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Abstract 

Background:  Current medical image translation is implemented in the image domain. Considering the medical 
image acquisition is essentially a temporally continuous process, we attempt to develop a novel image translation 
framework via deep learning trained in video domain for generating synthesized computed tomography (CT) images 
from cone-beam computed tomography (CBCT) images.

Methods:  For a proof-of-concept demonstration, CBCT and CT images from 100 patients were collected to dem-
onstrate the feasibility and reliability of the proposed framework. The CBCT and CT images were further registered 
as paired samples and used as the input data for the supervised model training. A vid2vid framework based on the 
conditional GAN network, with carefully-designed generators, discriminators and a new spatio-temporal learning 
objective, was applied to realize the CBCT–CT image translation in the video domain. Four evaluation metrics, includ-
ing mean absolute error (MAE), peak signal-to-noise ratio (PSNR), normalized cross-correlation (NCC), and structural 
similarity (SSIM), were calculated on all the real and synthetic CT images from 10 new testing patients to illustrate the 
model performance.

Results:  The average values for four evaluation metrics, including MAE, PSNR, NCC, and SSIM, are 23.27 ± 5.53, 
32.67 ± 1.98, 0.99 ± 0.0059, and 0.97 ± 0.028, respectively. Most of the pixel-wise hounsfield units value differences 
between real and synthetic CT images are within 50. The synthetic CT images have great agreement with the real CT 
images and the image quality is improved with lower noise and artifacts compared with CBCT images.

Conclusions:  We developed a deep-learning-based approach to perform the medical image translation problem in 
the video domain. Although the feasibility and reliability of the proposed framework were demonstrated by CBCT–CT 
image translation, it can be easily extended to other types of medical images. The current results illustrate that it is a 
very promising method that may pave a new path for medical image translation research.
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Introduction
In the field of medical imaging, a wide range of methods 
are used to obtain spatially resolved information about 
patient anatomy. This includes plain radiography, com-
puted tomography (CT), magnetic resonance imaging 
(MRI), positron emission tomography (PET) and cone-
beam computed tomography (CBCT) used for enhanced 
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image-guided radiation therapy. Due to the different 
underlying physical principles, these image data are of 
different dimensionality and varying contrasts. Although 
this variety offers various diagnostic options, the genera-
tion of all these image data for one patient may not be 
feasible in specific situations. For example, CBCT, alter-
native to CT, is routinely used in clinic to provide accu-
rate volumetric imaging of the treatment position for 
patient setup during online adaptive radiotherapy. How-
ever, the CT number in CBCT is not accurate enough, 
which is due to cupping and scattering artifacts caused by 
the large illumination field, for soft tissue-based patient 
setup and further quantitative applications such as dose 
calculation and adaptive treatment planning. Therefore, a 
framework which is capable of translating between mul-
tiple modalities would shorten the medical procedure 
by removing additional unnecessary scans and provide 
additional medical information. It poses several chal-
lenges, but enhances medical efficiency and is proved to 
be beneficial for both medical professionals and patients 
[1–3]. Therefore, medical image translation with numer-
ous potential applications is considered as a new frontier 
in the field of medical image analysis.

Recently, with the development of deep learning algo-
rithms, especially the convolutional neural network 
(CNN), medical image analysis has made significant pro-
gress in a range of applications such as lesion detection 
and classification [4, 5], image registration and enhance-
ment [6, 7], organs segmentation [8, 9], and dose cal-
culation in radiotherapy [10–12]. This also led to the 
development of several deep neural networks based 
approaches for the translation of medical images [13–18]. 
The most prominent of these deep neural networks are 
Generative Adversarial Networks (GANs) [19]. The main 
underlying principle of GANs is that of the competition 
between two co-existing networks, the generator and 
the discriminator, which are trained simultaneously with 
opposing goals. The generator network generates syn-
thetic data samples, while the discriminator network acts 
as a binary classifier attempting to distinguish between 
real training samples and generated synthetic samples. 
More specifically, the generator is intended to maximize 
the probability of fooling the discriminator into consider-
ing the synthetic samples are realistic, while the discrimi-
nator is trained to maximize the probability of correctly 
classifying real and synthetic samples, thus minimize the 
differences between them [19]. Pix2pix GAN framework, 
in which the generator is a U-Net based architecture 
and the discriminator is represented by a convolutional 
PatchGAN classifier, is a general solution to supervised 
image-to-image translation problems [20]. It was utilized 
to translate MR to CT images [21], denoise low dose CT 
images by translating it into a high dose counterpart [22], 

and perform multi-leaf collimator shape images genera-
tion for radiotherapy [11]. Cycle-GAN framework [23], 
which involves the simultaneous training of two genera-
tor models and two discriminator models with the cycle 
consistency loss, is another similar but unsupervised 
approach. It was first applied to translate MR to CT 
images on head and neck sites [24], then applied on pel-
vic sites with more training data and incorporating gra-
dient consistency loss [25]. It was also trained to learn 
translation functions from a source domain CBCT to a 
target domain CT with high accuracy and efficiency in 
radiotherapy related studies [17].

The aforementioned studies take assumption that the 
patient’s whole image volume, regardless of MR, CT or 
CBCT, is consisting of multiple isolated slices, thus the 
translation is fulfilled in the image domain. Noted that 
patient’s image scan is a temporally continuous process, 
some inherent spatio-temporal correlations and extra 
context information present between individual slices 
but cannot be considered in the image domain transla-
tion. Taking another perspective, if we treat one slice 
as one frame, then the patient whole image volume can 
be considered as a video, can we fulfill the translation 
in the video domain and obtain better results by accu-
rately modeling the temporal dynamics and other context 
information? Under the guidance of this concept, we pro-
pose a new medical image translation method based on 
a video-to-video synthesis approach. This method con-
siders the patient whole image volume as a complete and 
independent unit, takes the spatio-temporal correlations 
among the individual slices into account, and performs 
the medical image translation from a new perspective. 
To our knowledge, this is the first attempt of applying the 
video concept in medical image translation research. We 
compared the performance of the proposed framework 
with our previously published Cycle-GAN model and the 
results show that the new method outperforms the exist-
ing model.

Methods
Data collection and preprocessing
For a proof-of-concept demonstration, we collected rec-
tum cancer patients’ CT and CBCT images as our data-
sets to evaluate the proposed method. A new CT-linac 
uRT-linac 506c designed by United Imaging Healthcare 
Co. Ltd, which integrated a diagnostic-quality 16-slices 
helical CT and a C-arm linac together, was used for data 
acquisition [17]. The helical CT can be used for simula-
tion, and the electronic portal imaging detector (EPID) 
system was used for 3D MV CBCT acquisition. These 
images were acquired almost in the same position and 
anatomy, and further registered between each other to 
prevent producing randomized hallucinate anatomy that 
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is commonly seen in the unpaired image translation [26]. 
Noted that there are still minor mismatches after reg-
istration between the images, but it is proved that the 
deep neural network is relatively robust to these small 
perturbations.

Before images were fed into the model, all the CT and 
CBCT images were resampled to the size of 512 × 512 
with the resolution of 0.88 × 0.88 mm2. The thick-
ness of these image is 3  mm and only the image slices 
that presented in both CT and CBCT volumes were 
retained in the final dataset. The discarded slices are all 
at the marginal area and should not contain any impor-
tant diagnostic information. To speed up the training 
convergence, we scaled the CT and CBCT image pixel 
values to the range of (-1, 1) according to the formula 
Pnew = 2×

Poriginal+1000

3048 − 1 , where Poriginalindicates the 
original image pixel values locating in the range of (-1000, 
2048). We collected CT and CBCT images from 100 
patients for model training [17], and the images from the 
other 10 new patients were used for model evaluation.

Image translation based on video‑to‑video synthesis
We converted the image translation to a video-to-video 
synthesis problem by considering the patient whole 
image volume as a video consisting of several frames 
(image slices). The video-to-video synthesis is essentially 

a distribution matching problem, the goal of which is to 
train a model such that the conditional distribution of the 
synthesized videos given input videos resembles that of 
real videos. To this end, the vid2vid framework [27] was 
applied as a basic neural network to fulfill this task. It is 
a conditional GAN-based model, with carefully-designed 
generators, discriminators and a new spatio-temporal 
learning objective, which is capable of synthesizing high 
accurate and temporally coherent videos.

We assume the video frames can be generated sequen-
tially, and the generation of the current frame only 
depends on three factors: current source frame, past L 
source frames and past L generated frames, L is set to 
2 after careful study. This sequential generator adopts 
a coarse-to-fine architecture in which the number of 
spatial scales is set to 2. For the lower resolution, here 
is 256 × 256, the network G1 shown in Fig.  1 takes two 
source frames and previously generated frames as inputs. 
They first undergo two separate downsampling residual 
blocks, then the intermediate high-level features are 
added and fed into each unsampling residual blocks to 
output the lower resolution generated frame as well as 
the flow map and occlusion mask. The flow map displays 
the estimated optical flow between consecutive frames 
and the occlusion mask is used to add new texture details 
by gradually blending the warped pixels and the newly 

Fig. 1  The architecture of the proposed video-to-video synthesis framework
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synthesized pixels [27]. Next, another higher resolution 
network G2 with similar architecture is built on the top 
of the network G1. It first downsamples the inputs and 
feeds them into G1, then the extracted features from the 
last layer of G1 are added to the intermediate layers of 
G2, these summed features are finally fed into upsam-
pling residual blocks to output the new generated frame 
[27]. The hyperparameters are determined by checking 
the model performance, nine residual blocks consisting 
of convolutional, normalization and activation layers are 
used as backbones of aforementioned networks G1 and 
G2. The kernel size and largest filter size is set to 3 and 
512 respectively to fit the GPU memory.

Two discriminators, the image discriminator DI and the 
video discriminator DV, are implemented in the proposed 
framework. The image discriminator DI which adopts 
the multi-scale PatchGAN architecture ensures that 
each output frame resembles a real image given the same 
source image. The temporally multi-scale video discrimi-
nator DV downsamples the frame rates (skipping every 
three intermediate frames) of the real/generated videos 
for up to three scales and helps ensure that consecu-
tive output frames resemble the temporal dynamics of a 
real video given the same optical flow [27]. The two dis-
criminators are built upon the same convolutional blocks 
shown in Fig. 1. The kernel size and largest filter size is 
set to 4 and 256 respectively to fit the GPU memory.

Three losses are defined, namely the image-conditional 
GAN loss LI , the video GAN loss LV  , and the optical flow 
estimation loss LF [27]. To make the generated frames 
indistinguishable from the real frames, we adopted LI 
loss defined by image discriminator DI:

where st , xt , x̃t denote source video frames, real video 
frames and generated video frames, respectively. Simi-
larly, to make the K consecutive generated frames resem-
ble the real videos, we defined LV  loss:

where st−1
t−K ,w

t−2
t−K , x

t−1
t−K ,x̃

t−1
t−K  denote K consecutive 

source video frames, K-1 optical flow, K real video frames 
and K generated video frames, respectively. During 
model training, K doubles sequentially from 4 until the 
total number of frames. Finally, the flow estimation loss 
LF was given by two terms, the first term denotes the dif-
ference between the real and the estimated optical flow, 
the second term is warping difference between the next 
real frame and next optical flow warped frame:

(1)
LI = Ext ,st [logDI (xt , st)]+ Ex̃t , st log 1− DI x̃t , st

(2)LV = E
wt−2
t−K ,x

t−1
t−K ,s

t−1
t−K

[

logDV

(

xt−1
t−K ,w

t−2
t−K

)]

+E
wt−2
t−K ,x̃

t−1
t−K ,s

t−1
t−K

[

log
(

1− DV

(

x̃t−1
t−K ,w

t−2
t−K

))]

where �·�1 is L1-norm, and w̃t ,wt , w̃t(xt), xt+1 denote 
the estimated optical flow, real optical flow, optical flow 
warped next frame based on the previous frame xt , and 
the real next frame, respectively. Hence, the model train-
ing process is essentially solving:

where G denotes the sequential generator, �F is a hyper-
parameter that balances the contributions from different 
losses and is set to 10 after careful study.

Implementation and evaluation
To optimize our networks, the Adam solver was imple-
mented and the learning rate was set to 0.0001. Early 
stopping was adopted by evaluating the model perfor-
mance and it takes about one week for model training. 
However, only about 10  s are sufficient to generate the 
patient whole synthetic CT volume which makes it pos-
sible for clinical application. The framework was imple-
mented by the open source deep learning library PyTorch 
[28] and the model was trained and tested on two Nvidia 
RTX 2080Ti GPUs with 11 GB VRAM.

For the synthetic image quality evaluation, we used 
mean absolute error (MAE), peak signal-to-noise ratio 
(PSNR), normalized cross-correlation (NCC), and struc-
tural similarity (SSIM) as evaluation metrics. The defini-
tions are presented as follows.

(3)

LF =
1

T − 1

T−1
∑

t=1

(

�w̃t − wt�1 + �w̃t(xt)− xt+1�1
)

(4)

min
G

(

max
DI

LI (G,DI )+ max
DV

LV (G, DV )

)

+ �FLF (G)

(5)MAE =
1

ninj

ni ,nj
∑

x,y

|I1
(

x, y
)

− I2(x, y)|

(6)

PSNR = 10× log10

(

MAX2

∑ni,nj
x,y |I1

(

x, y
)

− I2(x, y)|
2
/ninj
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NCC =
1
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(
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)

− µI1

)(
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(
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)
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where I1and I2 denote two different images, including 
ground truth and synthetic images. I

(

x, y
)

 means the 
hounsfield units (HU) value of the pixel (x, y) in image I . 
ninj is the total number of pixels in image I . MAX is the 
maximum HU value in the selected image. µ and σ rep-
resent the mean and the standard deviation of the HU 
value in an image. c1 and c2 are predefined constants. The 
evaluation was performed on all the images from 10 test-
ing patients and statistical analysis was also performed to 
demonstrate their consistency.

Results
To evaluate the performance of the proposed image 
translation neural network, we show four synthetic CT 
images obtained from four different testing patients with 

(8)SSIM =

(

2µI1µI2 + c1
)(

2σI1,I2 + c2
)

(

µ2
I1
+ µ2

I2
+ c1

)(

σ 2
I1
+ σ 2

I2
+ c2

)

different anatomical structures in Fig. 2. The first column 
is CBCT images, the second column is real CT images, 
the third column is synthetic CT images and the last 
column is pixel-wise differences between real and syn-
thetic CT images. Less artifacts are found in all the syn-
thetic CT images than in the original CBCT images and 
the synthetic CT images quality is very close to the real 
CT images. Figure  3 illustrates the good agreement of 
the HU line profiles, through the center of the images in 
Fig. 2, between real (red line) and synthetic (blue line) CT 
images, the HU line profiles for CBCT (black line) images 
are also presented to demonstrate the significant discrep-
ancy from the others.

For the 10 testing patients, a violin plot Fig.  4 was 
drawn to illustrate the distribution of all the pixel-wise 
differences in all the images from each testing patient. 
It can be seen that most of the pixel-wise HU value dif-
ferences are within 50. As listed in Table  1, the afore-
mentioned four evaluation metrics were calculated 

Fig. 2  CBCT, CT and synthetic CT (sCT) images comparison from four different testing patients with different anatomical structures. The first 
column is CBCT images, the second column is real CT images, the third column is synthetic CT images and the last column is pixel-wise differences 
between real and synthetic CT images
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for CBCT, real and synthetic CT images. Their values 
for CBCT versus CT and synthetic CT versus CT are 
improved from 46.68 ± 9.25, 28.05 ± 1.21, 0.97 ± 0.0084, 
0.92 ± 0.014 to 23.27 ± 5.53, 32.67 ± 1.98, 0.99 ± 0.0059, 
0.97 ± 0.028, respectively. The previously published 
Cycle-GAN model [17] testing results are also pre-
sented in the last column for the detailed comparison. 
Significantly better image quality evaluation values 
are presented in synthetic CT images compared with 
CBCT images. In addition, we found that the image 
quality of synthetic CT generated by the proposed 
video-to-video synthesis framework was significantly 
improved compared with our previously published 
paper which utilizes Cycle-GAN to perform image 
translation [17]. It indicates that performing image 

translation in the video domain by accurately modeling 
the inherent spatio-temporal correlations presenting 
between individual slices is promising and will be a new 
perspective to fulfill image translation task.

Discussion
We formulated the medical image translation problem 
in the video domain where a conditional GANs based 
video-to-video synthesis framework, consisting of care-
fully-designed generators and discriminators as well as 
a spatio-temporal adversarial objective, was employed. 
Conditional GANs were chosen as a backbone of the 
framework because of its outstanding performance for 
image generation, and a spatio-temporal adversarial 
objective was implemented to guarantee the generation 

Fig. 3  HU line profiles, through the center of the images in Fig. 2, comparison between real CT (red line), synthetic CT (blue line) and CBCT (black 
line) images
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of the temporally consistent video. The CBCT to CT 
translation task was adopted as an illustration to dem-
onstrate the feasibility and reliability of the proposed 
framework. However, the proposed framework can be 
easily extended to other medical image translation task 
by changing the input of the neural network. To our 
knowledge, this is the first work that fulfills the medical 
image translation task in the video domain and exten-
sive testing demonstrates that our results are better 
than the results utilizing the Cycle-GAN framework in 
image domain.

The proposed framework uses paired training data 
that allows the algorithm to focus on reducing image 
artifacts and enhancing soft tissue contrast, rather 
than focusing on the large geometric mismatches. 
It also speeds up the training model because of the 
reduced relative differences from the beginning. In 
practice, the video frames are generated sequentially 
by taking the optical flow between consecutive frames 
into account. Different from the conventional image 
domain GAN-based networks, two discriminators are 
adopted in the framework. The image discriminator DI 
ensures that each output frame resembles a real image, 

and the video discriminator DV which is unique in the 
proposed framework ensures that consecutive output 
frames resemble a real video and helps guarantee both 
short-term and long-term consistency. The proposed 
framework integrates the patient individual images as 
a video, considers the spatio-temporal correlations 
among them, and proves to outperform than the exist-
ing method defined in the image domain.

Our results show that the synthetic CT images have 
great agreement with the real CT images and the image 
quality is improved with lower noise and artifacts com-
pared with CBCT images. The pixel-wise differences 
are slightly larger in some regions shown in Fig. 2, this 
is because the training data locating in the abdominal 
region is easily affected by respiratory motion, organ 
movement and organ filling status. However, most of 
the pixel-wise HU value differences are within 50, seen 
from Fig. 4, which is essentially small enough for clini-
cal practice. Compared with the Fig. 4 in our previously 
published results [17], the average absolute pixel-wise 
difference significantly reduced from about 200 to 50. 
The HU line profiles also present better agreements 
between CT and synthetic CT compared with previ-
ously published results [17]. Meanwhile, the aforemen-
tioned four evaluation metrics are better compared 
with the results obtained from the previously trained 
Cycle-GAN model, seen from Table 1. The essential dif-
ference between them is the network training domain, 
the proposed video training domain integrating extra 
spatio-temporal correlations among images was proved 
to be capable for more accurate and stable translation 
results.

In this study, we implemented a CBCT to CT image 
translation task by training a framework defined in the 
video domain. For a proof-of-concept demonstration, 
we only studied the model performance on CBCT and 
CT data, additional medical images are required to fur-
ther investigate the model generality and universality. 
We believe it could be easily extended to other types of 
medical image translation tasks including MRI-CT, PET-
CT translation and so on. This will be one of our future 
investigations. Meanwhile, the current framework is lim-
ited to paired training samples, another crucial study is 
to improve the framework and allow the unpaired image 
translation. Additionally, we plan on expanding the 
framework with other backbone networks, optimizing 
the architecture by performing some ablation studies to 
verify the effectiveness of each network component, and 
improving the training efficiency for more complex data. 
Furthermore, we plan to add more comparison studies 
to include performance on clinical applications, such as 
dose calculation and diagnostic application.

Fig. 4  Violin plot illustrating the distribution of all the pixel-wise 
differences in all the images from each testing patient

Table 1  Four evaluation metrics values calculated from CBCT 
and CT, CT and synthetic CT (sCT)

CBCT vs. CT sCT vs. CT sCT vs. CT (Cycle-GAN)

MAE 46.68 ± 9.25 23.27 ± 5.53 26.46 ± 6.13

PSNR 28.05 ± 1.21 32.67 ± 1.98 31.81 ± 1.82

NCC 0.97 ± 0.0084 0.99 ± 0.0059 0.98 ± 0.009

SSIM 0.92 ± 0.014 0.97 ± 0.028 0.94 ± 0.037
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Conclusions
In this work, we pioneered to propose a new perspective 
for medical image translation in the video domain. Its 
feasibility and reliability were demonstrated by CBCT-
CT image translation and can be easily extended to other 
types of medical images. Future work will be focused 
on evaluating the method on different datasets and fur-
ther improving accuracy. It is a very promising method 
that may pave a new path for medical image translation 
research.

Abbreviations
CBCT: Cone-beam computed tomography; CT: Computed tomography; 
MAE: Mean absolute error; PSNR: Peak signal-to-noise ratio; NCC: Normalized 
cross-correlation; SSIM: Structural similarity; MRI: Magnetic resonance imaging; 
PET: Positron emission tomography; HU: Hounsfield units; CNN: Convolutional 
neural network; GANs: Generative adversarial networks; EPID: Electronic portal 
imaging detector.

Acknowledgements
We thank Zhi Chen for helping the data acquisition.

Author contributions
JF and ZL: study concept and design. DY, JQ and JZ: data acquisition. JF, ZL and 
JZ: data analysis, programing, writing of the original and revised manuscript. 
JF, ZL and JW: model training, validation and testing. JF, ZL and WH: revision of 
manuscript. All authors read and approved the final manuscript.

Funding
The study was funded by National Natural Science Foundation of China (No. 
11805039, No. 11905295), Beijing Hope Run Special Fund of Cancer Founda-
tion of China (No. LC2021B01).

Data availability
The datasets analysed during the current study are not publicly available due 
to the hospital policy but are available from the corresponding author on 
reasonable request.

Declarations

Ethics approval and consent to participate
The Ethics Committee of Fudan University Shanghai Cancer Center approved 
this retrospective study and waived the requirement for written informed 
consent due to its retrospective nature. All methods were carried out in 
accordance with relevant guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Radiation Oncology, Fudan University Shanghai Cancer 
Center, Shanghai 200032, People’s Republic of China. 2 Department of Oncol-
ogy, Shanghai Medical College Fudan University, Shanghai 200032, People’s 
Republic of China. 3 Shanghai Key Laboratory of Radiation Oncology, Shang-
hai 200032, People’s Republic of China. 4 National Cancer Center/National Clini-
cal Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical 
Sciences and Peking Union Medical College, Beijing, China. 

Received: 1 December 2021   Accepted: 4 July 2022

References
	1.	 Johnstone E, Wyatt JJ, Henry AM, et al. Systematic review of synthetic 

computed tomography generation methodologies for use in magnetic 
resonance imaging-only radiation therapy. Int J Radiat Oncol Biol Phys. 
2018;100:199–217.

	2.	 Chen H, Zhang Y, Kalra K, Lin M, Chen F, Liao Y, Zhou P, Wang J. Low-Dose 
CT with a residual encoder-decoder convolutional neural network. IEEE 
Trans Med Imaging. 2017;36:2524–35.

	3.	 Cai J, Zhang Z, Cui L, Zheng Y, Yang L. Towards cross-modal organ 
translation and segmentation: a cycle- and shape-consistent generative 
adversarial network. Med Image Anal. 2019;52:174–84.

	4.	 Saha A, Hosseinzadeh M, Huisman H. End-to-end prostate cancer 
detection in bpMRI via 3D CNNs: effects of attention mechanisms, 
clinical priori and decoupled false positive reduction. Med Image Anal. 
2021;73:102155.

	5.	 Gehlot S, Gupta A, Gupta R. A CNN-based unified framework utilizing 
projection loss in unison with label noise handling for multiple Myeloma 
cancer diagnosis. Med Image Anal. 2021;72:102099.

	6.	 Kim B, Kim DH, Park SH, Kim J, Lee JG, Ye JC. CycleMorph: cycle consist-
ent unsupervised deformable image registration. Med Image Anal. 
2021;71:102036.

	7.	 Hering A, Häger S, Moltz J, Lessmann N, Heldmann S, van Ginneken B. 
CNN-based lung CT registration with multiple anatomical constraints. 
Med Image Anal. 2021;72:102139.

	8.	 Nishimura K, Wang C, Watanabe K, Fei Elmer Ker D, Bise R. Weakly super-
vised cell instance segmentation under various conditions. Med Image 
Anal. 2021;73:102182.

	9.	 Poel R, Rüfenacht E, Hermann E, Scheib S, Manser P, Aebersold DM, Reyes 
M. The predictive value of segmentation metrics on dosimetry in organs 
at risk of the brain. Med Image Anal. 2021 Oct;73:102161.

	10.	 Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automatic treatment plan-
ning based on three-dimensional dose distribution predicted from deep 
learning technique. Med Phys. 2019;46(1):370–81.

	11.	 Fan J, Xing L, Ma M, Hu W, Yang Y. Verification of the machine deliv-
ery parameters of a treatment plan via deep learning. Phys Med Biol. 
2020;30(19):195007.

	12.	 Fan J, Xing L, Dong P, Wang J, Hu W, Yang Y. Data-driven dose calculation 
algorithm based on deep U-Net. Phys Med Biol. 2020;65(24):245035.

	13.	 Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: 
a review. Med Image Anal. 2019;58:101552.

	14.	 Liu Y, Lei Y, Wang T, Fu Y, Tang X, Curran WJ, Liu T, Patel P, Yang X. CBCT-
based synthetic CT generation using deep-attention cycleGAN for 
pancreatic adaptive radiotherapy. Med Phys. 2020;47(6):2472–83.

	15.	 Hsu SH, DuPre P, Peng Q, Tomé WA. A technique to generate syn-
thetic CT from MRI for abdominal radiotherapy. J Appl Clin Med Phys. 
2020;21(2):136–43.

	16.	 Chen L, Liang X, Shen C, Jiang S, Wang J. Synthetic CT generation from 
CBCT images via deep learning. Med Phys. 2020;47(3):1115–25.

	17.	 Zhao J, Chen Z, Wang J, Xia F, Peng J, Hu Y, Hu W, Zhang Z. MV CBCT-
based synthetic CT generation using a deep learning method for rectal 
cancer adaptive radiotherapy. Front Oncol. 2021;31:655325.

	18.	 Liang X, Chen L, Nguyen D, Zhou Z, Gu X, Yang M, Wang J, Jiang S. 
Generating synthesized computed tomography (CT) from cone-beam 
computed tomography (CBCT) using CycleGAN for adaptive radiation 
therapy. Phys Med Biol. 2019;64(12):125002.

	19.	 Ian JG, Jean PA, Mehdi M, Bing X, David WF, Sherjil O, Aaron C, Yoshua B. 
Generative Adversarial Networks, Preprint http://arxiv.org/abs/1406.2661 
(2014)

	20.	 Isola P, Zhu J, Zhou T, Efros AA . Image-to-image translation with con-
ditional adversarial networks. In: Conference on computer vision and 
pattern recognition, pp. 5967–5976 (2016).

	21.	 Dong N, Roger T, Jun L, Li W, et al. Medical image synthesis with 
deep convolutional adversarial networks. IEEE Trans Biomed Eng. 
2018;65(12):2720–30.

	22.	 Wolterink JM, Leiner T, Viergever A, Isgum I. Generative adversarial 
networks for noise reduction in low-dose CT. IEEE Trans Med Imaging. 
2017;36(12):2536–45.

	23.	 Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation 
using cycle-consistent adversarial networks. Paper presented at: Proceed-
ings of the IEEE international conference on computer vision (2017).



Page 9 of 9Fan et al. BMC Medical Imaging          (2022) 22:124 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	24.	 Wolterink JM, Dinkla AM, Savenije MH, Seevinck PR, van den Berg CA, 
Isgum I. Simulation and synthesis in medical imaging deep MR to CT 
synthesis using unpaired data. Berlin: Springer; 2017. p. 14–23.

	25.	 Hiasa Y, Otake Y, Takao M, Matsuoka T, Takashima K, Carass A, Prince JL, 
Sugano N and Sato Y. Cross-modality image synthesis from unpaired 
data using Cycle-GAN: effects of gradient consistency loss and train-
ing data size, Lecture Notes in Computer Science vol 11037. Berlin: 
Springer;  2018. pp. 31–41.

	26.	 Cohen JP, Luck M, and Honari S. Distribution matching losses can hallu-
cinate features in medical image translation, In: International conference 
on medical image computing and computer-assisted intervention, 
Springer; 2018. pp. 529–536, 

	27.	 Wang TC, Liu MY, Zhu JY, Liu G, Tao A, Catanzaro B. Video-to-video synthe-
sis, Advances in neural information processing systems (NeurIPS), 2018.

	28.	 Adam P, Sam G, Francisco M, Adam L, James B, Gregory C, PyTorch: an 
imperative style, High-performance deep learning library, NeurIPS (2019).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Multimodal image translation via deep learning inference model trained in video domain
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Introduction
	Methods
	Data collection and preprocessing
	Image translation based on video-to-video synthesis

	Implementation and evaluation
	Results
	Discussion
	Conclusions
	Acknowledgements
	References


