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Abstract
Background: Amyloid-β (Aβ), a key protein found in amyloid plaques of subjects with Alzheimer's
disease is expressed in the absorptive epithelial cells of the small intestine. Ingestion of saturated
fat significantly enhances enterocytic Aβ abundance whereas fasting abolishes expression.
Apolipoprotein (apo) E has been shown to directly modulate Aβ biogenesis in liver and neuronal
cells but it's effect in enterocytes is not known. In addition, apo E modulates villi length, which may
indirectly modulate Aβ as a consequence of differences in lipid absorption. This study compared
Aβ abundance and villi length in wild-type (WT) and apo E knockout (KO) mice maintained on
either a low-fat or high-fat diet. Wild-type C57BL/6J and apo E KO mice were randomised for six-
months to a diet containing either 4% (w/w) unsaturated fats, or chow comprising 16% saturated
fats and 1% cholesterol. Quantitative immunohistochemistry was used to assess Aβ abundance in
small intestinal enterocytes. Apo E KO mice given the low-fat diet had similar enterocytic Aβ
abundance compared to WT controls.

Results: The saturated fat diet substantially increased enterocytic Aβ in WT and in apo E KO mice,
however the effect was greater in the latter. Villi height was significantly greater in apo E KO mice
than for WT controls when given the low-fat diet. However, WT mice had comparable villi length
to apo E KO when fed the saturated fat and cholesterol enriched diet. There was no effect of the
high-fat diet on villi length in apo E KO mice.

Conclusion: The findings of this study are consistent with the notion that lipid substrate
availability modulates enterocytic Aβ. Apo E may influence enterocytic lipid availability by
modulating absorptive capacity.

Background
Net concentration of cerebral Aβ is determined by the
presence of apolipoprotein (apo) E with a dose dependent

gene effect of apo E -/- < apo E -/+ < apo E +/+ on hippoc-
ampal senile plaques [1,2]. Animals and cell culture stud-
ies show that apo E regulates the production, transport,
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clearance and solubility of Aβ [1-8]. Apolipoprotein E
may modulate cerebral Aβ homeostasis by regulating cer-
ebral Aβ efflux via the low-density-lipoprotein-receptor-
related protein (LRP), relative to the influx of Aβ via trans-
porters such as the receptor for advanced-glycation-end-
products (RAGE) [9]. In addition, apo E can also directly
influence Aβ biogenesis via regulation of α- and β-secre-
tases activity [10], or indirectly, by influencing the intrac-
ellular pool of regulating lipids [11].

Apolipoprotein E critically regulates cholesterol metabo-
lism and lipid homeostasis. The apo E protein is the pri-
mary receptor ligand for dietary-derived lipoproteins
synthesized by the small intestine (chylomicrons) and
triglyceride-rich lipoproteins (very-low-density lipopro-
teins (VLDL)), synthesized from liver [12]. Several lines of
evidence support a link between aberrations in lipid
metabolism and AD risk [7,11,13]. Epidemiological and
clinical studies suggest that a high intake of saturated fat
and/or cholesterol accelerate onset and progression of
AD, whereas some polyunsaturated fatty acids may be
protective [13-17]. Moreover, strong evidence of a causal
relationship between dietary fats and AD comes from
feeding studies in mice or rabbits. Animals given satu-
rated-fat diets show significant immuno-detectable cere-
bral Aβ burden [18-20], although the mechanisms by
which this occurs are presently unclear.

Our laboratory recently reported that absorptive epithelial
cells of the small intestine secrete Aβ associated with die-
tary-derived lipoproteins (chylomicrons) [21]. A diet
enriched in saturated fats and cholesterol was found to
markedly increase enterocytic Aβ, whereas fasting com-
pletely abolished Aβ production. Chronic ingestion of sat-
urated-fat may lead to sustained elevations in blood of
lipoprotein-bound Aβ, because of overproduction and
thereafter, reduced clearance from blood. Moreover,
recent studies suggest that exaggerated exposure to circu-
lating Aβ may compromise blood-brain-barrier integrity
and exacerbate cerebral amyloidosis [22]. In normal sub-
jects, approximately 60% of lipoprotein-bound plasma
Aβ is associated with the triglyceride-rich-lipoproteins

(TRL's) and in subjects with AD, post-absorptive accumu-
lation of chylomicrons has been identified [23].

Apolipoprotein E is pivotal for the interaction of TRL with
high affinity clearance pathways [12] including the low-
density-lipoprotein-receptor (LDL-r) and LRP and will
therefore significantly influence plasma lipoprotein-Aβ
concentration and kinetics. However, apo E may also
influence plasma Aβ homeostasis by modulating synthe-
sis and secretion of the lipoprotein-Aβ complex from
either the intestine and/or liver. To explore this concept
further, in this study we compared enterocytic Aβ home-
ostasis in wild-type mice versus animals devoid of apo E
(apo E knockouts). Mice were given either a low-fat, or
high saturated-fat diet to explore synergistic effects. We
find that apo E modulates intestinal morphology in a
manner which may influence lipid absorptive capacity
and has a synergistic effect with dietary fats on enterocytic
Aβ homeostasis.

Results
High-fat feeding induced hypercholesterolemia in apo E 
KO mice
Apo E KO mice given low-fat chow had significantly ele-
vated plasma cholesterol compared to WT mice on the
low-fat diet (table 1), however plasma triglycerides were
not significantly affected because of the gene deletion. In
WT mice the high saturated fat diet had no significant
affect on plasma cholesterol or triglycerides (table 1).
However, in apo E KO mice hypercholesterolemia was
substantially exacerbated and some two-fold greater than
the apo E KO mice given low-fat chow. All groups of mice
gained weight during the intervention and there was no
significant difference between treatment groups (data not
shown).

Immunolocalisation of Aβ in the small intestine of 
apolipoprotein E KO mice: synergistic effects of high fat 
feeding
For all groups of mice, Aβ immunostaining was demon-
strated within the perinuclear region of absorptive colum-
nar epithelial cells of the small intestine mucosa (insert,
figure 1). With low-fat feeding, WT and apo E KO mice

Table 1: Plasma lipids in wild-type and apolipoprotein E knockout mice fed low and high fat diets

Diet Gene Cholesterol (mM) mean ± S.E.M Triglyceride (mM) mean ± S.E.M

LF WT 2.1 ± 0.05 0.69 ± 0.19
LF Apo E KO *6.95 ± 1.97 0.68 ± 0.09
HF WT 2.2 ± 0.46 0.42 ± 0.12
HF Apo E KO *14.3 ± 0.01 0.38 ± 0.12

*P < 0.05
S.E.M = standard error of the mean
Table shows plasma cholesterol and triglyceride concentrations (mean ± SEM, n = 6 mice per group) in C57BL/6J WT mice and apo E KO mice 
maintained on either LF or HF diet for six-months. Apo E KO mice had significantly elevated levels of plasma cholesterol compared to WT controls 
under both feeding regimens (P < 0.05). High-fat feeding further exacerbated the elevation of cholesterol in apo E KO mice compared to HF-WT (P < 
0.001) and LF-APOE KO mice (P < 0.05). Plasma triglyceride was not significantly different between groups.
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Enterocytic Aβ in wild-type and apolipoprotein E knockout mice given a high fat dietFigure 1
Enterocytic Aβ in wild-type and apolipoprotein E knockout mice given a high fat diet. Figure shows proportion of 
small intestinal epithelial cells with different staining intensity for Aβ. Score as follows: (-) no granular coloration, (+) modest 
with 1–2 granules, (2+) moderate with 3–4 granules or (3+) high, containing larger intense granules. Data was collected for six 
mice per group, with a minimum of four tissue sections per mouse studied. A minimum of 200 cells per section were scored 
and statistical significance was determined by one-way ANOVA with post-hoc Bonferroni test. LF-WT and LF-APOE KO mice 
have significantly (p < 0.05) fewer cells which stained positive for Aβ compared to mice fed high fats (HF-WT and HF-APOE 
KO *a and *b respectively). Under high-fat feeding, apo E KO mice had significantly greater proportion of cells which 
expressed Aβ at higher intensity compared to high-fat fed WT mice (*c, p < 0.05). The inset micrograph shows high-magnifica-
tion of enterocytes from groups corresponding to graphs below. Beta-amyloid colocalized within the perinuclear regions of the 
cell containing Golgi and ER within enterocytes from all groups. (Scale bar = 20 μm).
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exhibited positive staining of Aβ relatively evenly distrib-
uted throughout the mucosa epithelium. Apo E KO mice
on low-fat diets showed a similar distribution of Aβ com-
pared to WT controls (figure 1). The effect of high-fat feed-
ing on enterocytic Aβ in WT and apo E KO mice is also
given in figure 1. Both WT and apo E KO mice had signif-
icantly greater enterocytic Aβ abundance, however the
effect was more pronounced in the apo E knockout group,
notably with more enterocytes showing intense (3+)
staining (double asterisks, figure 1).

Villi height in apo E KO mice and effects of high fat feeding
Small intestinal villi length was determined as a surrogate
marker of intestinal absorptive capacity. Apo E KO mice
on the low-fat diet had significantly greater mean villi
length compared to WT controls (figure 2). High-fat feed-
ing was found to substantially increase villi length in con-
trol animals and was comparable to apo E KO mice. High-
fat feeding had no synergistic influence on villi length in
the absence of apo E expression (figure 2).

Discussion
This study shows that in the absence of apo E, intestinal
villi length is significantly greater than WT mice. The
absence of apo E coupled with chronic ingestion of a sat-
urated fat and cholesterol diet, increased enterocytic Aβ
abundance compared to WT mice on a low-fat diet. This
may have simply been a dietary-fat induced effect inde-
pendent of apo E, because apo E KO mice on a low-fat diet
showed similar levels of enterocytic Aβ compared to WT
controls. On the other hand, the absence of apo E with a
high-fat diet was found to enhance Aβ abundance above
that observed in WT mice given saturates and cholesterol.
The latter is consistent with modulation of Aβ by apo E
that is lipid-threshold dependent.

Apolipoprotein E serves as a TRL ligand for both the LDL
receptor and LRP [24,25]. The liver is a major source of
apo E, however other tissues including the small intestine
express apo E [24,26,27]. Apo E KO mice [28-30] accumu-
late TRL's because they are unable to bind and be cleared
by receptor processes [31]. Under low-fat feeding, apo E
KO mice had a greater than three-fold increase in plasma.
High-fat feeding exacerbated plasma cholesterol accumu-
lation in apo E KO mice, presumably because of exagger-
ated lipoprotein production and indeed
hypercholesterolemia was increased two-fold above low-
fat fed apo E KO mice. Clearance of TRL's from blood is a
two-step process requiring triglyceride lipolysis by lipases
to produce a depleted apo E rich 'remnant' lipoprotein
[24]. Thereafter, remnants are cleared by receptor path-
ways utilizing apo E as the ligand. There is no hydrolytic
defect in apo E KO mice, which explains why these mice
were not hypertriglyceridemic.

The mechanisms by which the absence of apo E increased
enterocytic Aβ in high-fat fed mice are unclear, although
studies in cell culture provide clues. Irizarry et al (2004)
found that incubation of neuronal cells with apo E
resulted in a reduced synthesis of Aβ by lowering the
gamma secretase activity [4]. Rough endoplasmic reticu-
lum (rER) and the Golgi compartments are where early
endoplasmic cleavage of the Aβ precursor protein occurs,
the latter consistent with increased enterocytic perinuclear
Aβ immunostaining in apo E KO mice.

This study and others [32,33] found longer villi length in
apo E KO mice, suggestive of greater absorptive capacity.
Greater substrate availability might stimulate Aβ biogen-
esis and this hypothesis is supported by the increase in Aβ
abundance in high-fat WT mice which also had a marked
increase in villus length. Greater Aβ abundance would
have been expected in apo E KO mice given the low-fat
diet compared to WT controls, because villus length was
comparatively greater in the absence of the apo E gene.
However, if lipid absorption is already efficient with the
low-fat feeding regimen; the deletion of apo E (and
increased villus length) would not necessarily have had
the expected stimulatory effect on enterocytic Aβ.

Chylomicron synthesis occurs within the ER and Golgi
requiring the progressive lipidation of apolipoprotein B48
(apo B48) [34,35]. Dietary fats transiently stimulate chy-
lomicron synthesis and secretion [36,37] and in clinical
studies post-prandial elevations in the Aβ-precursor pro-
tein have been reported synergistic with the lipaemic
response [3]. How Aβ binds and is secreted with chylom-
icron is unclear, although the protein is known to bind
avidly with negatively charged hydrophobic lipids [5,38].
Cell culture studies also support a lipoprotein mediated
secretory pathway because in hepatocyte media, Aβ is
found associated with lipoprotein complexes [11].

In animal models and in cell cultures, apo E has con-
founding effects on hepatic secretion of VLDL. Apo E will
normally suppress apo B production, but this is contra-
dicted in the presence of lipids which strongly stimulate
lipoprotein biogenesis [39]. In this study, enterocytic Aβ
abundance was not significantly different in low-fat apo E
KO mice compared to controls, suggesting that chylomi-
cron synthetic rates were not different between these two
groups of mice. The increased availability of dietary lipids
when animals were fed the high-fat diet would promote
chylomicron production and by extension, perhaps Aβ
genesis. However, whilst enhanced enterocytic abundance
of Aβ was seen in both WT and apo E KO mice given the
high-fat diet, the effect was greater in the latter. One expla-
nation is the finding that apo E normally suppresses trig-
lyceride secretion from liver. Therefore, the enhanced
effect on enterocytic Aβ seen in apo E KO given high-fat
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Villi height in wild-type and apolipoprotein E knockout mice given a high fat dietFigure 2
Villi height in wild-type and apolipoprotein E knockout mice given a high fat diet. Mean villi height (mm) in WT and 
apo E KO mice fed low- and high-fat chow. LF-WT group had significantly (*p < 0.05) shorter villi height compared to other 
groups. The inset micrograph shows low-magnification of intestinal villi height for each group. (Scale bar = 200 μm).
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may have been indicative of amplification in the presence
of greater cytosolic lipids [39,40].

Conclusion
Many studies have demonstrated the central role of apo E
in maintaining cerebral Aβ homeostasis including modu-
lation of production, as a chaperone protein, and in main-
taining efflux and influx pathways across the blood brain
barrier. Furthermore, apo E profoundly influences the
kinetics in blood of Aβ containing lipoproteins as well as
their secretion from liver. This study now demonstrates
that apo E may also regulate intestinal Aβ metabolism.

Materials and methods
Animals
The protocols described were approved by an ethics com-
mittee accredited by the National Health and Medical
Research Council of Australia (Curtin University ethics
approval N 55-04). Six-week-old female C57BL/6J apoli-
poprotein E gene knockout (apo E KO) and wild-type
(WT) mice weighing approximately 16 g were obtained
from the Animal ARC, Perth, Western Australia. Mice were
divided and randomly allocated into a low-fat or high-fat
diet group. Mice were housed separately in a well-venti-
lated room that was maintained at 22°C on a 12:12-h
light/dark cycles. Body weight was measured weekly.

Dietary regimen
Chow was purchased from Rodent Diet Specialty Feeds
(Glen Forrest, Western Australia). The low-fat (control)
group of mice was given chow that contained 4.0% (w/w)
as unsaturated fat (AIN93M standard rodent diet) and the
diet was free of cholesterol. Mice on the high-fat diet were
given chow containing 1.0% (w/w) as unsaturated fat and
16.0% (w/w) as saturated fat (SF00–245 high-fat mouse
diet). In addition, the high-fat feed was supplemented
with 1% (w/w) cholesterol and 0.5% (w/w) cholate, the
latter to aid in absorption. The digestible energy for low-
fat and high-fat feed were 15.2 MJ/kg and 18.7 MJ/kg
respectively. Food and water were available ad libitum.

Sample collection
After six-months of dietary interventions, mice were
anaesthetized with an intraperitoneal injection of Pheno-
barbital (45 mg/kg). Mice were exsanguinated by cardiac
punctureand blood was collected into ethylene-diamine-
tetracetic acid (EDTA)-tubes. Plasma was separated by low
speed centrifugation and stored at -80°C (under an
atmosphere of argon).

Tissue processing
A small intestine segment measuring 2 cm was cut and
isolated from the rest of the digestive tract at the proximal
duodenal sphincter. The contents were flushed in-situ with
phosphate buffered saline (PBS, pH = 7.4), and placed

into 10% buffered formalin (ph = 7.4) for fixation. Tissues
were fixed for 24 h and processed for immunohistochem-
istry (IHC).

Immunohistochemistry
Tissue sections (5 μm) were deparaffinised, rehydrated
and IHC analysis was done as previously described [21].
Briefly, the sections were exposed to 3% hydrogen perox-
ide in methanol for 30 min to quench endogenous perox-
idase activity, washed and incubated in blocking serum
(20% goat serum) prior to overnight incubation at 4°C
with polyclonal rabbit anti-human Aβ1–40/42 antiserum
(AB5076, Chemicon Temecula, CA), diluted to 1:1000
with 10% goat serum. We previously established specifi-
city by replacing the primary antibody with an irrelevant
serum or with PBS and by competition IHC analysis [21].
For the latter, the primary antisera were pre-mixed with
solubilised Aβ. Cerebral tissues from transgenic mice
(Tg2576sw) expressing familial human APP695 with
established plaques were used as positive controls. Slides
were washed in PBS and incubated with biotinylated goat
anti-rabbit secondary antibody (1:1000 dilution) (E
0432, DAKO, Carpinteria, CA), followed by avidin-
biotin-peroxidase complex (ABC/HRP) (K 0377, DAKO,
Carpinteria, CA) for 45 min at room temperature. Positive
immunostaining was established with liquid diami-
nobenzidine plus (DAB+) substrate chromogen kit (K
3467, DAKO, Carpinteria, CA). Sections were then coun-
terstained with Harris's haematoxylin.

Imaging
Digital images for photomicroscopy were acquired by Axi-
oCam HRc camera (Zeiss Germany). Images were cap-
tured under identical settings utilising AxioVision
software, version 4.5.

Quantitation of intestinal beta-amyloid abundance
Six animals per group were investigated with a minimum
of four tissue blocks prepared for each. From each slide,
four images were captured randomly at low magnification
(Zeiss AxioVert 200 M, Germany). The intensity of immu-
nolabeling was quantified as previously described
[41,42]. Labelling was considered adequate if it was mild
(+), moderate (2+), or intense (3+), with adequately
labeled positive controls and no labeling in negative con-
trols. The total number of cells with different intensity of
Aβ staining was counted by a blinded-to-group investiga-
tor in each villus and the data expressed as a percentage.

Measurements of intestinal villi height
Total of 8 images was taken at low-magnification per
group. Representative villi were selected by two independ-
ent investigators for height measurement (measurement
tool, AxioVision program 4.5).
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Plasma lipid measurements
Plasma lipids were measured immediately following
plasma isolation via commercial absorbance-based
assays. Triglyceride was determined by measurement of
glycerol liberated following enzymatic hydrolysis of trig-
lyceride (TR 1697, Randox laboratories, U.K). Total
plasma cholesterol concentration was determined via the
cholesterol esterase/cholesterol oxidase technique (CH
201, Randox laboratories, U.K).

Statistical analysis
The effect of high-fat feeding and apo E gene on Aβ abun-
dance, intestinal villi height, plasma triglyceride and total
cholesterol was assessed by univariate analysis. Post-hoc
comparisons of means were performed using Bonferroni
tests and if equal variance was not found, then Games-
Howell test was used to compare difference between indi-
vidual groups. P-value < 0.05 was considered a statistically
significant.

List of abbreviations
Aβ: beta-amyloid; AD: Alzheimer's disease; Apo: apolipo-
protein; APP: amyloid precursor protein; CH: cholesterol;
IHC: immunohistochemistry; KO: knockout; TG: triglyc-
erides; TRL: triglyceride-rich-lipoprotein; WT: wild-type.
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