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Abstract

Motivation: Mathematical models have become standard tools for the investigation of cellular

processes and the unraveling of signal processing mechanisms. The parameters of these models

are usually derived from the available data using optimization and sampling methods. However,

the efficiency of these methods is limited by the properties of the mathematical model, e.g. non-

identifiabilities, and the resulting posterior distribution. In particular, multi-modal distributions with

long valleys or pronounced tails are difficult to optimize and sample. Thus, the developement or

improvement of optimization and sampling methods is subject to ongoing research.

Results: We suggest a region-based adaptive parallel tempering algorithm which adapts to the

problem-specific posterior distributions, i.e. modes and valleys. The algorithm combines several

established algorithms to overcome their individual shortcomings and to improve sampling effi-

ciency. We assessed its properties for established benchmark problems and two ordinary differen-

tial equation models of biochemical reaction networks. The proposed algorithm outperformed

state-of-the-art methods in terms of calculation efficiency and mixing. Since the algorithm does not

rely on a specific problem structure, but adapts to the posterior distribution, it is suitable for a var-

iety of model classes.

Availability and implementation: The code is available both as Supplementary Material and in a

Git repository written in MATLAB.

Contact: jan.hasenauer@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sampling methods as Markov-chain Monte Carlo (MCMC) are wide-

ly used in systems and computational biology to parameterize compu-

tational models (Wilkinson, 2007). Applications include biochemical

reaction networks (Hug et al., 2013; Xu et al., 2010), spatio-temporal

processes (Jagiella et al., 2017) and single-cell data (Zechner et al.,

2014). The methods provide samples from the posterior distribution

of the parameters given the experimental data and prior knowledge

(Andrieu et al., 2003). In contrast to point estimates provided by

optimization algorithms, posterior samples facilitate the assessment

of parameter and prediction uncertainties (Vanlier et al., 2012)

and the tailored design of experiments (Busetto et al., 2009).

While uncertainty analysis is beneficial across research fields, in biol-

ogy these methods are especially important. As experimental data is

often sparse and noise corrupted and parameters are often non-

identifiable (Chis et al., 2011; Eisenberg and Hayashi, 2014; Fröhlich

et al., 2014; Raue et al., 2013), it is essential to unravel these non-

identifiabilities and parameter uncertainties to avoid incorrect conclu-

sions and to facilitate reliable predictions.

The evaluation of models used in systems- and computational

biology is often computationally demanding, leaving parameter

sampling methods on the brink of computational feasibility. To fa-

cilitate the often required rigorous statistical assessment of param-

eter probability distributions in those applications, efficient
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sampling algorithms are inevitable. One natural way to maximize

the efficiency of sampling algorithms is to reduce the auto-

correlation of the generated chains (Andrieu et al., 2003). A high

auto-correlation implies that consecutive points in the Markov-

chain are correlated. Accordingly, the model has to be evaluated

multiple times to generate a single independent sample of the

posterior, lowering the effective sample size (ESS; Girolami and

Calderhead, 2011). Decreasing the auto-correlation lowers the

necessary chain length required for a representative posterior

sample.

The auto-correlation achieved using an MCMC algorithm can

be reduced by employing a tailored proposal density. In the

literature, three concepts for the tailoring of the proposal density

are proposed, which are independent of the underlying model: (i)

Adaptive Metropolis (AM) samplers improve the global proposal

density based on the already available chain [(Andrieu and

Thoms, 2008; Haario et al., 2001; Roberts and Rosenthal,

2009)]. (ii) Hamiltonian Monte–Carlo, Riemannian Monte–Carlo

and related sampling approaches exploit the local geometry of the

posterior, such as 1st and 2nd order derivatives, to construct an

appropriate local proposal density [(Girolami and Calderhead,

2011; Graham and Storkey, 2017; Hoffman and Gelman, 2014;

Lan et al., 2014)]. (iii) Region-based methods split the parameter

domain in different regions and assign appropriate proposal den-

sities for each of the individual regions [(Bai et al., 2011; Craiu

et al., 2009)]. Some of these methods have also been combined,

e.g. region-based adaptive Metropolis (RB-AM) samplers (Bai

et al., 2011).

Complementary, small-world sampling [(Guan and Krone,

2007; Yang et al., 2016)] and delayed rejection AM (Haario et al.,

2006) has been introduced. These methods employ multi-

component and multi-try proposals, respectively, and can be com-

bined with the aforementioned approaches. All of these different

concepts boosted the sampling performance of MCMC methods,

but the auto-correlation for posteriors with multiple modes usually

remains high (Ballnus et al., 2017). To address this, multi-chain

algorithms such as Parallel Tempering (PT; Łącki and Miasojedow,

2016; Miasojedow et al., 2013; Sambridge, 2013; Vousden et al.,

2016) and Parallel Hierarchical Sampling (Hug et al., 2013; Rigat

and Mira, 2012) have been introduced. These algorithms aim to im-

prove mixing by increasing the frequency of jumps between modes

and the exploration of tails. Interestingly, studies have shown that

for multi-chain methods the local exploration becomes problematic

and limits the mixing (Ballnus et al., 2017).

In this manuscript, we propose a sampling algorithm which

addresses differences between local- and global posterior proper-

ties to improve the mixing and to decrease the autocorrelation.

The algorithm combines PT with region-based adaptation. This

allows efficient transitions between modes and a good local ex-

ploration at the same time. To facilitate the application of the al-

gorithm, all steps are automatized, including the construction of

the regions and the adaptation of the proposal density. We system-

atically assessed and evaluated the proposed algorithm using

established benchmarks as well as application problems, and com-

pared it to state-of-the-art RB-AM and PT methods. We show that

the presented method has the potential to improve sampling effi-

ciency and robustness for posterior distributions with multiple

modes or pronounced tails––properties often found in biological

problems with non-identifiabilites (Chis et al., 2011; Eisenberg

and Hayashi, 2014; Fröhlich et al., 2014; Raue et al., 2013)––

substantially.

2 Materials and methods

In this section, we propose the Region-based Adaptive PARallel

Tempering method (RAmPART). We outline RAmPARTs properties

and provide insights into the implementation. Additionally, we

briefly introduce the pipeline, which was applied for the evaluation

of the different methods.

2.1 Problem statement
We consider the problem of sampling the posterior distribution p

hjDð Þ of the parameter h 2 X � Rn given the data D. Following

Bayes’ Theorem, the posterior distribution is

p hjDð Þ ¼ p Djhð Þp hð Þ
p Dð Þ (1)

in which p Djhð Þ; p hð Þ and p Dð Þ denote likelihood, prior and margin-

al distribution. Depending of the model and dataset, posterior distri-

butions can possess different properties, including multiple modes,

pronounced tails and differences between local and global structure.

These properties are usually unknown prior to the sampling, hence,

we consider the problem of developing a robust multi-purpose

method.

2.2 RAmPART algorithm
In this study, we propose a sampling algorithm which combines

RB-AM and PT.

RB-AM algorithms construct a Markov-chain for the parameters

h 2 X with target distribution p Djhð Þ. To account for the potentially

complex geometry of the posterior distribution, the parameter do-

main X is split into regions Xr, r ¼ 1; . . . ;R (Craiu et al., 2009).

Each region Xr possesses an individual proposal density q
i½ �
r h0jh i½ �
� �

,

in which i is the index of the iteration. The union of all regions cor-

responds to X. The regions and region-specific proposal densities are

constructed adaptively for instance using Gaussian Mixture Models

(GMMs). In comparison to classic AM algorithms which use a sin-

gle, global proposal density, RB-AM adds a high degree of freedom

to the way new sample points are proposed across different parts of

the posterior.

PT algorithms construct a Markov-chain on a product space

XL :¼ fh ¼ h1; . . . ; hLð Þjh‘ 2 X; ‘ ¼ 1; . . . ;Lg where L is the number

of temperature levels (Łącki and Miasojedow, 2016; Vousden et al.,

2016). The target distribution on the product space is defined as the

product of tempered posterior distributions,

pðhjDÞ /
YL
‘¼1

p1=s‘ h‘jDð Þ; (2)

with temperatures s‘; ‘ ¼ 1; . . . ;L, such that 1 ¼ s1 < s2

< . . . < sL. The sequence of points h i½ �
‘ for a temperature ‘, is

referred to as the ‘th chain. The Markov-chain on the product space

performs random walk steps for each chain and random swaps be-

tween chains. As chains with high temperatures travel more easily

between different regions, e.g. different modes and tails, chains gen-

erated using PT often possess a lower auto-correlation than single-

chain algorithms (Ballnus et al., 2017).

RB-AM and PT are applicable to a wide range of problems, yet,

the sampling performance is often unsatisfactory. We illustrate in

the Results Section, that RB-AM has difficulties to travel between

different parameter regions with high probability mass and PT suf-

fers from differences between local and global correlation structure.

To address these shortcomings, we propose the Region-based

Adaptive PARallel Tempering (RAmPART algorithm). RAmPART
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constructs a Markov-chain on a product space XL by interweaving

random walk steps and random swaps, as in PT. For each of the

tempered sub-chains, a region-based proposal density, constructed

and adapted over time as in RB-AM algorithms, is employed. In the

following, we describe the mathematical and implementation

details.

The proposed method has two phases: warm-up and sampling

phase. In the warm-up phase, parameter regions Xr, r ¼ 1; . . . ;R,

are constructed which are suited for efficient sampling with

Gaussian proposal densities. In principle, different approaches could

be employed to determine such regions, including the use of infor-

mation obtained in a preceding multi-start local optimization.

RAmPART runs an PT algorithm (Ballnus et al., 2017; Łącki and

Miasojedow, 2016; Vousden et al., 2016), which uses an adaptive

Gaussian proposal for the random walk steps (Fig. 1a), an adjacent

proposal for random swaps and temperature adaptation following

(Vousden et al., 2016). A short run of this PT algorithm yields a

sample which is supposed to capture the high-probability regions of

the posterior. This sample is usually not representative for the pos-

terior distribution, but is sufficient for the warm-up phase. Using the

sample, a GMM is trained with an expectation-maximization (EM)

algorithm (Murphy, 2012; Fig. 1b), yielding

GMM hð Þ ¼
XR

r¼1

wrN hjmr;Crð Þ; (3)

with weights xr, means mr and covariance matrices Cr, r ¼ 1; . . . ;R.

The appropriate number of mixture components is determined using

5-fold cross-validation with the BIC as selection criterion. As the

GMM approximates the posterior distribution, we assume that in

the parameter region

Xr ¼ fh 2 Xj8r0 2 f1; . . . ;Rgn r;

wrN hjmr;Crð Þ � wr0N hjmr0 ;Cr0ð Þg;
(4)

in which the rth mixture component dominates, a Gaussian pro-

posal density with covariance matrix Cr can achieve a good sam-

pling performance. Accordingly, in the following, the parameter

regions Xr, r ¼ 1; . . . ;R, are used in random walk steps (for all

temperatures).

Remark: Information about the posterior distribution can be

exploited to provide user-defined regions Xr or to restrict the

GMMs to a subset of the parameters. This potentially improves ro-

bustness and computational efficiency, or allows to skip the warm-

up phase completely.

In the sampling phase the afore-derived parameter regions Xr,

r ¼ 1; . . . ;R, are used to construct random walk proposals which

are tailored to the shape of the tempered posterior distributions. The

random walks for the different temperatures are performed inde-

pendently and use a Gaussian mixture as proposal distribution, also

known as small world proposal distribution (Fig. 1c). For a param-

eter vector h i½ �
‘ in the rth region, h i½ �

‘ 2 Xr, the region-based proposal

distribution is

q
i½ �
‘;r h0‘jh

i½ �
‘

� �
¼ 1� pg

� �
N h0‘jh

i½ �
‘ ; e

2g i½ �
‘;r C

i½ �
‘;r

� �
þ pgN h0‘jh

i½ �
‘ ; e

2g i½ �
‘ C

i½ �
‘

� �
:

(5)

The mixture components capture the correlation structures of the

tempered posterior p1=s‘ h‘jDð Þ in Xr and X, respectively. C
i½ �
‘;r and C

i½ �
‘

denote estimates of regional- and global covariance matrices

while g i½ �
‘;r and g i½ �

‘ denote the scaling factors. The fraction of steps

using the global proposal is denoted by pg. The proposed points

h0 � q
i½ �
‘;r h0‘jh

i½ �
‘

� �
are accepted with probability

pacc ¼ min 1;
p h0‘jD
� �

p h i½ �
‘ jD

� �
0
@

1
A1=s‘

q
i½ �
‘;r0 h i½ �

‘ jh
0
‘

� �
q

i½ �
‘;r h0‘jh

i½ �
‘

� �
8><
>:

9>=
>;; (6)

for region index r0 such that h0 2 Xr0 . If accepted, h iþ1½ �
‘ ¼ h0‘, other-

wise h iþ1½ �
‘ ¼ h i½ �

‘ . Estimates for regional and global covariance are

improved during the sampling phase. For h i½ �
‘ 2 Xr updates of local

mean and covariance are given by

Fig. 1. Visualization of the 2-phase sampling process employed by

RAmPART. (a) In the warm-up phase, the posterior distribution is sampled

with a PT algorithm which adapts to the global covariance structure. (b) The

posterior samples (which might not be representative) are used to define

regions in the posterior which can be approximated using a GMM. The GMM

defines three regions and each of the sample points is associated with one

them represented by the yellow, green or blue colour. (c) In the sampling

phase, the regions are used to adapt region-specific proposal densities. The

adaptation of the covariance matrices in the warm-up and sampling phase is

performed for each temperature separately

i496 B.Ballnus et al.



m
i½ �
‘;r ¼ 1� c i½ �

� �
m

i�1½ �
‘;r þ c i½ �h i½ �

‘;r; (7)

C
i½ �
‘;r ¼ 1� c i½ �

� �
C

i�1½ �
‘;r þ c i½ � h i½ �

‘ �m
i½ �
‘;r

� �
h i½ �
‘ �m

i½ �
‘;r

� �T
; (8)

with adaptation strength c i½ � ¼ i�a, with a 2 0:5; 1ð Þ, and initial

value obtained computed in the warm-up phase, C
0½ �
‘;r ¼ Cr. The scal-

ing factors for regional and global covariance are adapted to achieve

an acceptance rate of 23.4% (Haario et al., 2001; Łącki and

Miasojedow, 2016): g i½ �
‘;r ¼ g i�1½ �

‘ exp c i½ � p� 0:234ð Þ
� �

with g 0½ �
‘;r ¼ 1.

The region-based random walk proposal is incorporated in a PT

algorithm with an adjacent swap proposal and temperature adapta-

tion. For the temperature adaptation the method by (Vousden et al.,

2016) is employed and a maximum temperature smax is selected [for

details see (Vousden et al., 2016)]. The temperatures of the sub-

chains, 1 ¼ s1 < s2 < . . . < sL ¼ smax, are adapted such that swap

acceptance for adjacent sub-chains is balanced:

s i½ �
‘ ¼

X‘
m¼2

s i�1½ �
m � s i�1½ �

m�1

� �
exp �j i½ � A i½ �

m � A
i½ �
m�1

� �n o
;

with j i½ � ¼ �s

gs iþ 1þ �sð Þ

(9)

for ‘ ¼ 1; . . . ;L. The adaptation strengths are set �s¼103 and

gs¼10 according to personal experience. A
i½ �
‘ indicates whether the

proposed swap between chain ‘ and ‘þ 1ð Þ has been accepted. We

note that the temperatures s1¼1 and sL¼ smax are constant.

The resulting algorithm, RAmPART, is flexible as it possesses

the RB-AM and the adaptive PT as special cases. A RB-AM is

obtained for L¼1 and an adaptive PT for R¼1, respectively. As

RAmPART meets the Diminishing Adaptation and the Simultaneous

Uniform Ergodicity condition, results of (Roberts and Rosenthal,

2007, Theorem 5), ensures that it is ergodic and converges in distri-

bution to the posterior. The pseudocode for the RAmPART algo-

rithm can be found as part of the Supplementary Material.

2.3 Analysis pipeline
In this study, RAmPART is compared to different state-of-the-art

algorithms. To ensure an unbiased comparison, we employed the

semi-automated analysis pipeline described in a recent benchmark

study (Ballnus et al., 2017). This pipeline facilitates the automatic

identification of the burn-in phase, the robust analysis of conver-

gence and the assessment of ESSs. For details on the analysis pipe-

line, we refer to the original publication (Ballnus et al., 2017).

2.4 Implementation
RAmPART is implemented in the MATLAB toolbox PESTO

(Stapor et al., 2018), which is available on GitHub (https://github.

com/ICB-DCM/PESTO/tree/RAmPARTSubmissionCode). The im-

plementation of the considered benchmark and application prob-

lems are available as Supplementary Material. For the numerical

simulation, we used the SUNDIALS toolbox CVODES (Serban and

Hindmarsh, 2005) via the MATLAB interface AMICI (Fröhlich

et al., 2017).

3 Results

To assess the performance and robustness of RAmPART, we used it

to study two simulation examples as well as two biological prob-

lems. As a reference we considered own implementations of state-of-

the-art RB-AM and adaptive PT algorithms.

To ensure that the results are representative, we performed 100

runs with 106 iterations per algorithm and problem. The assessment

is based on all these runs, which in total correspond to 18.000 CPU

hours.

3.1 Simulation examples
To illustrate the properties of RAmPART, we considered two estab-

lished benchmark problems: Gaussian mixture distributions (Łącki

and Miasojedow, 2016) and blurred rings (Kramer, 2016). We

studied a 20-dimensional Gaussian mixture distribution with two

modes,

pgm hjDð Þ /
X2

i¼1

N
h1

h2

 !
j

li;1

li;2

 !
;R

 ! !Y20

j¼3

N hjj25;r2
� �

; (10)

and a 20-dimensional blurred ring,

pring hjDð Þ / N r hð Þjr0; r
2
r

� �Y20

j¼3

N hjj0; r2
� �

(11)

with r hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1 þ h2
2

q
. For both benchmarks the distribution of the

first to parameters are non-Gaussian, while the distribution of the

remaining parameters is Gaussian (Fig. 2a and b). The precise

parameterizations of the benchmarks are provided in the

Supplementary Material.

We sampled the benchmark problems with RB-AM, PT and

RAmPART. For PT and RAmPART, 40 temperature levels were

employed. RAmPART was initialized with the last 50% of a PT run

with 105 samples. For this sample size, PT explored a large fraction

of the parameter space but samples were not representative for the

posterior distribution. However, the inference of GMMs using EM

already provided reasonable definitions of regions [Fig. 2(a–d)].

As the number of regions and their location differed between

runs, we assessed it and quantified its impact on the sampling phase.

For the Gaussian mixture example, we found that the cross-

validations always yielded two regions (Fig. 2c). For the blurred

ring, on average eight regions were selected for the considered sam-

ple size (Fig. 2c). Here, the covariance matrices of regions differed

substantially, which allowed for a good approximation of the distri-

bution. For both examples, the sampling efficiencies were independ-

ent of the number of regions and their locations (Fig. 2d).

The evaluation of the sampling results revealed that RB-AM and

PT suffer from convergence problems for the considered sample size

(Fig. 2e and f). The RB-AM did neither provide representative sam-

ples for the Gaussian mixture nor for the blurred ring as it failed to

explore the posterior. In most runs, PT provided a representative

sample from the Gaussian mixture, but not for the blurred ring.

RAmPART converged in 95 of 100 runs for the Gaussian mixture

and in 25 of 100 runs for the blurred ring. The computation time

per iteration was highest for RAmPART. Yet, due the decreased

auto-correlation, the ESS was highest for RAmPART, both in abso-

lute terms and relative to the computation time (Fig. 2e and f).

The comparison of PT and RAmPART revealed that the use of

region-based random walk proposals (pg¼0.5) improved conver-

gence and computational efficiency. Accordingly, we wondered

whether a pure region-based random walk proposal would perform

even better (pg¼1). Interestingly, this was not the case for the con-

sidered benchmark problems (Supplementary Fig. S1a). This indi-

cates, that the small-world proposal used by RAmPART for pg¼0.5

exploits benefits of local and global proposals and improves the

overall robustness.

Parameter estimation using region-based adaptive parallel tempering i497

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty229#supplementary-data
https://github.com/ICB-DCM/PESTO/tree/RAmPARTSubmissionCode
https://github.com/ICB-DCM/PESTO/tree/RAmPARTSubmissionCode
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty229#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty229#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty229#supplementary-data


3.2 Application examples
To evaluate RAmPART in practice, we considered the processes of

mRNA transfection and Epo-induced JAK2/STAT5 signaling:

• mRNA transfection is a promising treatment option, among

others, in immunotherapy (Kuhn et al., 2011). In mRNA

transfection, mRNA is encapsulated in lipoplexes, transported

across the cell membrane, released into the cytosol and being

translated (Fig. 3a). Single cell time-lapse data for this process

have been collected and modeled by (Leonhardt et al., 2014;

Fig. 3b). In this study, we consider the model introduced by

(Leonhardt et al., 2014) inferring its five parameters from a rep-

resentative single-cell trace.

• Epo-induced JAK2/STAT5 signaling is essential for survival, pro-

liferation and differentiation in hematopoesis (Bachmann et al.,

2014). Epo binds to the complex of the Epo receptor (EpoR) and

JAK2. The complex induces phosphorylation of STAT5, which

subsequently dimerises and translocates to the nucleus to regulate

gene expression (Fig. 3c). An initial model of this process has been

developed by (Swameye et al., 2003). Here, we consider the imple-

mentation of the model by (Maier et al., 2017) with 17 parameters

and fit it to quantitative immunoblotting data (Fig. 3d).

For both applications, log10-transformed parameters were employed

and uniform prior distributions were used. For details on the models

and the experimental data, we refer to the Supplementary Material.

Fig. 2. RAmPART outperforms established methods for simulation examples: 20-dimensional Gaussian mixture and the 20-dimensional blurred ring. (a and b) Bivariate

scatter plot matrix and histograms for a representative chain generated using RAmPART. Parameters h1 � h4 are illustrated. The parameters h5 � h20 possess the same

distribution as h3 and h4. (c) Variability of the selected GMM complexity between RAMPART runs. (d) The remaining ESS for different selected GMM complexities after ap-

plication of the analysis pipeline. (e and f) Quantitative assessment of the ESS and the ESS per second computation time for different algorithms

i498 B.Ballnus et al.
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We sampled the posterior distributions of the models using RB-

AM, PT and RAmPART with the same settings as for the simulation

examples (Fig. 2). RAmPART provided the most representative sam-

ple of the posterior distribution, while especially RB-AM suffered

from convergence problems. The trajectories contained in the repre-

sentative samples by PT and RAmPART provide a good description

of the experimental data (Fig. 3b and d).

The sampling results for the model of mRNA transfection

revealed a bimodal posterior (Fig. 3e). Accordingly, in all runs

RamPART selected at least two regions, on average 4.8. In all runs,

the two modes were separated into different regions, allowing

RAmPART to account for the different local correlation structures.

Furthermore, each mode was often split into several regions to cover

the tails (Fig. 3e). RAmPART identified the symmetry between the

degradation rates, b and c, on the level of the sample and the level of

the regions. This symmetry is associated to structural identifiability

problems. However, it can not be identified by established tools for

structural identifiability analysis, such as GenSSI 2.0 (Ligon et al.,

2017). The automatic identification of symmetries offered by

RAmPART is important, as currently the analytical solution is

required.

The sample for the model of JAK2/STAT5 signaling, did not re-

veal multi-modality as for the mRNA transfection but practical non-

identifiabilities (Fig. 3f). Practical non-identifiabilities manifested as

tails in the posterior distributions and were visible, among others,

for OtSTAT and stSTAT. If these parameter dimensions are considered

for the training of the GMM, RAmPART selects 4–5 regions. These

regions partition the distributions and possess different correlations

structure, facilitating the construction of a tailored proposal

distribution.

Fig. 3. RAmPART adapts to the posterior landscape and outperforms established methods for models of mRNA transfection and JAK2/STAT5 signaling.

(a) Biochemical reaction network for model of mRNA transfection. (b) Measurement data and propagated model trajectories of the observable G(t) derived from

the parameter sample points. (c) Biochemical reaction network for model of JAK2/STAT5 signaling. (d) Measurement data and propagated model trajectories of

the observables tSTAT, pSTAT and pEpoR derived from the parameter sample points. (e and f) Bivariate scatter plot of one RAmPART MCMC chain. The colors in-

dicate the different regions. (g and h) Comparison of the ESS and the ESS per second computation time for the sampling algorithms

Parameter estimation using region-based adaptive parallel tempering i499



Overall, our evaluation of the sampling performance and robust-

ness revealed that RAmPART is more efficient than the established

methods for both application problems (Fig. 3g and h). For mRNA

transfection, RAmPART achieves a 6.6-fold higher ESS/t than PT

(Fig. 3g). The key reason probably was the improved alignment of

the regional proposal densities of RAmPART compared to the

coverage of the two modes by the global proposal density of PT.

For JAK2/STAT5 signaling, we found that RAmPART doubled the

ESS/t in presence of a rather simple posterior structure (Fig. 3h).

Apparently, even though the posterior structure is uni-modal, a

GMM provide a substantially better approximation than a single

Gaussian due to the pronounced tails of the posterior. This seems to

allow RAmPART to outperform PT.

4 Conclusion

Computational models are an important tool in systems biology.

The available information about model parameters, given experi-

mental data, is encoded in the corresponding posterior distribution.

The most common approach for comprehensive assessment of such

a probability distribution is Markov-chain Monte–Carlo sampling.

However, for computationally demanding problems with posterior

distributions which possess multiple modes or pronounced tails,

standard methods (i.e. the Metropolis Hastings or AM), are known

to require massive computational resources in order to provide rep-

resentative samples (Ballnus et al., 2017). Thus, MCMC sampling

remains challenging and is subject to ongoing research.

Here, we proposed the region-based adaptive PT algorithm

RAmPART, which adapts to the tempered posterior distribution

and constructs tailored proposal densities on the fly. Following the

requirements formulated by (Craiu et al., 2009, 1464–1465), this

multi-level adaptation is designed to achieve good sampling proper-

ties ‘within each region’ and transition between ‘all regions’. While

this manuscript did not provide new biological findings, it presented

an algorithm which is suited for the ill-posed inference problems

encountered in systems- and computational biology.

We evaluated the performance of RAmPART for benchmark

and application problems. Our analysis revealed that RAmPART

possesses a higher computation cost per iteration than RB-AM and

PT, but it also provides a higher ESS. The increased computational

cost is compensated by the improved mixing which resulted in a

higher ESS per unit computation time. RAmPART outperformed the

reference implementations of RB-AM and PT for all considered

problems, by providing an improved ESS and a higher reliability of

individual runs. Both aspects are highly relevant in practice and will

allow for a consideration of higher-dimenional models with more

involved posterior distributions. The results should be corroborated

by analyzing a larger set of application problems.

The algorithm might be further improved by adapting the

regions during the sampling, instead of fixing them after the warm-

up phase. Ideas by (Craiu et al., 2009) might be employed, as imple-

mented in the single-chain algorithm RAPTOR. Complementary,

more robust clustering approaches could be used [e.g. (Gesteira

Costa Filho, 2008; Levenstien et al., 2003)] to enhance the robust-

ness of RAmPART. Alternatively, instead of using region-based pro-

posal densities, Hamiltonian Monte–Carlo methods (Graham and

Storkey, 2017; Hoffman and Gelman, 2014) might be employed for

the different temperatures.

In summary, we introduced RAmPART and provided a compre-

hensive evaluation. The proposed algorithm has substantial practical

value and is publicly available in the MATLAB toolbox PESTO.

This will facilitate its reuse and application to a broad class of

problems.
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