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The Coxian phase-type models and the joint models of longitudinal and event time have been extensively used in the studies of
medical outcome data. Coxian phase-typemodels have the finite-jump property while the jointmodels usually assume a continuous
variation. The gap between continuity and discreteness makes the two models rarely used together. In this paper, a partition-based
approach is proposed to jointly model the charge accumulation process and the time to discharge. The key construction of our
new approach is a set of partition cells with their boundaries determined by a family of differential equations. Using the cells, our
new approach makes it possible to incorporate finite jumps induced by a Coxian phase-type model into the charge accumulation
process, therefore taking advantage of both the Coxian phase-type models and joint models. As a benefit, a couple of measures
of the “cost” of staying in each medical stage (identified with phases of a Coxian phase-type model) are derived, which cannot be
approached without considering the joint models and the Coxian phase-type models together. A two-step procedure is provided
to generate consistent estimation of model parameters, which is applied to a subsample drawn from a well-known medical cost
database.

1. Introduction

Rising expenditures and constraints on health care budgets
have prompted the development of a variety of methods for
the analyses of hospital charge and length of stay (LOS) as
discussed in Gold [1], Lipscomb et al. [2], and Lin et al.
[3]. Correctly fitting the charge and LOS data is a critical
step in optimizing the allocation of healthcare resources. But
due to the protection of private information, the detailed
information regarding the treatment process that patient
experience in hospital is not available from many well-
known medical outcome databases, like the New York State’s
Statewide Planning and Research Cooperative System. The
missing longitudinal information of the treatment process
makes it more challenging to generate good fitting; mean-
while it becomes demanding to have a dynamic model,
through which effective inference can be made against the

hidden treatment process. To that goal, a bunch of stochastic-
process-based models have been well developed and applied
to analyze the medical datasets.

The continuous-time Phase-Type (PH) model has been
widely used in the study of hospital charge and LOS data.
Many authors focus in particular on a special subclass of PH
model/distribution, namely, the Coxian phase-type (CPH)
model/distribution Tang [4]; Faddy et al. [5]; Marshall et al.
[6–8]; Fackrell [9]. Unlike other popular theoretical distribu-
tions widely used in inpatient data, such as log-normal and
gamma distribution, the CPH model/distribution not only
provides a theoretical distribution that can be used to fit the
empirical data, but also gives us a sketch of the treatment
dynamics that patient experience in hospital. In fact, from
CPH models, we can track the pathways that patient went
through in different medical stages (characterized by the
discrete set of phases in the PHmodel) during a hospital stay.

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2018, Article ID 6367243, 13 pages
https://doi.org/10.1155/2018/6367243

http://orcid.org/0000-0002-4708-2854
https://doi.org/10.1155/2018/6367243


2 Computational and Mathematical Methods in Medicine

The pathway informationmakes it possible to cluster patients
and facilitate the use of healthcare process improvement
technologies, such as Lean Thinking or Six Sigma McClean
et al. [10, 11].

The other popular approach to study hospital charge and
LOS is through dynamically modelling the charge accumula-
tion process and the determination of the time to discharge,
which belongs to a more general class of joint models of
the longitudinal measurements and time to event, Ibrahim
et al. [12]; Tsiatis and Davidian [13]; Henderson et al. [14];
Kim et al. [15]; Sousa [16]; Lawrence Gould et al. [17]. In
medical cost studies, the charge accumulation is a monotonic
nondecreasing process; the joint model used in this case is
reduced to a class of random growth with random stopping
time (RGRST) models.

Like CPH models, the RGRST models do also capture
the treatment dynamics that patient experience in hospital.
But in contrast to tracking the pathways of patient moving
through different medical stages, the RGRST models focus
more on describing how patient and/or doctor makes the
discharge decision in reaction to the change of actual charge
level and the length of time that patient has stayed in hospital.
Therefore, the story of RGRST models is more about the
behavioural patterns of patient/doctor behind the treatment
dynamics, while the story of CPH models is more on the
medical side.

It is natural in this paper to think of the possibility of
combining CPH models and RGRST models together in
order to extract more information regarding the discharge
decision-making on different medical stages. However, there
is a natural gap between the two models.The CPHmodel is a
finitely jumped stochastic process in essence, while the charge
accumulation in the RGRST model is continuous. It is not
trivial to combine a jump process with a continuous process.
To deal with that difficulty, we propose a partition-based
approach with each partition cell determined by solving a
boundary differential equation. These boundary differential
equations are subtly designed tomerge the continuous charge
into discrete “phases” involved in aCoxian phase-typemodel.
In sum, the main contributions of this paper are as follows:

(i)We show that there is a natural way to convert a special
subclass of RGRST models to CPH models.

(ii) We propose an algorithm to estimate the transition
matrix of the CPH model converted from a given RGRST
model and the parameters involved in that RGRST model.

(iii) Based on the correspondence between RGRST mod-
els and CPHmodels, we derive a variety of differentmeasures
of the “cost” of staying in a medical stage at each time. That
“cost” information is important for the purpose of insurance
payment and healthcare process improvement.

McClean et al. [11] tried a different way to incorporate
the charge accumulation process into a CPH model. But in
their work only the case that the charge accumulation process
adopts a piece-wise linear form was discussed. It turns out
that the piece-wise linear assumption is quite restrictive while
crucial to their main result. Without it, the matrix technique
in McClean et al. [11] is no longer applicable to achieve the
𝑛th order moments of total charge for 𝑛 > 1, while our
differential-equation-based approach does still work. In fact,

we believe ourmethod extends the work ofMcClean et al. [11]
in the following two aspects.
(1) Instead of being piece-wise linear, we consider amuch

more general situation in which the charge accumulation
process can take arbitrary forms as long as a conditional
expectation function of that process satisfies a general reg-
ularity condition. In particular, within our framework, it is
possible to consider the potential influence of the current
charge level on the future charge accumulation which is
neglected by the piece-wise linear assumption.
(2) In addition to the moments of total charge, it is

derivable from our model of the joint distribution of the
total charge and LOS, and the joint distribution of the costs
and time being spent on every stage by every fixed time 𝑡.
Therefore, our model provides more detailed information of
the treatment that the patient experiences in hospital.

Although the motivation of our work is the analysis of
the charge accumulation and the determination of hospital
length of stay, it turns out that the proposed method is
useful for many other problems where the relation among
the time to event and a hidden continuous process as well
as a jump process is in interest. For example, in the field of
investment risk management, it is always important to detect
how the default probability of the corporate bond issued
by a firm is affected by the growth stage and profitability
(say measured by the flow of revenue) of that firm. In this
case, our model can definitely provide some insights if we
identify the default as the event in interest and consider
the revenue flow as determined by a continuous process
similar to the charge accumulation and the transition among
different growth stages of the firm as described by a CPH
process. In addition to problems of the survival-type, it is also
natural to extend our work to the case of competing risks,
of which every stage in our model can be identified with a
type of risk. Although in competing risk models, the CPH
transition matrix is no longer sufficient, it turns out that the
partition-based technique introduced below is extendible to
derive the joint distributions of a wide class of the competing
risk models, the details of which will be discussed in a related
paper by the authors.

This paper is organized as follows. In Section 2, after
a short review of the CPH models and RGRST models,
we present the correspondence between them and briefly
introduce the estimation algorithm. In Section 3, we conduct
numerical studies to show the validity and usefulness of our
model. A couple of interesting findings toward the medical
outcome database, the New York State’s Statewide Planning
and Research Cooperative System 2013, are discussed. Sec-
tion 4 concludes the paper.

2. Model

In this section, a newmodel (denoted asCPH-RGRSTmodel)
is constructed that connects the CPH models to RGRST
models in the sense that
(1) a CPH-RGRST model is a RGRST model;
(2) charges in a CPH-RGRSTmodel can be classified into

a number of stages such that every stage is identified with a
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phase in a given CPH model in the sense that, at every time
𝑡, the probability of staying in a stage 𝑖 is exactly given by the
probability in the 𝑖th phase of the CPH model.

In particular, themarginal distribution of LOS induced by
a CPH-RGRST model is a CPH distribution. We shall state
the detailed construction of the CPH-RGRST models after
a brief review of the definition and some basic properties of
RGRST models and CPH models.

2.1. the Joint Model (RGRST) versus the CPH Model. A
RGRSTmodel can be formally defined as follows as discussed
in Gardiner et al. [18, 19] and Polverejan et al. [20]:

𝑌 (𝑡) = 𝑌0 + ∫
𝑡

0
𝐼 (𝑇 > 𝑠) 𝜖 (𝑠) 𝑑𝑠, (1)

where the process {𝑌(𝑡) : 𝑡 ∈ [0,∞)} represents the actual
charge level at each time.The random variable𝑇 indicates the
LOS, and 𝐼 is the indicator function. {𝐼(𝑇 > 𝑡) : 𝑡 ∈ [0,∞)}
(𝐼(𝑡) for short) is the event process representing whether or
not to stay in hospital for longer time at each time point 𝑡.
{𝜖(𝑡)} is a nonnegative process characterizing the potential
increment rate of charge per unit time provided that patient
decides to stay, and 𝑌0 is a nonnegative random variable
representing the charge at the initial time. We shall denote
by 𝐺(𝑡) = 𝑌0 + ∫𝑡0 𝜖(𝑠) 𝑑𝑠 the potential charge accumu-
lation process in distinguishing the actual charge process
{𝑌(𝑡)}.

As shown in the supplementary materials (available here)
note that a RGRST model can be completely specified by
the initial probability density function (pdf), 𝑝(𝑦, 0), induced
by the initial charge 𝑌0 and the following two conditional
expectation functions:

𝑞 (𝑦, 𝑡) = 𝐸 (𝜖 (𝑡) | 𝐺 (𝑡) = 𝑦)
𝜌 (𝑦, 𝑡) = 𝐸 (𝐼 (𝑇 > 𝑡) | 𝐺 (𝑡) = 𝑦) .

(2)

And using (2), the joint probability density function (pdf) of
the LOS (𝑇) and the total charge (𝑌𝑇) at the discharge time 𝑇
can be expressed as follows:

𝑓 (𝑦, 𝑡) = 𝑝 (𝑦, 𝑡) ⋅ (−𝜕𝑞𝜕𝑦 ⋅ 𝑞 −
𝜕𝑞
𝜕𝑡 ) (𝑦, 𝑡) , (3)

where the function𝑝(𝑦, 𝑡) in variable𝑦 is the time-dependent
pdf induced by 𝐺(𝑡). The detailed derivation of (3) can
be found in the supplementary materials. Expression (3) is
useful in the estimation algorithm stated in the next section
as it is the key component of the likelihood function.

To associate RGRST models with the CPH models, the
hospital length of stay, represented as the random variable
𝑇 in (1), should induce a CPH distribution generated from a
CPH model, which is a finite-state continuous-time station-
ary Markovian process with only one absorbing state/phase
(we shall use the term “phase”, by convention, in place of
“state”). A CPHmodel is determined by an initial probability

mass vector 𝛼 with 𝛼𝑖 ≥ 0 and ∑𝑛𝑖=1 𝛼𝑖 = 1, and the transition
intensity matrix

𝐴 =

{{{{{{{{{{{{{
{{{{{{{{{{{{{{

−𝑐1 − 𝜆1 𝜆1 0 ⋅ ⋅ ⋅ 0 𝑐1
0 −𝑐2 − 𝜆2 𝜆2 ⋅ ⋅ ⋅ 0 𝑐2
0 0 d d

... ...
... d d d 𝜆𝑛−1 𝑐𝑛−1
0 0 ⋅ ⋅ ⋅ 0 −𝑐𝑛 𝑐𝑛
0 0 ⋅ ⋅ ⋅ 0 0 0

}}}}}}}}}}}}}
}}}}}}}}}}}}}}

, (4)

where 𝜆𝑘, 𝑐𝑘 > 0 and the entry 𝑎𝑖,𝑗 of 𝐴 represents the
transition intensity of a patient 𝜔 from phase 𝑆𝑖 to phase 𝑆𝑗
at every time 𝑡 > 0; formally:

𝑎𝑖,𝑗 = lim
𝛿↓0

Prob (𝜔 ∈ 𝑆𝑗 at 𝑡 + 𝛿 | 𝜔 ∈ 𝑆𝑖 at 𝑡)
𝛿 . (5)

As suggested in McClean et al. [10], a phase in a CPH
model can be identifiedwith a treatment stage during hospital
stay, such as diagnosis, acute care, assessment, rehabilitation,
and long-stay care. The transition of patients among these
stages characterizes the treatment progress.

2.2. Correspondence between CPH and RGRST Models. The
main result of this section is that there does exist a correspon-
dence between CPH and RGRST models. The correspon-
dence is built through converting the continuous variable,
charge, in a RGRST model to finite many discrete states
by partitioning the product space, R+ × R+ (representing
charge and time, respectively), into a number of cells such that
each cell corresponds to a phase in a CPH model, while the
evolution of the probability of staying in those cells is exactly
determined by the given CPHmodel.More precisely, we have
the following theorem.

Theorem 1. Fix a RGRST process {𝑌(𝑡)} represented as a triple
(𝑝(𝑦, 0), 𝑞, 𝜌)with 𝑝(𝑦, 0) being the pdf of initial charge𝑌0 and𝑞, 𝜌 as defined in (2). Suppose functions 𝑞, 𝜌, and 𝑝(𝑦, 0) are
smooth and 𝑞, 𝜌 satisfy

𝜕 log (𝜌)
𝜕𝑦 ⋅ 𝑞 + 𝜕 log (𝜌)𝜕𝑡 ≡ −𝑐 𝜌 > 0 (6)

for some constant 𝑐 > 0. Then, for any fixed positive integer
𝑛, an 𝑛-dimensional vector 𝛼 > 0 with ∑𝑛𝑖=1 𝛼𝑖 = 1, and
an 𝑛 − 1-dim vector 𝜆 > 0, there exists an 𝑛−partition of
the space [0,∞)2 denoted as P such that the following time-
dependent probability mass function 𝑃(𝑡) defined on the 𝑛 + 1
tuple {1, . . . , 𝑛 + 1}:
𝑃𝑖 (𝑡)
= 𝑃𝑟𝑜𝑏 (𝑌 (𝑡) ∈ P𝑖 ∩ [0,∞) × {𝑡} , 𝐼 (𝑇 > 𝑡) = 1) ,

𝑖 ∈ {1, . . . , 𝑛}
𝑃𝑛+1 (𝑡) = 𝑃𝑟𝑜𝑏 (𝐼 (𝑇 > 𝑡) = 0) ,

(7)
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Require: 𝜆 = (𝜆1, . . . , 𝜆𝑛−1), 𝑐 = (𝑐1, . . . , 𝑐𝑛), 𝛼 = (𝛼1, . . . , 𝛼𝑛);
Set 𝐶0 ≡ 0, 𝑏 = [0,∞) × {0} ∪ {0} × [0,∞), 𝜌𝑏 ≡ 1;
for 𝑖 = 1 to 𝑛 do

if 𝑖 < 𝑛 then
Set 𝐶𝑖(0) by Eq. (A.8) and 𝛼𝑖;
Set PDE𝑖 by Eq. (6) subject to boundary condition 𝜌𝑏 on 𝑏
with 𝑐 in Eq. (6) replaced by 𝑐𝑖;
Set 𝜌𝑖 = exp(solve(PDE𝑖));
Set IVP𝑖 by replacing 𝜌 in Eq. (A.9) with 𝜌𝑖;
Set 𝐶𝑖 = solve(IVP𝑖);
ReSet 𝑏 = {0} × [𝐶𝑖(0),∞) ∪ {𝐶𝑖(𝑡) : 𝑡 ∈ [0,∞)};
ReSet 𝜌𝑏(𝑦, 𝑡) = {{{

1 (𝑦, 𝑡) ∈ {0} × [𝐶𝑖(0),∞)
𝜌𝑖−1(𝑦, 𝑡) (𝑦, 𝑡) ∈ {(𝐶𝑖(𝑡), 𝑡) : 𝑡 ∈ [0,∞)}

;

else
Set PDE𝑛 by Eq. (6) subject to boundary condition 𝜌𝑏 on 𝑏
with 𝑐 in Eq. (6) replaced by 𝑐𝑛;
Set 𝜌𝑛 = exp(solve(PDE𝑛));

end if
end for
Set 𝐶𝑛 ≡ ∞;
Set 𝜌 = ∑𝑛𝑖=1 1𝐶𝑖−1(𝑡)≤𝑦≤𝐶𝑖(𝑡) ⋅ 𝜌𝑖
return 𝜌

Algorithm 1: Construct 𝜌.

is generated by a CPH model with the initial mass 𝛼 and its
transition matrix is given as in (4) with 𝑐𝑖 ≡ 𝑐 for 𝑖 = 1, . . . , 𝑛.

The proof of Theorem 1 is presented in the Appendix.
From the proof, it is clear that the connection between
RGRSTmodels and CPHmodels is equivalent to a constraint
put on the conditional probability function 𝜌 in (2) of the
underlying RGRST model by the condition (6). In fact, the
functional form of 𝜌 is completely determined by (6) and
the function 𝑞, which gives a first-order partial differential
equation (PDE) of 𝜌. This equation turns out to be solvable
and has a unique solution for a given boundary condition.
Therefore, using the characteristicmethod, Evans [21], we can
solve (6) and express the function 𝜌 as follows:
𝜌 (𝑦, 𝑡) = 𝜌𝑏 (𝑔 (𝑦, 𝑡, 𝑠∗ (𝑦, 𝑡)) , 𝑠∗ (𝑦, 𝑡)) ⋅ exp (−𝑐 ⋅ 𝑡) , (8)

where 𝜌 evaluated at 𝑡 = 0 is constantly 1 which means that
all patients have to stay in hospital for a positive time before
discharge; the form of the boundary 𝑏 and the value of the
function 𝜌 on 𝑏 (denoted as 𝜌𝑏) are constructed by iteratively
solving the Initial Value Problem (IVP) (A.11) in the proof;
the details of the iteration are presented in Algorithm 1 of
Corollary 2. 𝑠∗ is the first time when the solution trajectory
(𝑔) of IVP (A.11) (starting from (𝑦, 𝑡)) touches the boundary
curve 𝑏. Equation (8) is crucial to determining the parametric
form of the joint pdf (3) and the likelihood function used for
estimation.

The next corollary is a direct result of Theorem 1. It
extends the construction in Theorem 1 to a more general sit-
uation where the transition intensity from different transient

states to the absorbing state does not have to be identical; i.e.,
𝑐𝑖 does not have to be equal to 𝑐𝑗 for different 𝑖, 𝑗. Therefore,
it is always possible to achieve an arbitrary CPH model from
a RGRST model satisfying a generalized version of condition
(6) with 𝑐 replaced by 𝑐𝑖 for different 𝑖.
Corollary 2. The smooth requirement on the function 𝜌 in
Theorem 1 can be replaced by the following weaker condition.

Condition 3. The function 𝜌 is continuous and almost every-
where differentiable under the standard Lebesgue measure on
[0,∞)2 and has integrable partial derivatives.

Under the Condition 3, for an arbitrary given CPH model
represented by the transition matrix (4) and the initial proba-
bilitymass vector𝛼 = (𝛼1, . . . , 𝛼𝑛), there always exists a RGRST
model together with a set of partition curves {𝐶0 ≡ 0 < 𝐶1 <⋅ ⋅ ⋅ < 𝐶𝑛 ≡ ∞} such that the mapping

{(𝑦, 𝑡) : 𝐶𝑖−1 (𝑡) ≤ 𝑦 ≤ 𝐶𝑖 (𝑡)} 󳨃→ 𝑆𝑖, 𝑖 ∈ {1, . . . , 𝑛} (9)

converts the RGRSTmodel to the given CPHmodel, where 𝑆𝑖 is
the 𝑖th phase in the CPH model.

Moreover, the desired RGRST model and the partition
curves can be inductively constructed through Algorithm 1,
where “𝑠𝑜𝑙V𝑒(⋅)” represents the operation to solve the equation
“⋅”.

Notice that given the partition curves {𝐶0 ≡ 0 < 𝐶1 <⋅ ⋅ ⋅ < 𝐶𝑛−1, 𝐶𝑛 ≡ ∞} and the joint pdf (3), deriving the
conditional probability density of the cumulative charge 𝐺(𝑡)
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is very simple given that at time 𝑡 patients stay in the 𝑖th-stage,
𝑆𝑖:

Prob (𝐺 (𝑡) = 𝑦 | 𝑆𝑖) = 𝑝 (𝑦𝑖, 𝑡) ⋅ 𝜌 (𝑦𝑖, 𝑡)
∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

𝑝 (𝑥, 𝑡) ⋅ 𝜌 (𝑥, 𝑡) 𝑑𝑥
⋅ 𝐼 (𝐶𝑖−1 (𝑡) ≤ 𝑦 ≤ 𝐶𝑖 (𝑡)) .

(10)

With the help of the conditional density (10), we can define
a variety of measures of the “cost” of staying in a stage. For
instance, fixing a stage and a time 𝑡, we can think of the price
as the amount that has been charged since patients arrived
in that stage for the first time, the daily price as the amount
being charged per day within that stage, and the time cost as
the length of time that patients have spent in that stage by 𝑡.
Formally, the price (𝑃𝑟𝑖(𝑡)), daily price (𝑃𝑟𝑖(𝑡)), and the time
cost (𝐶𝑡𝑖(𝑡)) for every stage and every time are defined as:

𝑃𝑟𝑖 (𝑡) =
∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

(𝑦 − 𝑇𝑌𝑖 (𝑦, 𝑡)) ⋅ 𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦
∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦
𝑃𝑟𝑖 (𝑡)

= ∫
𝐶𝑖(𝑡)

𝐶𝑖−1(𝑡)
((𝑦 − 𝑇𝑌𝑖 (𝑦, 𝑡)) / (𝑡 − 𝑇𝑇𝑖 (𝑦, 𝑡))) ⋅ 𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦

∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦

𝐶𝑡𝑖 (𝑡) =
∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

(𝑡 − 𝑇𝑇𝑖 (𝑦, 𝑡)) ⋅ 𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦
∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦 ,

(11)

where𝑇𝑇𝑖 is the conditionalmean of the first arrival time into
the stage 𝑖 − 1 given the charge level 𝑦 and current time 𝑡, and
similarly, 𝑇𝑌𝑖 represents the conditional mean of the charge
at the first arrival time to the stage 𝑖 − 1 given 𝑦 and 𝑡.

Although the price, daily price, and the time cost are
defined through the first-ordermoment, the availability of the
conditional probability (10) enables us to define the quantile
version of (11). When there are large parts of outliers, a
quantile version of those “cost”measures turns out to bemore
useful.

The information regarding the price and time spent in
every such stage, as defined above, is helpful in rationalising
the care process, thus reducingwaste, in terms of unnecessary
or inappropriate treatment, and avoiding delay, often the
result of batch and queue processes, in a similar fashion to
that adopted for industrial processes (McClean et al. [10]).

2.3. A Two-Stage Algorithm. Corollary 2 implies a two-step
algorithm that uses the real hospital charge and LOS data as
input to estimate the underlying CPHmodel and the RGRST
model from which the CPH model is derived.

Step 1. Apply the full information maximum likelihood
method (FML) and the marginal LOS data to estimate the
transition matrix and the initial probability mass that deter-
mines the marginal CPH distribution of LOS. The resulting
estimators are denoted as 𝜆̂ = (𝜆̂1, . . . , 𝜆̂𝑛−1), 𝑐 = (𝑐1, . . . , 𝑐𝑛),
and 𝛼̂ = (𝛼̂1, . . . , 𝛼̂𝑛).

Step 2. Apply Algorithm 1 to construct the function 𝜌 from
the estimators 𝜆̂ = (𝜆̂1, . . . , 𝜆̂𝑛−1), 𝑐 = (𝑐1, . . . , 𝑐𝑛), and𝛼̂ = (𝛼̂1, . . . , 𝛼̂𝑛), and construct the joint pdf of charge
and LOS by formula (3). With the joint pdf, construct the
likelihood function and apply FML to estimate the remaining
parameters, which are used to characterize the function 𝑞 and
the initial density 𝑝(⋅, 0) (denoted by 𝑝𝑎𝑟𝑎𝑚𝑠).

The use of FML guarantees that all estimators obtained
from the two-stage algorithm are consistent and asymptoti-
cally normal-distributed.

3. Numerical Studies

In this section, we conduct the numerical studies to show the
validity of our two-stage estimation procedure. We will apply
our procedure to both of the real data and simulation sample.

Our data source is the medical outcome database, New
York State’s Statewide Planning and Research Cooperative
System 2013 (SPARCS 2013). The histogram of the entire
SPARCS 2013 indicates that the total charge approximately
follows a log-normal distribution; therefore, we will take the
following parametric form for the function 𝑞:

𝑞 (𝑦, 𝑡) = 𝑦, (12)

and the initial 𝑌0 is assumed to satisfy

log𝑌0 ∼ 𝑁 (𝜇, 𝜎) . (13)

It turns out that under (12), (13), and (6), the resulting
marginal distribution of total charge is close to a log-normal
distribution.

When covariates exist (denoted by 𝑋), we assume that
the random vector (𝜀𝑌, 𝜀𝑇) is independent from the covariate
vector, and (exp(𝜀𝑌), exp(𝜀𝑇)) follows the joint pdf given by
(3) with the initial pdf, 𝑞, and 𝜌 specified as in (13), (12),
and (6), respectively. The covariates are linked with the total
charge, 𝑌𝑇, and LOS, 𝑇, through the following regression
equations:

log𝑌𝑇 = 𝜃0 + 𝜃 ⋅ 𝑋 + 𝜀𝑌
log𝑇 = 𝛽0 + 𝛽 ⋅ 𝑋 + 𝜀𝑇.

(14)

𝜃+ = (𝜃0; 𝜃), 𝛽+ = (𝛽0; 𝛽) are the regression coefficient
vectors.

As for the dimension of the underlying CPH model, we
follow the convention in the previous studies of Faddy et al.
[5]; Tang [4]; McClean et al. [10] and only consider the two
cases where the number of nonabsorbing phases is 3 and 4.
After a preliminary study, we select the 4-Phase CPH model
as it can generate better fitting to the SPARCS data.

Under the specification above, there are three classes of
parameters to estimate. They are (1) the parameter vectors 𝛼,
𝑐 and 𝜆 involved in the CPH model, (2) the parameter (𝜇, 𝜎)
involved in the initial pdf, and (3) the regression coefficients
(𝜃+, 𝛽+). We call the parameters of types (1) and (2) as the
dynamic parameters because they specify the jointmodel that
generates the distribution of charge and LOS.
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Figure 1: Goodness of Fit. Plots 1 and 2 are the fitted marginal CPH-RGRST distribution versus empirical histogram for log-charge and LOS.

In the real data study, we draw 5000 subsamples from
SPARCS 2013 with the covariates consisting of the Severity of
Illness, Mortality Risk of Illness (In SPARCS 2013, both of the
two variables, Severity and Mortality, are quantified through
a grading score, which is a number in the set {1, 2, 3, 4}.), and
24 categorical variables which represent 25 Major Diagnosis
Codes (MDC), each of which associates with a class of illness.
The summary statistics of our subsample verses the entire
SPARCS 2013 with respect to the covariates are described in
Table 1.

In the simulation study, we generate 5000 samples from
a joint model without covariates and the true value of the
dynamic parameters is taken as the estimated value from the
real data study, which is given as in Table 2.

In both of the real data and simulation studies, the
computer code is written in the language of Python 2.7 with
python-scipy, python-numpy libraries being used.

3.1. Simulation Study. The goodness of fit is measured
through comparing the fitted curves and the empirical
histogram (drawn from the simulation sample) for both of the
marginal charge andLOS, as shown in first line of Figure 1.We
conduct Pearson’s 𝜒2 test; the value of the 𝜒2 statistics and the
associated 𝑃 values are (0.0171, 1.0) for the marginal charge
and (6.1054, 0.8662) for the marginal LOS. From both of the
fitting plots and the results of 𝜒2 test, our fitting is fairly good.

We also evaluate the goodness of fit in terms of the joint
distribution through Pearson’s 𝜒2 test; the 𝜒2 statistics and
its 𝑃 value are (0.1911, 1.0), which is consistent with Figure 1.
Therefore, the simulation study verifies the effectiveness of
our two-step estimation procedure.

3.2. Real Example Study

3.2.1. Regression Coefficients. Theestimated regression coeffi-
cients are reported in Table 3, fromwhich both of the severity
and mortality of illness have significantly positive effect on
both of the total charge and LOS that is consistent with the
intuition.

On the other hand, among all theMDC groups, the New-
born And Other Neonates (MDC 15) and the Diseases and
Disorders of the Musculoskeletal System And Connective
Tissue (MDC 8) has the greatest negative and positive effects
on the total charge, respectively, which is also consistent with
the intuition. In contrast, the MDC groups with greatest
negative and positive effect on LOS are the Diseases and
Disorders of the Ear, Nose, Mouth andThroat (MDC 3) and
the Mental Diseases and Disorders (MDC 19), respectively.

In addition, it turns out that the effects of different
illnesses on the charge and LOS are not always homogeneous.
There are a couple of MDC groups which affect the total
charge and LOS in distinct direction. They are the Diseases
and Disorders of the Nervous System (MDC 1), Diseases
and Disorders of the Circulatory System (MDC 5), Diseases
and Disorders of the Male Reproductive System (MDC 12),
Diseases and Disorders of the Female Reproductive System
(MDC 13), and Alcohol/Drug Use or Induced Mental Dis-
orders (MDC 20). Among them, except the MDC 20 group,
all the other groups have a more expensive bill but shorter
hospital stay, and therefore a higher daily charge. In contrast,
patients with alcohol/drug abuse tend to pay less but stay in
hospital longer.

Combining the estimated coefficients in Table 3 and
dynamic parameter in Table 2, we can even identify the stage
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Figure 2: Cost of Stages. Plots 1, 2, and 3 sketch the log of the price, daily price, and the time cost (as defined in (11)) versus their quantile
version, respectively. Plot 4 shows the other version of the time cost (= 𝑠 − 𝐶𝑡𝑖(𝑠) with 𝑠 > 0) versus its quantile version.

Table 2: Estimated dynamic parameters.

Dynamic Parameters Values
(𝜇, 𝜎) (−0.5715 , 0.7149)
𝛼 (0.9922, ≈0.0, 0.0001, 0.0077)
𝑐 (≈0.0, 4.4796, ≈0.0, 0.9934)
𝜆 (4.4905, ≈0.0, 0.029)

from which a patient exits to discharge. The discharge stage
encodes critical information of the treatment pathways and
is important for management purpose. Table 4 reports the
estimated conditional mean (log-)charge, LOS, severity, and
mortality risk for patients who exit from every stage. It is clear
that the value of all the four variablesmonotonically increases
as patients get discharged from later stages. Especially for
severity and LOS, there are clear jumps from stages 1 and 2 to
stages 3 and 4. The mean severity is doubled when transiting
from stage 2 to stage 3while themeanLOS almost gets tripled.
This gap suggests that patients who are diagnosed with more
severe conditions during admission aremore likely to go over
the treatment in stage 3 or 4, while their rehabilitation usually
takes more time and more medical resources (McClean et al.
[10]). This observation is consistent with the intuition and, to
some extent, verifies the viewpoint that interprets the entire

treatment process as a series of transitions among multiple
medical stages.

3.2.2. Cost. As discussed in the end of Section 2.1, the CPH-
RGRST model enables us to evaluate the “cost” of each
medical stage in different manners. Using the estimation
results provided in the previous section, we can numerically
compute the “cost” for our SPARCS sample.

In Figure 2, we plot the estimated mean price, mean daily
price, and mean time of staying for each of the four stages of
the CPHmodel, where the “mean” refers to the CPH-RGRST
process that generates the mean charge and LOS, 𝑌𝑇 =
exp(𝜀𝑌) exp(𝐸𝑋(𝜃0+𝜃𝑋)), and𝑇 = exp(𝜀𝑇) exp(𝐸𝑋(𝛽0+𝛽𝑋)).
In Figure 3, the probability of staying in every nonabsorbing
stage is plotted against the time.There are the following three
major findings.

(i) From the plot 2 in Figure 2, the daily price for stage
1 declines over time, which is caused by the fact that, for
those long-stay patients, they must have already switched
into the higher stage treatments after the preexam period
(represented by stage 1), which is very well captured in plot
1 of Figure 3. In contrast, for all the stage 2, 3, and 4, the daily
price inclines to grow up in long run, which rejects the piece-
wise linear assumption claimed inMcClean et al. [11]. In fact,
in contrast to the constant growth rate of charge within each
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Table 3: Estimated regression coefficients.

Groups Log-Charge (𝑃 values) Log-LOS (𝑃 values)
Intercept 9.3245 (<0.0001) 1.7512 (<0.0001)
MDC 1 0.0697 (<0.0001) −0.1008 (<0.0001)
MDC 2 0.2756 (<0.0001) 0.519 (<0.0001)
MDC 3 −0.1522 (<0.0001) −0.3564 (<0.0001)
MDC 4 −0.2062 (<0.0001) −0.187 (<0.0001)
MDC 5 0.1018 (<0.0001) −0.2451 (<0.0001)
MDC 6 −0.0072 (<0.0001) −0.1214 (<0.0001)
MDC 7 0.0686 (<0.0001) −0.0432 (<0.0001)
MDC 8 0.5344 (<0.0001) 0.0258 (<0.0001)
MDC 9 −0.1364 (<0.0001) −0.1597 (<0.0001)
MDC 10 −0.1132 (<0.0001) −0.2823 (<0.0001)
MDC 11 −0.265 (<0.0001) −0.2736 (<0.0001)
MDC 12 0.1164 (<0.0001) −0.3405 (<0.0001)
MDC 13 0.0504 (<0.0001) −0.2928 (<0.0001)
MDC 14 −0.3242 (<0.0001) −0.1945 (<0.0001)
MDC 15 −1.0351 (<0.0001) −0.0311 (<0.0001)
MDC 16 −0.0948 (<0.0001) −0.1035 (<0.0001)
MDC 17 0.2244 (<0.0001) 0.1522 (<0.0001)
MDC 18 −0.0289 (<0.0001) −0.06 (<0.0001)
MDC 19 0.0381 (<0.0001) 0.9866 (<0.0001)
MDC 20 −0.5335 (<0.0001) 0.2749 (<0.0001)
MDC 21 −0.2574 (<0.0001) −0.1887 (<0.0001)
MDC 22 0.3689 (<0.0001) 0.3077 (<0.0001)
MDC 23 0.1332 (<0.0001) 0.51 (<0.0001)
MDC 24 −0.2957 (<0.0001) −0.2083 (<0.0001)
APR Risk of Mortality 0.1436 (<0.0001) 0.18 (<0.0001)
APR Severity of Illness 0.3605 (<0.0001) 0.3338 (<0.0001)

Table 4: Summary of discharge stages.

Stage 1 Stage 2 Stage 3 Stage 4
severity 0.099 0.454 1 2.238
mortality 1.524 1.814 3 3.355
charge 8.062 9.842 11.525 11.505
LOS 2.48 5.732 13 14.87

stage, the increasing growth rate tends to bemore reasonable,
because a longer stay usually implies a worse health condition
for a patient, who, therefore, needs better care, including
more expensive medicines, more frequent exams, and the
like. These items lift up the cost of stay per day. The same
reasoning also applies well to the observation that the time
cost of all stages is increasing over time as shown in plots 3
and 4 in Figure 2.

(ii) Although the time cost is slightly lower in stage 3
than in stage 4, both of the two stages (by (11), the time cost
for stage 1 is trivial and constantly equal to the total time
in hospital, so we omitted it in Figure 2) have their time
cost almost identical to the total time that patients spent in
hospital since they were admitted. In contrast, the time cost
of stage 2 displays quite different features, which is not only

much lower than that of the other stages, but, within the first
13 days, its growth rate is also slower.The different features of
stage 2 are consistent with the estimated dynamic parameters
in Table 2 and plot 2 in Figure 3. From Table 2, it is clear that
the intensity of switch-in and switch-to-discharge in stage 2 is
significantly higher than in the other stages, whichmeans that
there are two factors that lower down the time cost at stage 2.
(1)There are a large portion of patients switching from stage
1 to stage 2 in the early time (<5 days, see plots 1 and 2 in
Figure 3); in contrast there is almost no patient who could
switch from lower stage to stage 3 or 4 (see plots 3 and 4 in
Figure 3), which implies on average that the first arrival time
to stage 2 is later than to stages 3 and 4. (2)The portion of
patients switching out of stage 2 (mainly to discharge by plots
3 and 4 in Figure 3) is also high, which is not the case for
stages 3 and 4 (reflected as the scale of plots 3 and 4 being
much smaller than plots 1 and 2 of Figure 3). Therefore, the
switch-out time from stage 2 is earlier than from stage 3 or 4
on average.

Factors (1) and (2) shown in Figure 2 and Table 2
indicate that stage 2 should associate to the major treatment
procedures, like the main surgery, that most inpatients have
to experience when staying in hospital. In fact, it is usual
that patients need a couple of days as the preparation period
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Figure 3: Probability of staying in every stage by time.

before themain surgery, such as the period for preexams.This
preparation period is exactly captured by factor (1) of stage 2.
On the other hand, patients usually recovered soon after the
main treatment procedure gets done, and then are discharged,
which is reflected by factor (2) of stage 2.

(iii) The third interesting observation from Figure 2 is
regarding the median price of stage 2. From plots 1 and 2
in Figure 2, we can see that only at stage 2 there is a clear
deviation between the expectation version and the median
version of the price. More precisely, at stage 2 the median
price is significantly lower than the price defined through
the first-order moment, and this fact holds at almost all the
time 𝑡 and also holds for the daily price. It is well known
that when the median of a distribution is below its first-order
moment, there exists a group of outliers with extremely great
value. In the other words, Figure 2 indicates that a portion of
patients in stage 2 are chargedmuch higher than the others in
that stage and all the time. From the perspective of patient’s
welfare and the effective allocation of medical resources, it is
meaningful to have some further researches in identifying the
causes thatmake some patients in stage 2 being chargedmore.

Remark 3. By Figure 3, it is clear that the probability of
staying in stages 3 and 4 is small over all time. This fact
might be induced by model overfitting as pointed out by a
referee, but it is not. In contrast, the low probability reflects
a deep-level distributional property of SPARCS data. A very
large proportion of inpatients recorded in SPARCS only have
extremely short hospital stay and 99+ percent of them get

discharged by day 10, while no more than 0.01 percent of
patients can stay in hospital for more than 25 days. But at the
meantime, there do exist a small group of patients who can
live in hospital for a couple of months before discharge. The
same pattern can be observed for the total charge; the most
expensive expenditure can take million dollars while more
than 99 percent of patients are charged nomore than 100,000
dollars.

Based on the observation above and the nondecreasing
design of the CPH-RGRST models that higher stages corre-
spond to longer hospital stay and higher total costs, the low
probability of staying in the highest two stages just reflects a
fact that both of the charge and LOS data in SPARCS 2013
have a very long and thin tail to the right. This tail property
may not be well fitted if a CPH-RGRST model with fewer
phases is used, because there will not be enough freedom
to distinguish the portion of patients in the tail from those
whose charge and LOS stay around the mode.

4. Summary

We introduced amethodology whereby the widely used CPH
models and RGRST models can be combined together and a
variety of measures of the cost of phases in the CPH model
can be defined. A two-step procedure is proposed to estimate
the combined CPH-RGRST model and the simulation study
is done to verify the effectiveness of the estimation procedure.
With the data sampled from SPARCS 2013, we estimated a



Computational and Mathematical Methods in Medicine 11

four-phase CPH-RGRST model and drew the cost curves for
every phase. To distinguish the effect of different types of
illness on the charge and LOS distribution, we incorporated
MDC groups and the severity and mortality risk of illness as
covariates into the estimation.

We found that the effect of illness on the total charge
and LOS is not always homogeneous. In particular, there
are five MDC groups that affect the charge and LOS in
different direction. Among them, there is only one MDC
group, representing the alcohol/drug abuse, which has the
negative effect on the final charge while it lifts up the LOS
drastically.

The daily charge for all the stages, 2, 3, and 4, is increasing
over time. This fact implies a nonlinear charge accumulation
process within every stage and therefore contradicts the
piece-wise linear assumption used by the other authors,
McClean et al. [11].We believe that the increasing daily charge
is more realistic and reflects dynamic interaction between the
health condition of patients and the treatment they accept.

Among all the four stages, stage 2 shows quite different
features in both the price measure and the time cost measure.
In terms of the time cost, stage 2 is significantly lower
than stages 3 and 4 almost all the time. This observation is
consistent with the relatively high switch-in and switch-to-
discharge intensity that the stage 2 has and associates the stage
2 with the major treatment procedures that most patients
need to experience when staying in hospital.

Themedian ismuch lower than themean of both the price
and daily price in stage 2, while this kind of deviation does not

exist for the other stages, and it implies that there is a portion
of outlier patients who are chargedmuchmore than the other
patients in stage 2. We believe that further studies are needed
to find out the causes of those patients being charged more in
stage 2, since it matters to the efficiency of the allocation of
medical resources.

Appendix

Proof of Theorem 1

Themain idea of the proof is to construct the partitionP by
induction. Assume, firstly, that the partitionP is formed by 𝑛
curves in [0,∞) (denoted as (𝑡, 𝐶𝑖(𝑡)) for 𝑖 ∈ {0, 1, . . . , 𝑛 − 1})
satisfying increasing condition as follows:

𝐶𝑖+1 (𝑡) > 𝐶𝑖 (𝑡) ≥ 0
𝐶0 (𝑡) ≡ 0

(A.1)

in such a way that P𝑖 = {(𝑦, 𝑡) : 𝐶𝑖−1(𝑡) ≤ 𝑦 < 𝐶𝑖(𝑡)} for𝑖 ∈ {1, . . . , 𝑛} (for simplicity of notation, we assume 𝐶𝑛(𝑡) :≡∞.). So, to prove the theorem, it suffices to find out a family of
increasing curves {𝐶𝑖 : 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}} with the induced
transition matrix being as stated in the theorem.

Firstly, notice that, by condition (6), we have for 𝑖 ∈
{0, 1, . . . , 𝑛 − 1} and any family of n curves {𝐶𝑖 : 𝑖 ∈{0, 1, . . . , 𝑛 − 1}} satisfying increasing condition (A.1) the fact
that the following holds:

lim
𝛿↓0

Prob (𝐼 (𝑇 > 𝑡 + 𝛿) = 0 | 𝑌 (𝑡) ∈ [𝐶𝑖 (𝑡) , 𝐶𝑖+1 (𝑡)) , 𝐼 (𝑇 > 𝑡) = 1)
𝛿

= ∫
𝐶𝑖+1(𝑡)

𝐶𝑖(𝑡)
− ((𝜕𝜌/𝜕𝑦) ⋅ 𝑞 + 𝜕𝜌/𝜕𝑡) (𝑦, 𝑡) ⋅ 𝑝 (𝑦, 𝑡) 𝑑𝑦
∫𝐶𝑖+1(𝑡)
𝐶𝑖(𝑡)

𝜌 (𝑦, 𝑡) ⋅ 𝑝 (𝑦, 𝑡) 𝑑𝑦 ≡ 𝑐.
(A.2)

Moreover, because

Prob (𝑌 (𝑡) ≥ 𝐶𝑛 (𝑡) = +∞, 𝐼 (𝑇 > 𝑡) = 1) = 0, (A.3)

we can conclude that no matter the choice of {𝐶𝑖 : 𝑖 ∈{0, 1, . . . , 𝑛 − 1}}, the transition probability matrix 𝐴 always
has its column 𝑛 + 1 of the following form:

𝐴𝑛+1 =

{{{{{{{{
{{{{{{{{{

𝑐
...
𝑐
0

}}}}}}}}
}}}}}}}}}

(A.4)

On the other hand, the increasing condition (A.1) and the
nonincreasing property of the event processes 𝐼(𝑡) guarantee

that for all 𝑖, 𝑗 ∈ {0, 1, . . . , 𝑛 − 1} with 𝑗 ̸= 𝑖 or 𝑖 + 1 and small
enough 𝛿

Prob (𝑌𝑡+𝛿 ∈ [𝐶𝑗 (𝑡) , 𝐶𝑗+1 (𝑡)) | 𝑌 (𝑡)
∈ [𝐶𝑖 (𝑡) , 𝐶𝑖+1 (𝑡)) , 𝐼 (𝑇 > 𝑡) = 1) = 0,

Prob (𝑌𝑡+𝛿 ∈ [𝐶𝑗 (𝑡) , 𝐶𝑗+1 (𝑡)) , 𝐼 (𝑇 > 𝑡 + 𝛿)
= 1 | 𝐼 (𝑇 > 𝑡) = 0) = 0.

(A.5)

That is, the induced transition matrix 𝐴 satisfies

𝐴 𝑖,𝑗 = 0, 𝑗 ∉ {𝑖, 𝑖 + 1} , 𝑖, 𝑗 ∈ {1, . . . , 𝑛} ,
𝐴𝑛+1,𝑗 = 0, 𝑗 ∈ {1, . . . , 𝑛}

(A.6)
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So, to prove the theorem, it suffices to construct a family of
increasing curves {𝐶𝑖 : 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}} guaranteeing that

𝐴 𝑖,𝑖+1 = 𝜆𝑖, 𝑖 ∈ {1, . . . , 𝑛 − 1} ,
𝑃𝑖 (0) = 𝛼𝑖, 𝑖 ∈ {1, . . . , 𝑛 − 1} (A.7)

However, these two conditions are equivalent to finding
(1) a sequence {𝑐𝑖 : 𝑖 ∈ {0, 1, . . . , 𝑛}} with 𝑐0 = 0 and 𝑐𝑛 =∞ such that

𝛼𝑖 = ∫
𝑐𝑖

𝑐𝑖−1

𝑝 (𝑦, 0) 𝑑𝑦, 𝑖 ∈ {1, . . . , 𝑛 − 1} ; (A.8)

(2) a sequence of solutions {𝑦𝑖(𝑡) : 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}}
with𝑦0 ≡ 0 to initial value problems (IVP) for 𝑖 ∈ {1, . . . , 𝑛−1}

𝑑𝑦𝑖
𝑑𝑡 = 𝑞 (𝑦𝑖, 𝑡) − 𝜆𝑖 ⋅

∫𝑦𝑖
𝑦𝑖−1
𝑝 (𝑥, 𝑡) ⋅ 𝜌 (𝑥, 𝑡) 𝑑𝑥
𝑝 (𝑦𝑖, 𝑡) ⋅ 𝜌 (𝑦𝑖, 𝑡)

𝑦𝑖 (0) = 𝑐𝑖
(A.9)

Condition (A.9) arises from the following equality:

lim
𝛿↓0

Prob (𝑌𝑡+𝛿 ∈ [𝐶𝑖 (𝑡 + 𝛿) , 𝐶𝑖+1 (𝑡 + 𝛿)) , 𝐼 (𝑇 > 𝑡 + 𝛿) = 1 | 𝑌 (𝑡) ∈ [𝐶𝑖−1 (𝑡) , 𝐶𝑖 (𝑡)) , 𝐼 (𝑇 > 𝑡) = 1)
𝛿

= lim
𝛿↓0

Prob (𝑌𝑡+𝛿 ∈ [𝐶𝑖 (𝑡 + 𝛿) , 𝐶𝑖+1 (𝑡 + 𝛿)) , 𝐼 (𝑇 > 𝑡 + 𝛿) = 1, 𝑌 (𝑡) ∈ [𝐶𝑖−1 (𝑡) , 𝐶𝑖 (𝑡)) , 𝐼 (𝑇 > 𝑡) = 1)
𝛿 ⋅ Prob (𝑌 (𝑡) ∈ [𝐶𝑖−1 (𝑡) , 𝐶𝑖 (𝑡)) , 𝐼 (𝑇 > 𝑡) = 1)

= lim
𝛿↓0

∫𝑔−1(𝐶𝑖(𝑡),𝑡,𝑡+𝛿)
𝐶𝑖(𝑡+𝛿)

𝑝 (𝑦, 𝑡 + 𝛿) ⋅ 𝜌 (𝑦, 𝑡 + 𝛿) 𝑑𝑦
𝛿 ⋅ ∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦

= 𝑝 (𝐶𝑖 (𝑡) , 𝑡) ⋅ 𝜌 (𝐶𝑖 (𝑡) , 𝑡) ⋅ (lim𝛿↓0 ((𝑔
−1 (𝐶𝑖 (𝑡) , 𝑡, 𝑡 + 𝛿) − 𝑔−1 (𝐶𝑖 (𝑡) , 𝑡, 𝑡)) /𝛿 − 𝑑𝐶𝑖 (𝑡) /𝑑𝑡))

∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦

= 𝑝 (𝐶𝑖 (𝑡) , 𝑡) ⋅ 𝜌 (𝐶𝑖 (𝑡) , 𝑡) ⋅ (𝑞 (𝐶𝑖 (𝑡) , 𝑡) − 𝑑𝐶𝑖 (𝑡) /𝑑𝑡)∫𝐶𝑖(𝑡)
𝐶𝑖−1(𝑡)

𝑝 (𝑦, 𝑡) ⋅ 𝜌 (𝑦, 𝑡) 𝑑𝑦 = 𝜆𝑖,

(A.10)

where the time-dependent density function𝑝 of the potential
charge process {𝐺(𝑡)} has the form of𝑝(𝑦, 𝑡) = 𝑝(𝑔(𝑦, 𝑡, 𝑡), 0)⋅
𝜕𝑔(𝑦, 𝑡, 𝑡)/𝜕𝑦. The involved function 𝑔, viewed as a family of
functions in variable 𝑠, solves the following family of IVPs:

𝑑𝑦
𝑑𝑡 = −𝑞 (𝑦, 𝑡 − 𝑠)

𝑔 (𝑦, 𝑡, 0) = 𝑦
(A.11)

and 𝑔−1 is defined as the inverse to 𝑔 such that 𝑔−1(𝑦, 0, 𝑡) =
{𝑥 : 𝑔(𝑥, 𝑡, 𝑡) = 𝑦}.

It is easy to check that condition (1) does always hold.
Finally, thanks to the existence and uniqueness theorem of
solutions to IVPs, the solution curves

{𝑦𝑖 (𝑡) : 𝑖 ∈ {0, 1, . . . , 𝑛 − 1}} (A.12)

do exist to the IVPs in (A.9).

Data Availability

The data used in this paper is sampled from New York State’s
Statewide Planning and Research Cooperative System 2013,

which is publicly available online at the following url: https://
health.data.ny.gov/Health/Hospital-Inpatient-Discharges-
SPARCS-De-Identified/npsr-cm47. The specific sample used
in this study and the python code for processing the data
and implementing the estimation and simulation study are
available from the corresponding author on request.
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Supplementary Materials

Anote on the joint probability density function of a stochastic
growth process with random stopping time. The technical

https://health.data.ny.gov/Health/Hospital-Inpatient-Discharges-SPARCS-De-Identified/npsr-cm47
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proof of expression (3) is too complicated and left in the
supplemental note. (Supplementary Material)
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