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ABSTRACT Enterococcus faecalis is paradoxically a dangerous nosocomial pathogen
and a normal constituent of the human gut microbiome, an environment rich in
ethanolamine. E. faecalis carries the eut (ethanolamine utilization) genes, which en-
able the catabolism of ethanolamine (EA) as a valuable source of carbon and/or ni-
trogen. EA catabolism was previously shown to contribute to the colonization and
growth of enteric pathogens, such as Salmonella enterica serovar Typhimurium and
enterohemorrhagic Escherichia coli (EHEC), in the gut environment. We tested the
ability of eut mutants of E. faecalis to colonize the gut using a murine model of gas-
trointestinal (GI) tract competition and report the surprising observation that these
mutants outcompete the wild-type strain.

IMPORTANCE Some bacteria that are normal, harmless colonizers of the human
body can cause disease in immunocompromised patients, particularly those that
have been heavily treated with antibiotics. Therefore, it is important to understand
the factors that promote or negate these organisms’ ability to colonize. Previously,
ethanolamine, found in high concentrations in the GI tract, was shown to promote
the colonization and growth of bacteria associated with food poisoning. Here, we re-
port the surprising, opposite effect of ethanolamine utilization on the commensal
colonizer E. faecalis, namely, that loss of this metabolic capacity made it a better col-
onizer.
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Ethanolamine (EA) is a compound found in the gastrointestinal (GI) tract at concen-
trations of 1 to 2 mM (1, 2). Interestingly, the genes that code for the catabolism of

this compound, the eut (ethanolamine utilization) genes, are associated with gut
pathogens, including species of Escherichia, Salmonella, Clostridium, and Listeria (3). In
species such as Salmonella enterica serovar Typhimurium and enterohemorrhagic
Escherichia coli (EHEC), mutants lacking the ability to sense and/or catabolize EA are
outcompeted by wild-type strains in the gastrointestinal tract (1, 2, 4) or display neutral
colonization efficacy in the case of Clostridium difficile (5).

Enterococcus faecalis also encodes the eut genes and is found in the GI tract, but
unlike the above-mentioned examples, it is considered a commensal colonizer rather
than a gut pathogen of healthy people. However, the presence of E. faecalis in the GI
tract can serve as a source of nosocomial infection (6). Therefore, understanding the
factors that promote the colonization and growth of E. faecalis in the gut is important
for the development of strategies to mitigate these infections.
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To investigate the role of EA in GI tract colonization, we first tested OG1RF, a
wild-type strain of E. faecalis commonly used in animal models (7), and an isogenic
ΔeutVW mutant that lacks the two-component system that senses EA (8). EutW is a
sensor histidine kinase that, upon binding EA, autophosphorylates and then phos-
photransfers to EutV the cognate RNA binding response regulator that activates eut
gene expression by an antitermination mechanism (8, 9). The ΔeutVW mutant does
not express the eut genes and cannot utilize EA (8, 9). The strains were competed
in a murine GI tract model in which the animals were pretreated with an antibiotic
cocktail designed to reduce the endogenous flora and facilitate E. faecalis coloni-
zation (10). To measure levels of colonization, fecal pellets were collected at 1, 2,
and 3 days postinoculation and plated for numbers of CFU on medium selective for
enterococci. Fecal pellets were also collected at 4 h to check for a spike in CFU,
indicating a failure to colonize. Ten colonies/mouse/time point were screened by
PCR for the presence of the deletion that marked the ΔeutVW mutant strain. As
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FIG 1 Competitive colonization of the gastrointestinal tract by the E. faecalis wild type and mutant strains following combined inoculation. Percentages of CFU
of E. faecalis strains from the initial inoculum mix and from stool samples collected 4 h and 1, 2, and 3 days after mixed inoculation of E. faecalis OG1RF and
the ΔeutVW mutant (AR2) (A), OG1RF::gfp and the ΔeutVW mutant (AR2) (B), OG1RF::gfp and the ΔeutV mutant (SD54) (C), and OG1RF::gfp and the ΔeutV::PeutS

eutV mutant (SD209) (D). In panel A, 10 CFU per mouse per time point were randomly picked and PCR screened to confirm the strains’ identities. For panels
B, C, and D, �100 CFU were scored for GFP fluorescence per mouse per time point. An unpaired t test with Welch’s correction for the percentages of bacteria
recovered from the stool samples versus the amounts in the initial inoculum mixture was used to calculate the P values.
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shown in Fig. 1A, the ΔeutVW mutant significantly outcompeted the wild type at all
colonization time points.

Because screening the colonies by PCR was labor-intensive, we decided to repeat
the experiment using a previously generated marked strain of OG1RF that constitu-
tively expresses gfp present as a chromosomal insertion (11). By exposing the plated
colonies from the fecal pellets to a fluorescent stereoscope, the presence of green
fluorescent protein (GFP) could easily be discerned, allowing hundreds of colonies from
each mouse to be screened. To ensure that GFP expression did not deleteriously affect
the fitness of our wild-type strain, it was competed against the parent strain lacking the
marker; a significant difference was not observed (see Fig. S1 in the supplemental
material). We repeated the competition experiment with the ΔeutVW mutant versus the
wild type and again observed the mutant outcompeting the wild-type strain (Fig. 1B).
Note that the inoculum of the ΔeutVW mutant was purposely kept lower than that of
the wild type so as not to create a bias toward the mutant, since the first experiment
indicated that it was more fit.
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FIG 2 Murine gastrointestinal tract colonization by different E. faecalis strains following mixed inoculation. Percentages of CFU of E. faecalis strains from the
initial inoculum mix and from stool samples collected 4 h and 1, 2, and 3 days after mixed inoculation of E. faecalis OG1RF::gfp (SD234) with the ΔeutBC strain
(EFKK4) (A), OG1RF::gfp with the eutB mutant (eutBL3*) (EFKK12) (B), the ΔeutVW::gfp mutant (EFKK1) with the ΔeutBC mutant (C), and the ΔeutVW::gfp mutant
with the eutB mutant (eutBL3*) (D). More than 100 CFU were scored for GFP fluorescence per mouse per time point. P values were calculated using an unpaired
t test with Welch’s correction for the percentages of bacteria recovered from the fecal samples versus the amounts in the initial mixed inoculum.
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Considering that EA utilization mutants in other studied bacterial species tended to
be less fit in the GI tract, our results showing that an E. faecalis mutant was modestly
more fit were surprising. To confirm the finding, we tested a different mutant contain-
ing an in-frame deletion of only eutV. Also examined was a complement of this strain,
able to induce eut gene expression to levels just slightly lower than those induced by
the wild type (11). As shown in Fig. 1C, the ΔeutV mutant outcompeted the wild type
at all time points examined, in contrast to the complemented strain (Fig. 1D).

The eut genes in EHEC and S. Typhimuirum are regulated by a mechanism different
from that found in E. faecalis. These bacteria encode an EA-sensing transcriptional
activator called EutR (12). In addition to the eut genes, EutR was found to bind
promoters and directly activate the expression of some virulence factors in these
pathogens (13, 14). Because of this additional activity, loss of the regulator resulted in
a more severe phenotype than loss of just ethanolamine catabolism, depending on the
specifics of the host environment (4). We wondered whether the phenotype observed
with the loss of EutV was related solely to its role in regulating genes related to EA
catabolism or whether it, like EutR, perhaps had a broader role.

To address this question, we created an in-frame deletion, ΔeutBC, to remove the
genes encoding the two subunits of the ethanolamine ammonia lyase, which carries
out the first reaction in the breakdown of EA. Many attempts to generate a complement
of this mutant failed. Therefore, we created a different, independent mutant by
generating a stop codon in eutB, called eutBL3*. Neither the in-frame deletion nor the
stop mutant disrupted expression of the downstream eut structural genes, as bacterial
microcompartment formation was still observed in both mutants (Fig. S2). Both mu-
tants significantly outcompeted the wild type on days 2 and 3, with the stop codon
mutant also displaying significant differences on day 1 (Fig. 2A and B). To test whether
loss of EA sensing resulted in a greater fitness increase than loss of EA catabolism, we
competed a ΔeutVW strain marked with GFP against the ΔeutBC strains (Fig. 2C and D).
A significant difference was not observed for either strain pair at any time point. The
data support the conclusion that EA catabolism alone contributes to the phenotype.
These data fit former observations that the regulatory sequences recognized by
E. faecalis EutV are found only in the eut transcripts (9).

In conclusion, we present the surprising observation that EA catabolism in E. faecalis
modestly reduces GI tract colonization efficiency, in contrast to that observed for three
gut pathogens (1, 2, 4, 5). The difference might arise from lifestyle, as E. faecalis is a
normal gut commensal in mammals; in Caenorhabditis elegans, which E. faecalis kills, a
eut mutant was attenuated (15). A deeper understanding awaits further investigation.
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