, and this inhibits the
formation of dTMP from dUMP; this ternary complex is
stabilised by the administration of LV. If 5-FU toxicity is
strengthened by the addition of LV then TS inhibition plays
a significant role, whereas if 5-FU toxicity is not strength-
ened by LV then RNA toxicity is the main mechanism of 5-
FU action. Adding exogenous uridine increases the amount
of available uridine monophosphate for RNA incorporation.
If the toxicity decreases after uridine addition, then 5-FU
incorporation into RNA plays an important role.30

Mechanisms of resistance

As with other anticancer drugs, there are various mecha-
nisms of both innate and acquired resistance that may be
exhibited by tumour cells in response to 5-FU.

The entry into the cell can be impaired by membrane
transporters such as ATP-binding cassette (ABC) and solute
carrier transporters. ABCB1, also known as multidrug
resistance 1 (MDR1), is a member of the ABC transporter
superfamily and its protein product is called P-glycoprotein
(P-gp). ABCB1 overexpression in tumours has been associ-
ated with multidrug resistance to cancer chemotherapy
drugs.31 No relationship was established between capeci-
tabine or 5-FU metabolism and ABCB1. However, patients
homozygote or heterozygote for one of three single-
nucleotide polymorphisms (SNPs) (rs1128503, rs1128503,
or rs1045642) had a higher risk of developing neutropenia
and HFS than homozygous wild-type.32 ABCB1 may be
involved in the transport of capecitabine or derived me-
tabolites. It has been described that ABCB5 expression was
enhanced in colorectal cancer patients after 5-FU-based
chemotherapy33 or that ABCB11 is involved in efflux
transport of FdUMP.34
4 https://doi.org/10.1016/j.esmoop.2021.100125
Lower TP or RNR expression contributes to lower active
metabolites and correlates with resistance to 5-FU.35,36 The
TYMS gene, coding for TS, can harbour polymorphisms in
the promoter enhancer region (rs34743033, rs45445694, or
rs11280056) that influence the translation efficiency of
TYMS mRNA and lower TYMS mRNA expression levels in
normal tissue and are associated with a higher risk of the
cytotoxic effects of 5-FU.37

Many other pathways can be described that emphasise
the complex activity of 5-FU. Methylene tetrahydrofolate
reductase (MTHFR) is another gene of interest; MTHFR ca-
talyses the conversion of 5,10-methylenetetrahydrofolate
(5,10-methylene-THF) to 5-methyl-tetrahydrofolate (5-
methyl-THF). The MTHFR c.C677T polymorphism can cause
a 30% reduction in enzymatic activity and leads to an
accumulation of 5,10-methylene-THF. This excess of 5,10-
methylene-THF increases the stability of the ternary com-
plex and is significantly associated with increased risk of
developing grade 3/4 toxicity.38
Take-home message

Many factors can modulate 5-FU activity and its catabolism.
The most described parameter is DPD deficiency; treating
patients with completely deficient DPD activity with 5-FU
may lead to death. Assessing DPD activity helps to predict
5-FU toxicity.9-11

BIOMARKERS OF FLUOROPYRIMIDINE-BASED
CHEMOTHERAPY TOXICITY

DPD activity in peripheral mononuclear cells (PBMC-DPD)

The metabolic activity of DPD is directly assessed by
measuring the amounts of dihydrouracil, carbamyl-B-
alanine, and B-alanine produced from exposure of patient
lymphocytes to6-14 uracil. In-vitro studies have demon-
strated that DPD activity is present in several normal and
tumour cells (peripheral blood lymphocytes and liver).39,40
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PBMC-DPD deficiency is defined by the proportion of
activity compared with the mean PBMC-DPD activity in a
reference population. As PBMC-DPD and liver-DPD activity
display a similar Gaussian distribution in the population,39

the estimation for the overall DPD activity in the liver and
other tissues is extrapolated from the estimation of the
PBMC-DPD activity. One limitation of this method is that in
normal peripheral blood lymphocytes and intestinal mu-
cosa, the catabolism of the uracil cannot be detected
beyond dihydrouracil, indicating a very low or a lack of
dihydropyrimidinase activity.39,40 In vitro, other factors can
inhibit DPD activity, such a high amount of uracil and/or
reduced nicotinamide adenine dinucleotide phosphate
(NADPH) before the reaction in rat or human liver.41

High DPD activity should also be considered, as survival
and response rate was lower in patients with higher DPD
activity probably due to lower drug exposure.42

However, the implementation of this method in routine
care is highly limited as it is a time-consuming technique
and it requires a large volume of blood and radiolabeled
materials.
Take-home message

The estimation of the DPD activity from PBMCs is accurate
but difficult to implement in routine.
UH2/U and the plasma uracil concentration

Endogenous uracil is naturally metabolised in the liver into
dihydrouracil (UH2) by DPD. In case of metabolic deficiency,
uracil is increased and UH2 decreased.40

The endogenous plasma uracil level and 5-FU clearance
were compared with PBMC-DPD activity, and a linear cor-
relation was observed between DPD activity and 5-FU
clearance, but DPD activity was poorly correlated with the
plasma uracil levels. Likewise, the plasma uracil levels were
poorly correlated with 5-FU clearance.43 Considering the
phenotyping approaches, Boisdron-Celle et al. reported 252
patients with 5-FU infusion for the pretherapeutic detection
of DPD deficiency:

� A correlation was found between uracil plasma levels
and 5-FU plasma clearance.

� A correlation was found between uracil plasma levels
and 5-FU toxicity (mean � SD uracil concentrations
increased with toxicity grade: grade 0, 14 � 6.7 ng/ml;
NCI-CTCAE grade 1, 14 � 2.6 ng/ml; grade 2, 17.5 �
4.8 ng/ml; grade 3, 25 � 11 ng/ml; grade 4, 24.4 � 10
ng/ml).

� No correlation was found between the UH2/U ratio and
5-FU plasma clearance, but a significant correlation was
found between UH2/U ratio and treatment toxicity (the
mean � SD UH2/U ratio decreased with toxicity grade:
grade 0, 8 � 2.5; grade 1, 6.5 � 3.2; grade 2, 6.7 �
1.7; grade 3, 5 � 3.1; grade 4, 3.7 � 2.7).10
Volume 6 - Issue 3 - 2021
In another study, plasma uracil level and 5-FU plasma
clearance were poorly correlated. The UH2/U ratios were
correlated to 5-FU plasma clearance.11

More recently, no relationship was found between 5-FU
clearance and uracil concentration or UH2/U ratio; the au-
thors also highlight that the mean area under the curve for
patients with uracil <16 ng/ml was significantly lower than
for those with uracil �16 ng/ml.44

Uracil is mainly catabolised by the DPD in the liver and 5-
FU toxicity occurs in several tissues. Heterogeneity of DPD
activity and different rate-limiting enzymes with a lack of
dihydropyrimidinase in some cells may explain these
results.39,40

Quantification of uracil and UH2 is based on high-
performance liquid chromatography (HPLC) coupled with
UV or more frequently with mass spectrometry detec-
tion.45-47 Preanalytical conditions (patient samples, stock
solutions, and sample extracts) are essential for the reli-
ability of the results owing to the high instability of uracil
and its metabolites.40 Moreover, using an exact threshold
such as 16 ng/ml does not allow a continuous adaptation of
5-FU dosage in clinical practice; for instance, the increased
risk of toxicity for a uracil level at 15.9 ng/ml would be very
close to that at 16.1 ng/ml, but the 5-FU dosing would be
highly different based on the EMA recommendations. There
is limited information concerning prospective validation
(with its sensitivity and specificity) of uracil as a biomarker.

Toxicity was studied in 550 patients treated with 5-FU.
Pre-treatment uracil was associated with significantly
increased risk of overall severe toxicity (grade 3 and 4);
overall response (OR) of 8.2 (P ¼ 0.0004) for the group U
�13.9-16 ng/ml, and OR of 5.3 (P ¼ 0.0087) for the group U
>16 ng/ml (in comparison with group U <13 ng/ml). Two of
the 17 patients (12%) in the uracil >16 ng/ml group had
fatal treatment-related toxicity.48

Based on a consensus in France, uracil concentration
�150 ng/ml has been adopted to define complete DPD
deficiency.

Take-home message

The risk of 5-FU toxicity increases with pre-treatment uracil
concentration; however, using 16 ng/ml as the threshold for
DPD deficiency with a systematic decreased 5-FU dose may
lead to chemotherapy under-exposure as uracil concentra-
tion is a continuous variable and the association between
uracil levels and DPD activity is not clear.

DPYD Genotyping

The DPD deficiency can be partial (the prevalence in Euro-
pean patients is estimated to be between 3% and 8%) or
complete (the prevalence between 0.01% and 0.5%).2 DPD
is encoded by a single-copy gene (DPYD) on each chromo-
some; it is 1100 kb in size and contains 23 exons (Chro-
mosome 1; 817 347 pbs).49 In the COSMIC database, from
38 889 unique samples screened for DPYD, 3239 samples
with unique mutations were detected. Most were missense
substitutions (18.96%), synonymous substitutions (4.85%),
https://doi.org/10.1016/j.esmoop.2021.100125 5
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Table 1. Four main variants and their frequencies

Variant Frequency (%)

DPYD*2; rs3918290 0.65
DPYD*13; rs55886062 0.03
HapB3; rs75017182 þ rs56038477 1.3%
D949V; rs67376798 0.32
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or nonsense substitutions (1.48 %).50 So far, only a limited
number of these are associated with a decreased DPD ac-
tivity which may explain the occurrence of severe toxicities
with fluoropyrimidines.

Four variants are currently screened in routine and have
been directly tested for 5-FU toxicity (DPYD*2A or
rs3918290, DPYD*13 or rs55886062, c.2846A>T or D949V
or rs67376798, HapB3 or rs75017182 or rs56038477),
(Table 1).51,52

� These variants are related to 5-FU-induced toxicity but
the association between known risk related to DPYD ge-
notype heterozygote variants and uracil levels or UH2/U
ratio are not clearly characterised.53,54

� Patients have experienced grade 3/4 toxicity without any
of the four well-known mutations (in a cohort of 546 co-
lon cancer patients experiencing toxicity, only 64 carried
a mutated DPYD).48,55 In view of certain in vitro and
ex vivo data, it is very likely that other functional variants
exist, resulting in a deficit of the DPD activity.

� In populations of African origin, the allelic frequencies of
the variants DPYD*2A, DPYD*13, c.2846A>T and HapB3
are estimated to be 0.1%, 0%, 0.1%, and 0%, respec-
tively; in East Asian countries, these all were estimated
to be 0%.49

For the DPYD*2 variant, a GT to AT point mutation leads
to a pre-mRNA splicing of exon 14. The transcript protein
function is partially or totally impaired for heterozygous or
homozygous mutations, respectively. The HapB3 variant is
driven by the same mechanism, with a CA to GT point
mutation and a pre-mRNA splicing of exon 11. For the
DPYD*13 and c.2846A>T variants, missense mutations
leads, respectively, to the nucleic acid substitution I560S
and D949V. Further studies are needed to discern which
variants are most likely to impact DPD activity and induce
toxicity.9,56

In 2015, Henricks et al. proposed the calculation of a
gene activity score based on the functional impact attrib-
uted by these authors to each of the four main variants,
with a 50% or more dose reduction for heterozygous vari-
ants and that homozygous variants should not be treated
with 5-FU.57

Reported experience of systematic DPYD genotyping in
routine practice showed that the administration of 5-FU at a
reduced dose in patients heterozygous for DPYD*2A is
safe.58 There are also reported cases of severe toxicity
(grade 3/4) induced by capecitabine that were found to be
DPD deficient,59 and DPYD genotyping successfully reduced
this risk in a prospective study for breast cancer patients.60

Variability in the genotype-phenotype relationship can be
due to the regulation of DPD at the post-transcriptional
level. Short RNAs associated with RNA-induced silencing
complex (RISC) proteins can bind to DPD mRNA and inhibit
its translation and increasing degradation.

Post-transcriptional regulation of DPD involves the
microRNAs miR-27a and miR-27b. Regulation of DPD
activity has been tested in mouse lines and tissue
6 https://doi.org/10.1016/j.esmoop.2021.100125
preparations. Mouse liver DPD activity was inversely
correlated with expression levels of miR-27a and miR-27b.61

Data on the functional effects of miR-27 on DPD in vivo are
limited.
Take-home message

Some DPYD variants are associated with a higher risk of
toxicity. There is a consensus to adapt 5-FU dosage based on
genotyping and reported experience showed that it has
been implemented safely in routine practice. More variants
are needed to be described because the four screened fail
to explain all 5-FU-related toxicity.
CONCLUSION AND PERSPECTIVES

Fluoropyrimidine-based chemotherapies are the backbone
in the treatment of many cancers and different strategies
can be used to improve the safety of patients.54,62,63 Today,
in France, the main strategy consists of determining uracil
plasma concentration with dose-adapted treatment if uracil
blood level is between 16 and 150 ng/ml; fluoropyrimidine-
based chemotherapies should be avoided at levels above
150 ng/ml.2 In view of the literature, pre-treatment uracil
concentrations are associated with overall toxicity but there
is no clear correlation between uracil and DPD deficiency
based on the four known associated DPYD variants or on
PBMC-DPD activity.64 With these strategies, some patients
with an impaired DPD activity and uracil level below 16 ng/
ml can suffer from severe toxicities but also patients with
uracil levels above 16 ng/ml without DPD decreased activity
can be undertreated with a tailored dose of 5-FU.55 Many
variants of DPYD with an impaired activity have been
described with more or less clinical significance.56 Better
modelling of factors explaining high levels of uracil and
description of significant variant for DYPD could help in the
near future to better predict 5-FU toxicity.

Moreover, 5-FU dose adaptation needs to be evaluated in
routine clinical practice since the 2018 recommendations.
Further studies are warranted to evaluate the proportion of
patients who are tested before starting a 5-FU treatment;
the techniques used to predict 5-FU toxicity; the proportion
of patients predicted to have higher risk for 5-FU toxicity;
the proportion of patients receiving an initial course of
chemotherapy with a decreased dose of 5-FU; the propor-
tion of the latter who receive an increase in 5-FU dose in
the absence of toxicity during the first course of chemo-
therapy; the prognostic impact of the dose adaptation; and
whether this monitoring allows less 5-FU induced toxicity.
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