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ABSTRACT The existence and nature of immunity to severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) are currently unknown; however, neutralizing an-
tibodies are thought to play the major role and data from studying other coronavi-
ruses suggest that partial clinical immunity lasting up to 1 year will occur
postinfection. We show how immunity, depending on its durability, may work with
current social practices to limit the spread of the virus. We further show that a vac-
cine that is 50% effective and taken by 50% of the population will prevent further
loss of life, providing that social distancing is still practiced and that immunity does
not wane quickly.

IMPORTANCE The ability of our society to function effectively moving forward will
depend on how the spread of the SARS-CoV-2 virus is contained. Immunity to the
virus will be critical to this equation.

KEYWORDS SARS-CoV-2, COVID-19, immunity, public health, vaccines, SARS-CoV-2

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as
a human pathogen in December 2019 has profoundly affected societies globally.

The number of infected individuals has rapidly expanded on all continents and is
showing no signs of slowing. Over 750,000 people have died from the virus in the first
8 months of the pandemic, with mortality significantly higher in people aged over
65 years. Age has emerged as the most significant independent variable affecting
outcome (1, 2).

In the absence of a vaccine, restricting social interaction is the only way to slow the
spread; however, many countries where this has been effective are now experiencing
a resurgence of infections with further restrictions being imposed. Such restrictions are
accompanied by worsening mental and physical health (3, 4), delays in “nonessential”
medical services (5, 6), increased domestic violence (7), and significant negative effects
on education and research (8), the economy and travel both within and between
countries. The effects of these secondary consequences of the pandemic may prove
worse than the direct effect of the virus (9). Communities need to find a way to fight
both the direct and indirect consequences of contagion and are asking whether there
is a more effective path to “ride out the storm” until a vaccine is available. Understand-
ing immunity to the virus and the age-dependent effect of the virus on health is critical
to discerning this best path forward. Here, we analyze what is known about natural
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immunity to SARS-CoV-2 and what can be inferred from studying other coronaviruses.
Then, using established modeling techniques (deterministic compartmental epidemi-
ological models), we estimate the effect of natural immunity of varying duration in
preventing mortality under different degrees of “social distancing.” We used the model
to make predictions about the effect of a partially effective vaccine. This analysis could
inform public policy.

If natural immunity does develop, it will likely occur most quickly in those who have
experienced symptomatic infections. This is shown by the reduced period of viral
shedding and higher and more prolonged antibody responses in symptomatic individ-
uals compared to asymptomatic people (10). To date, evidence shows that people aged
20 to 64 years are the group who have had the most exposure (11) and they would
most likely have developed the greatest level of immunity. They are also the group with
the lowest morbidity and mortality to coronavirus disease 2019 (COVID-19) (0 to 1%
case fatality rate up to age 64 [12] and a very low estimated infection fatality rate [13]).
A critical question is whether they benefit the entire community by developing herd
immunity. Little is known about protective immunity, and currently, we can only infer
the immunological consequences of exposure to SARS-CoV-2 by studying in vitro
responses, from early convalescent plasma trials, from animal studies, and by extrap-
olating from studies of other coronaviruses.

Role of antibodies. Approximately 90% of patients develop enzyme-linked immu-
nosorbent assay (ELISA) and neutralizing antibodies (NAbs) to the surface spike protein
in their convalescent period, although in �30% of patients, NAb titers are very low (14,
15). Titers are lower in younger patients and in those with less severe disease (16). The
ability of these serum antibodies to reduce viral load is best studied using convalescent
plasma (CP) therapy. CP significantly reduces viral load but does not have a significant
clinical benefit unless administered early in the course of the disease (17). Studies with
the use of CP in SARS and animal studies using monoclonal antibodies in human
angiotensin-converting enzyme 2 (hACE2) transgenic mice do support an important
role for antibodies (18–20). The data collectively suggest that antibodies found in many
recovered COVID-19 patients contributed to their recovery, although more extensive
investigation is required to fully evaluate their role in protection.

Seroprevalence to SARS-CoV-2 has been examined in several countries, with impli-
cations for herd immunity. Spain had 3.3% to 6.6% seropositivity to SARS-CoV-2 in a
population-based survey of �61,000 individuals from �35,000 households (April-May
2020) (21). Among highly exposed health care workers, seroprevalence was �10% (22).
Similarly, among 2,766 individuals from 1,339 households in Geneva, Switzerland
(April-May 2020), seroprevalence rose from 4.8% (1st week) to 10.8% (5th week) at the
tail end of a severe epidemic wave (11). Seroprevalence was 3.2% to 3.8% in Wuhan,
China (March-April 2020) (23), 4.65% in Los Angeles county (April 2020) (24), and 0.1%
among 1,000 blood donors in the San Francisco Bay area (25). The unexpectedly low
seroprevalence following major outbreaks suggested that a high proportion of the
population remained unexposed and susceptible to SARS-CoV-2 after the “first wave.”
Of note, �90% of subjects with a positive PCR test within the past 2 weeks had
detectable antibody and many asymptomatic infections were detected by serology
(21), suggesting that low antibody prevalence was not due to poor assay sensitivity.
Other authors have pointed to these findings and commented that herd immunity is
not achievable through natural infection (26), at least not over the time scale of an
acute wave lasting several months. However, it remains of interest whether the 3 to
10% of the population with detectable antibody after the “first wave” are immune and
whether they and others who will become infected will eventually contribute to herd
immunity.

Cell-mediated immunity. SARS-CoV-2-specific T cells (CD4�, CD8�, helper T cells)
are found in convalescent patients but can also be found in asymptomatic individuals
without detectable virus-specific antibodies (27–29). However, it is not proven that they
have a role in protection. In malaria, for example, parasite-specific T cells have been
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reported to be present in the blood of most individuals who have never experienced
a malaria infection and who are, thus, susceptible (30). Transfer studies of virus-specific
T cells have not been undertaken to assess their ability to protect hACE2 transgenic
mice; however, it has been shown that both CD4� and CD8� T cells can transfer
protection in mice to the related coronavirus, SARS-CoV (31). Thus, the role that T cells
play in natural immunity to COVID-19 is unresolved.

Reexposure immunity to SARS-CoV-2 and other coronaviruses. Some studies
showed that PCR positivity in patients with COVID-19 can return after a short period
following repeated negative results (32, 33). However, the relatively short period
between becoming PCR negative and then becoming PCR positive again (4 to 17 days)
suggests they never completely cleared their initial infection. To date, only a single
example of reinfection with SARS-CoV-2 several months after clearing an initial infec-
tion has been reported (34). This is encouraging but it is not known how many
recovered patients have been reexposed. It is too early to say whether durable natural
immunity to SARS-CoV-2 will develop. However, a study with nonhuman primates did
show that they were resistant to a second infection when challenged 1 month after
their initial infection and that they developed SARS-CoV-2-specific memory B cells (35).

Natural immunity to the related coronaviruses, SARS-CoV and Middle East respira-
tory syndrome coronavirus (MERS-CoV), has not been reported, although there have
been too few patients with either disease to generate the likelihood that anyone would
have been be reexposed. Natural immunity to common cold coronaviruses has been
studied, including some studies in which volunteers were deliberately infected and
then reinfected. The studies of Kiyuka et al. (36), Callow et al. (37), Edridge et al. (38),
and Kissler et al. (39) collectively show that sterile viral immunity that is long-lasting is
uncommon but a degree of protective clinical immunity can last approximately
12 months; yet for some people, clinical immunity will either not develop or will be lost
quickly. Furthermore, for some people, reinfection is associated with a greater viral
burden, although most people have a reduced viral burden. Most natural infections
with common cold coronaviruses are asymptomatic (40), and the degree of viral or
clinical immunity induced following such infections is not known.

Thus, the hypothesis that natural immunity to SARS-CoV-2 develops as a result of
prior infection relies predominantly on data from clinical studies of CP therapy and from
studies involving common cold coronaviruses. If SARS-CoV-2 behaves similarly to these
coronaviruses, then partial immunity (with a period in which virus can still be isolated)
will follow clinical disease in many patients and last for about 1 year.

With no definitive data on natural immunity to SARS-CoV-2 currently available, we
used data from the above studies to model the effect of immunity and “social
distancing” on SARS-CoV-2 mortality rates and explored the implications of waning
immunity on the dynamics of the epidemic.

RESULTS
A simple mathematical model of SARS-CoV-2 incorporating waning immunity

and social distancing. Susceptible (S)-infected (I)-recovered (R) (SIR) compartmental
models have been used since the 1920s to predict the spread of epidemics (41, 42). SIR
and more complex models have been used to model the SARS-CoV-2 pandemic
(43–46). Most SARS-CoV-2 models assume a transition from S to I to R, at which point
an individual is permanently immune to reinfection. For a novel pathogen introduced
into a fully susceptible population, SIR and related models predict an intensive wave of
infections followed by decline to zero, as R (recovered and immune) individuals
accumulate and S individuals are depleted, limiting the ability of the infection to spread
to new hosts (“herd immunity”) (Fig. 1A). However, as previously discussed, evidence
from other coronaviruses suggests that antibodies wane over time, and humans may be
susceptible to reinfection. Therefore, a mathematical model accounting for nonperma-
nent immunity and reinfection may provide additional insights into the predicted
behavior of the epidemic.

COVID Immunity and Community Transmission ®

September/October 2020 Volume 11 Issue 5 e02617-20 mbio.asm.org 3

https://mbio.asm.org


SIRS models have been used to describe other infectious diseases, such as malaria,
where infection does not confer lasting immunity (47, 48). SIRS models allow for waning
immunity (return from R to S) and predict that the number of immune individuals may
decrease over time, reducing the protection afforded by herd immunity. Under some
conditions, the number of infected individuals tends toward a non-zero endemic
equilibrium (EE) and the disease invades the population (Fig. 1B). The system may trend
toward the EE through a series of damped oscillations (Fig. 1B). Thus, qualitative
differences in the behavior of the epidemic may be predicted by incorporating waning
immunity.

FIG 1 Waning immunity predicts qualitatively different epidemic behavior. A model with permanent immunity (SIR model)
(A and C) is contrasted with a model with waning immunity (SIRS model) (B and D). A parameter �, representing the
intensity of public health measures implemented in the population to reduce contacts, and ranging from 0 (complete
isolation) to 1 (complete mixing) was introduced to model the condition of uncontrolled epidemic conditions (� � 1) (A
and B) and conditions with a “flattened” epidemic curve with intensive control measures (� � 0.5) (C and D). (A) Assuming
permanent immunity, no control measures (� � 1), and R0 � 2.5 (52), a sharp peak in new cases is followed by a decline
as the proportion of immune individuals in the population increases. (B) Under the assumption of waning immunity, the
proportion of immune individuals decreases, allowing the infection to propagate, with potential for second and subse-
quent waves of new cases, and the establishment of an endemic equilibrium. The pathogen invades the population, and
deaths accumulate unrelentingly. (C) Under conditions of intensified public health measures, the curve is “flattened” and
the total number of deaths is decreased. (D) Under a “flattened” curve, the effects of waning immunity are less pronounced,
but a higher number of deaths can be expected, relative to the scenario of permanent immunity (shown in panel C).
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On the basis of the SIRS model, we developed a system of ordinary differential
equations to describe SARS-CoV-2 epidemic with waning immunity (see Materials and
Methods). Public health measures have been successful at reducing transmission and
“flattening” the epidemic curve through “social distancing,” i.e., measures such as
encouraging physical separation between individuals, school and business closures,
masks, and increased hand hygiene (49–51). Our model therefore included a “social
distancing” parameter, �, which reflected the intensity of public health measures to
block transmission, ranging from 0 (complete separation of individuals in the popula-
tion) to 1 (complete mixing). A qualitative comparison between a natural epidemic
(� � 1) and one with a “flattened” curve (� � 0.5) is provided in Fig. 1C and D, using
our SIRS model. One intuitive consequence of this parameter is that the effective
reproduction number (R) of the epidemic can be driven below unity by increasing
“social distancing,” at which point the epidemic will be extinguished. Assuming the
basic reproduction number of a COVID-19 epidemic in the absence of any public health
interventions is R0 � 2.5 (52), then � � 0.4 represents a sharp threshold below which
the epidemic dies out and above which the epidemic expands (see Materials and
Methods).

Forecasting the evolution of the epidemic prior to and after the introduction
of a vaccine. We next used the model to make projections over the next 3 years, prior
to the availability of a vaccine (Fig. 2). Using a numerical simulation, we modeled two
scenarios, one in which the epidemic remained well controlled (� � 0.41) and one in
which slightly relaxed control measures resulted in exponential growth of cases (� �

0.45). We used the province of Alberta, Canada (population 4.3 million), with its vital
statistics (Table 1) as an example population, in which COVID-19 is introduced at time
t � 0. Incorporating waning immunity into the model while holding all other conditions
and parameters constant, we obtained quantitatively different estimates of the number
of deaths and the proportion of immune individuals (Fig. 2). For example, the number
of deaths after 3 years was predicted to be 51,000 with rapidly waning immunity,
compared to 11,000 if immunity waned more slowly over 1 year, and 6,300 if perma-
nent immunity was assumed. The impact of waning immunity was more pronounced
at later time points in the epidemic and under conditions of poorly controlled epidemic
growth (Fig. 3).

Next, we modeled the effect of vaccination under assumptions of permanent or
waning vaccine-induced immunity (Fig. 4). We chose to model the effect of a vaccine
that was 50% effective and that was administered to 50% of the population. After a
large stepwise increase in the number of immune individuals, the number of new
deaths quickly stabilized if vaccine immunity was permanent or long-lasting (Fig. 4).
However, rapidly waning vaccine immunity (1/� � 1 month) predicted minimal change
in the COVID-19 fatalities following vaccination (Fig. 4). As noted by Okuwa et al., for an
infection with waning immunity, mass vaccination policy is not necessarily almighty
(53).

DISCUSSION

When a new pathogen is invading a population, there are limited data on the nature
or duration of immunity. Without such data, estimates of the evolution of the epidemic
are imprecise. This is the situation for the SARS-CoV-2 coronavirus which is thought to
have first entered the human population in December 2019. While data on immunity
to this virus are limited, they are nevertheless accumulating rapidly and what we know,
together with data on related human coronaviruses, allows us to make predictions
about the epidemic moving forward.

The most definitive data on immunity to SARS-CoV-2 are that convalescent plasma
therapy can significantly reduce viral load in recipients (and can lead to an improved
clinical outcome if administered early in the course of disease) (17, 20). It is also known
that �10% of patients recover from COVID-19 after failing to develop detectable
neutralizing antibodies (14, 15) suggesting that other mechanisms of immunity can be
protective. However, whether virus-specific T cells, which are detectable in most
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patients (28), can be protective or curative is still not known. However, the presence of
functional antibodies that are detectable for at least 1 month in most patients, together
with the lack of many reliable reports of second infections up to 9 months after the start
of the pandemic, suggest that natural immunity to the virus does occur. The duration
of this immunity is unknown, but data on the duration of immunity to other corona-
viruses is informative (37–39). These reports show that immunity to the common cold
coronaviruses lasts for about 1 year in most patients, but for some individuals, it is

FIG 2 Model projections over 3-year time frame (prior to availability of a vaccine). Two scenarios were modeled: (i) poorly controlled
epidemic (� � 0.45) (A and B) and (ii) well-controlled epidemic (� � 0.41) (C and D). (A) The number of deaths was sensitive to model
assumptions about waning immunity. If immunity waned rapidly (dotted line, 1/� � 1 month), deaths increased exponentially (51,000
deaths after 3 years). If immunity waned more slowly (dashed line, 1/� � 1 year), deaths decreased (11,000 deaths after 3 years) but still
remained 1.7-fold higher compared to a scenario with permanent immunity (6,300 deaths after 3 years, solid line, � � 0). (B) The number
and proportion of immune individuals rose to 22% of the population after 3 years, assuming permanent immunity (solid line, � � 0),
explaining the protection from new cases and deaths (“herd immunity”) seen in panel A. The proportion of immune individuals was
reduced after 3 years to 10% and 7.6%, assuming slowly waning immunity (dashed line, 1/� � 1 year), and rapidly waning immunity
(dotted line, 1/� � 1 month), respectively. (C) With a well-controlled epidemic, the number of deaths was reduced by an order of
magnitude relative to the poorly controlled epidemic seen in panel A (5,100, 2,800, and 2,000 deaths at 3 years for 1/� � 1 month, 1/� �
1 year, and � � 0, respectively). The effect of waning immunity was still numerically important but not as marked as in panel A. (D) The
proportion of immune individuals rose to 6.8%, 2.9%, and 0.84% of the population after 3 years due to the smaller number of infections
in the well-controlled epidemic. Low levels of “herd immunity” under this scenario explain the blunted sensitivity of deaths to assumptions
of waning immunity in panel C.
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much shorter. Patients suffering from the common cold are far less ill than many
COVID-19 patients, and it is known that those COVID-19 patients with the most severe
disease have the highest levels of antibodies. Thus, it is not unreasonable to predict
that natural immunity to COVID-19 will last for 1 year, or maybe longer, in most
patients. We have examined different scenarios where natural immunity will last 1 year
(a likely scenario based on known biology of SARS-CoV-2 and related coronaviruses)
versus both persistent and short-term immunity and estimated the effect on mortality
in situations with differing degrees of “social distancing” (mixing).

We have modeled the epidemic for the next 3 years (“prevaccine”) and post the
introduction of a vaccine. Going forward, comparing longer-lasting immunity to rapidly
waning immunity (Fig. 3), we can predict that natural immunity that lasts for 1 year will
significantly reduce mortality rates, especially in situations where the intensity of
control measures does not achieve at least a 60% reduction in social mixing. Since most

TABLE 1 Model parameters: values and rationale

Parameter Estimate Parameter definition Comment Reference

� 143 day�1 (Alberta) Birth rate 52,334 births in Alberta (2018) Vital statistics (59)
� 0.000016 day�1 (Alberta) Natural mortality rate

(population)
25,990 deaths in Alberta (2018) Vital statistics (59)

Population of Alberta: 4,428,247 (2020) Vital statistics (59)
� 0.18 Contact no. Based on R0 � 2.5 and � � 0.071 days�1

(see Materials and Methods)
Zhao et al. (52)

� 0.071 days�1 Rate of recovery from infection Duration of infection: 14 days to recovery or death Verity et al. (58)

� 0 (permanent immunity) Rate of waning immunity Different assumptions about the rate of waning immunity
(likely bounding the true rate)

0.0027 days�1

(immunity lasting 1 yr)
0.033 days�1

(immunity lasting 1 mo)

f 0.0066 Infection fatality rate Overall rate, based in epidemic in China, accounts for
marked differences in mortality in different age groups

Verity et al. (58)

� 0 (complete isolation)
to 1 (complete mixing)

Social distancing index Index of reduction in contacts with public health control
measures (see Materials and Methods)

FIG 3 Relationship of deaths and population immunity to intensity of public health control measures (�)
and assumptions of waning immunity (�). (A) The number of deaths after 3 years of the epidemic is
plotted against � for three different scenarios: rapidly waning immunity (dotted line, 1/� � 1 month),
slowly waning immunity (dashed line, 1/� � 1 year), and permanent immunity (solid line, � � 0). Of note,
� � 0.4 represents a sharp threshold below which the epidemic is extinguished. Above this threshold,
deaths vary with assumptions about waning immunity, with more pronounced differences when the
epidemic is poorly controlled (higher �). (B) Likewise, the proportion of immune individuals is most
sensitive to assumptions about waning immunity when the epidemic is poorly controlled (higher �). In
summary, the intensity of control measures (�) and waning immunity (�) interact in the model, such that
the question of waning immunity matters most when the epidemic is poorly controlled.
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mathematical models thus far have assumed that immunity to SARS-CoV-2 is perma-
nent (43–46), our model projections, incorporating the concept of waning immunity,
may be relatively pessimistic, predicting 1.7-fold-higher number deaths after 3 years
(for immunity lasting 1 year compared to permanent immunity). A vaccine that is 50%
effective and which is administered to 50% of the population would essentially halt any
increase in deaths, if vaccine-induced immunity lasts for about 1 year. We have
considered 50% efficacy to be a conservative estimate. This is similar to the efficacy of
the influenza vaccine (54) but is well below the efficacy of vaccines for childhood viral
infections (�90%). However, older people will be the first recipients of a COVID-19
vaccine, and their immune response will be less than younger people. Unless a vaccine
is developed that has significantly greater efficacy than 50% and unless vaccine
coverage is significantly more than 50%, “social isolation” particularly for more at-risk
individuals (�65 years) will be an ongoing necessity to prevent additional deaths.

In developing a mathematical model for SARS-CoV-2, our objective was to explore
the effects of natural and vaccine-induced immunity on the course of the epidemic. For
this reason, the model was kept simple (55) and was based on a classical compart-
mental SIRS model (47, 48). Although more complex models may provide more
accurate prediction for a longer time period, they will do so only if they are correctly
parameterized with large and multiple data sets for the specific context (56). Where
data are sparse, as with the novel SARS-CoV-2 coronavirus, simple models avoid the
need for unjustifiably detailed assumptions about model parameters and can be
flexibly interrogated to investigate the effects of an aspect of disease, e.g., immunity.
Because of its simplicity, our model fails to capture some details of the COVID-19
pandemic, which limit some of its predictive ability. First, as in all compartmental
models (57), perfect mixing in the population (law of mass action) was assumed, such

that the probability of encountering another infectious individual is
I

S�I�R
. This limits

accuracy, particularly in early stages of an epidemic when the number of infected
individuals is small, or if the infection spreads nonhomogenously (e.g., through super-
spreader events or if infections are concentrated in nursing homes). Second, the model
did not include in-migration of infected individuals (e.g., infected travellers). Third, the
duration of infection prior to death or recovery and the duration of immunity were
assumed to follow an exponential distribution. More complex mathematical formula-

FIG 4 Effect of vaccination under different assumptions of waning immunity. A hypothetical scenario is
illustrated of immunization at 3 years into the epidemic, of 50% of the population with a vaccine that is
50% effective (�1 million individuals in the Alberta population move from susceptible to immune). (A)
The cumulative number of deaths plateaus as the epidemic is extinguished under conditions where
vaccine-induced immunity is permanent (solid line, � � 0) or wanes slowly (dashed line, 1/� � 1 year).
Under conditions of rapidly waning immunity (dotted line, 1/� � 1 month), the number of deaths
continues to rise despite vaccination. (B) The number and proportion of immune individuals increases
stepwise at 3 years, remaining stable if immunity is permanent (solid line, � � 0), or subsequently
declining with waning immunity over a time scale of years (dashed line, 1/� � 1 year) or months (dotted
line, 1/� � 1 month).
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tions would be needed to reflect alternative distributions of the duration of infection
and immunity. Fourth, our model was not age structured, but used average contact,
recovery, and mortality rates and duration of immunity over all age strata in the
population. Age-structured models would have the advantage of incorporating the
much higher mortality among the elderly (58) but would not materially affect predic-
tions of the effects of immunity without unjustifiable assumptions about differential
disease duration, waning immunity, mixing, or isolation in different age strata. Fifth,
immunity was conceptualized as a binary state (fully immune or fully susceptible),
representing resistance to infection, infection-related mortality, and inability to transmit
the infection to others. In reality, immunity may be partial, and a number of possible
more nuanced scenarios may occur, such as the following: (i) reduced mortality but still
contagious to others, (ii) reduced viral shedding but still able to transmit with lower
probability, and (iii) asymptomatic but high contact number and efficient spreader.
Finally, the use of a composite “social distancing” index (	) to capture the combined
effects of physical isolation, face masks, and improved hand hygiene represents a
simplification but is justified in the absence of data on the efficacy and uptake of
various public health interventions.

In summary, natural and vaccine-induced immunity is likely to play a role in limiting
the spread of COVID-19 and its associated mortality. Predictions of the burden of illness
due to COVID-19 are sensitive to the assumed duration of immunity, currently un-
known, but likely bounded by our assumptions: greater than 1 month but not perma-
nent. Highly effective vaccines and public health campaigns aimed at maximizing their
uptake will be crucial if societies are to return to the pre-COVID-19 sense of “normality.”

MATERIALS AND METHODS
Description of the model. We used a deterministic compartmental model, with temporary immu-

nity on recovery from infection (SIRS) model (47). The flow chart for this model is shown in Fig. 5. This
is a standard model in mathematical epidemiology (53), accounting for vital dynamics (births [�]) and
natural deaths [�]), contact rate (�), duration of infection (1/�), fatality rate of the infection (f), and
duration of immunity (1/�). We have also included a “social distancing” parameter, �, which accounts for
the intensity of public health measures (e.g., physical distancing, face masks, and improved hand
hygiene) implemented to reduce the contact rate and/or probability of transmission per contact event.
The parameter � has an intuitive interpretation, whereby � can take on values between 0 (complete
isolation of all individuals within the population) to 1 (complete mixing).

A system of ordinary differential equations describes the flow between compartments:

dS

dt
� 	 
 ��S� I

S � I � R� � �R 
 �S

dI

dt
� ��S� I

S � I � R� 
 �I 
 �I

dR

dt
� ��1 
 f�I 
 �R 
 �R

dD

dt
� �fI

Model parameters. Parameter estimates are shown in Table 1. We used realistic estimates of the
model parameters based on vital statistics and biological characteristics of SARS-CoV-2 (e.g., duration of
infection, R0). For parameter � (rate of waning immunity), the value was unknown. Several values were
used to cover the range of plausible values, from permanent immunity (� � 0), immunity slowly waning
over 1 year (1/� � 1 year), to immunity rapidly waning over 1 month (1/� � 1 month). A qualitative
exploration of the model is provided in Text S1 in the supplemental material.

FIG 5 Flow chart for SIRS model.
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SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TEXT S1, DOCX file, 0.1 MB.
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