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Abstract

Peripheral blood is an attractive source for the discovery of disease biomarkers. Gene

expression profiling of whole blood or its components has been widely conducted for various

diseases. However, due to population heterogeneity and the dynamic nature of gene

expression, certain biomarkers discovered from blood transcriptome studies could not be

replicated in independent studies. In the meantime, it’s also important to know whether a

reliable biomarker is shared by several diseases or specific to certain health conditions. We

hypothesized that common mechanism of immune response in blood may be shared by dif-

ferent diseases. Under this hypothesis, we surveyed publicly available transcriptome data

on infectious and autoimmune diseases derived from peripheral blood. We examined to

which extent common gene dys-regulation existed in different diseases. We also investi-

gated whether the commonly dys-regulated genes could serve as reliable biomarkers. First,

we found that a limited number of genes are frequently dys-regulated in infectious and auto-

immune diseases, from which we selected 10 genes co-dysregulated in viral infections and

another set of 10 genes co-dysregulated in bacterial infections. In addition to its ability to dis-

tinguish viral infections from bacterial infections, these 20 genes could assist in disease

classification and monitoring of treatment effect for several infectious and autoimmune dis-

eases. In some cases, a single gene is sufficient to serve this purpose. It was interesting

that dys-regulation of these 20 genes were also observed in other types of diseases includ-

ing cancer and stroke where certain genes could also serve as biomarkers for diagnosis or

prognosis. Furthermore, we demonstrated that this set of 20 genes could also be used in

continuous monitoring of personal health. The rich information from these commonly dys-

regulated genes may find its wide application in clinical practice and personal healthcare.

More validation studies and in-depth investigations are warranted in the future.

Introduction

Peripheral blood as a minimally invasive source has been widely used in biomarker discovery

for many diseases. Due to the richness in gene expression information, blood transcriptome
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has become a primary source for blood-derived biomarkers. In a pioneering work, unsuper-

vised clustering of transcriptome data was able to separate acute myeloid leukemia (AML)

from acute lymphoblastic leukemia (ALL) with high accuracy[1]. Blood transcriptome studies

have also been applied to several solid tumors, including the early detection of breast cancer

[2], stage classification of colorectal cancer[3], prognosis of castration-resistant prostate cancer

[4], and gene signature for treatment response in nasopharyngeal carcinoma[5].

Due to the direct link between blood and the immune system, many studies on the blood

transcriptome have been focused on infectious or autoimmune diseases. A major concern in

biomarker discovery is the reproducibility in independent studies. To obtain reliable biomark-

ers, different approaches have been reported in the literature. For example, clustering of differ-

entially expressed genes followed by machine learning have been applied to the discrimination

of three subclasses of septic shock [6]. However, machine learning approaches are prone to

over-fitting if not carefully utilized. To achieve better reproducibility in independent studies, a

two-stage design may be applied on multiple datasets, where the model derived from the dis-

covery datasets are validated in additional independent datasets. In one such study, a panel of

11 genes were found to be able to discriminate sterile inflammation from infectious inflamma-

tion[7]. Another way to enhance the prediction power is to use gene modules rather than indi-

vidual genes, which has demonstrated good performance on systemic lupus erythematosus

(SLE) and other diseases[8].

To enhance the reproducibility of biomarker, we could also select genes consistently dys-

regulated in multiple independent studies on different diseases, which further reduce the likeli-

hood that the observed gene dys-regulation is due to population heterogeneity or transient

fluctuation. We hypothesized that similar immune response may be induced in peripheral

blood in different infectious and autoimmune diseases, or even in other diseases such as cancer

and neurological disorders[9–11]. This similar immune response will be reflected on the dys-

regulation of certain critical genes for immune response in blood cells. Due to the high consis-

tency of dys-regulation in different diseases, these genes may serve as reliable biomarkers for a

variety of health conditions. Along this line, Gibson and coworkers have proposed a total of

90 “blood informative transcripts” which consist of ten representative genes from each of the

nine axes[12]. However, we are interested in finding a much smaller set of genes which can be

conveniently assayed with low cost while preserving rich information on health status.

Since much broader range and higher level of gene dys-regulation had been reported in the

blood for infectious and autoimmune diseases compared to other diseases, we mainly focused

our investigation on infectious and autoimmune diseases in this work. Indeed, we found high

consistency of gene dys-regulation for a limited number of genes in infectious and autoim-

mune diseases. Based on the co-dysregulation pattern in viral and bacterial infections, we

selected 20 representative genes, 10 for each category. Common gene dys-regulation in differ-

ent diseases may suggest similar underlying mechanism of immune response. Furthermore,

we demonstrated the potential application of these genes in clinical practice, including disease

classification, prognosis and monitoring of treatment effect. In addition, the potential applica-

tion to the monitoring of personal health may also be of great interest to the general public.

Materials and methods

Data collection

We collected public datasets on blood transcriptome from Gene Expression Omnibus (GEO).

We mainly focused on microarray datasets on infectious and autoimmune diseases or cancer

(solid tumor). For the discovery stage, we collected 20 datasets on infectious or autoimmune

diseases for gene selection (Table A in S1 File). Only one representative dataset on the whole
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blood transcriptome was chosen for each disease, preferably with sample size greater than 20

in both case and control groups. These included 4 datasets[13–15] for bacterial infections and

4 datasets[15–18] for viral infections. The remaining 12 datasets[8, 19–29] were related to

malaria, systemic lupus erythematosus (SLE), burn, injury, tuberculosis (TB), scleroderma,

primary Sjögren’s Syndrome (pSS), rheumatoid arthritis (RA), sarcoidosis, common variable

immune deficiency (CVID), Kawasaki disease (KD), systemic-onset juvenile idiopathic arthri-

tis (sJIA). For the validation stage, we collected 34 additional datasets on infectious or autoim-

mune diseases or cancer (Table E in S1 File). For datasets with similar experimental design,

we generally selected the ones with larger sample size and higher quality (defined below).

Quality control

For all the blood transcriptome data, normalization and quality control were performed to

filter out the low quality data as follows. The logarithmic values of expression data were first

calculated. Next, the probes with greater than 50% missing values or low expression values

(< log2(100)) were removed. Furthermore, for all the remaining data points, the expression

data with value below log2(100) was set to a baseline value log2(100). Finally, the expression

value for genes with multiple probes was calculated as the mean logarithmic value of signal

intensity for all probes assigned to the gene.

Gene selection

For each of the 20 datasets for the discovery stage, we conducted gene differential expression

analysis based on rank product after data normalization[30]. We further applied stringent cut-

off based on fold change (FC) to select differentially expressed genes (DEGs) with FC>2.0 or

FC<0.5. A more lenient cutoff with FC>1.5 or FC<0.7 was also applied to select more genes

for consideration. The choice of median over mean in FC calculation was to reduce the effect

of genes with large deviation from the group median.

All DEGs in the 20 datasets were ranked by the number of times with FC>2.0 or FC<0.5.

We found that down-regulated genes were not as consistently dys-regulated in the 20 datasets

as the up-regulated genes. From the top-ranked genes, we further selected 10 genes frequently

up-regulated in viral infections, and another set of 10 genes frequently up-regulated in bacte-

rial infections (Tables B & C in S1 File). The gene selection procedure is as follows: first, the

55 genes with FC>2.0 or FC<0.5 in at least 8 of the 20 datasets were selected as candidates.

For the selection of genes in viral infection, these 55 genes were ranked based on mean FC in

the 4 datasets for viral infections and the top 10 genes were selected, all of which turned out to

be interferon signaling genes. For the selection of genes in bacterial infections, the 5 genes

with mean FC>8.0 in the 4 datasets for bacterial infections and another gene with FC>2.0 in

13 of the 20 datasets were selected. For the genes with mean FC between 5 and 8, only the 5

genes with FC>2.0 in at least 10 of the 20 datasets were considered, which summed up to 11

genes. To deselect one of the bottom two genes with similar mean FC, TLR5was chosen over

GYG1 to reflect the importance of TLR signaling pathways in immune response. These 20

genes were then applied to disease classification, prognosis and treatment follow-up.

Generation the FC matrix of the 20 genes for the 34 validation datasets

In order to classify the diseases in the validation datasets using the 20 genes, we first extracted

the expression value of the 20 genes in each dataset. All the samples in these datasets were

labeled as either control or case. The median value of expression within the control group was

used as the reference for each gene. The choice of median over mean in FC calculation was

to reduce the effect of genes with large deviation from the group median. The differential
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expression value of a gene was defined as the logarithmic expression value subtracted by the

reference value of the gene. Next, the FC matrix was generated, the element of which was two

to the power of the differential expression value.

Disease discrimination using K-means models

For the discrimination of viral and bacterial infections, K-means model was used on each data-

set (Table 1). K-means model which is a popular method for clustering analysis in data min-

ing, aims to partition n samples into k (equals to 2 in our work) clusters. Each sample belongs

to the cluster with the nearest mean, serving as a prototype of the cluster. For each dataset in

Table 1, after the FC matrix was obtained, the number of VRGs with FC>2.0 (NG_V) and the

number of BRGs with FC>2.0 (NG_B) were computed. NG_V and NG_B values were com-

bined as a vector to cluster samples by the K-means model. The model was built with Scikit-
learn[31].

Disease classification using logistic regression models

Machine learning methods were applied to evaluate the power of the 20 genes in disease classi-

fication. Logistic regression was performed on the four diseases with two independent datasets.

The standard logistic function is defined as follows:

F xð Þ ¼
1

1þ e� ða0þa1xÞ
ð1Þ

Where a0 and a1 are decided by training data. For instance, in the burn disease, the FC

matrixes of datasets GSE37069 and GSE19743 were obtained and the x in the above model was

the FC value ofHP. The model was fit by the FC values ofHP of all samples in training data

(GSE37069) to decide a0 and a1. Then, we classified the test data GSE19743 by the fitted

model. This model was built with Scikit-learn[31], a third party library for Python.

Measures for classification and clustering

Several measures were used to assess the power of a classification or discrimination model

described above, including precision, recall and F1 as defined below,

Precision: p ¼ TP
TPþFP

Recall: R ¼ TP
TPþFN

F1: 2
F1
¼ 1

Pþ
1
R or F1 ¼ 2�TP

2�TPþFPþFN

Where TP was true positive, FP was false positive, TN means true negative and FN means false
negative. In our work, F1 was adopted to balance the contribution from precision and recall.

Table 1. Discrimination of viral and bacterial infections.

Dataset Factors Model TP FN FP TN Recall Precision F1

GSE42026 NG_V; NG_B K-means 33 7 8 11 0.80 0.83 0.81

GSE60244 NG_V; NG_B K-means 55 1 16 21 0.77 0.98 0.87

GSE72809 NG_V; NG_B K-means 77 15 18 34 0.81 0.84 0.82

GSE72810 NG_V; NG_B K-means 27 1 5 18 0.84 0.96 0.90

K-means model was used. TP, true positives; FN, false negatives; FP, false positives; TN, true negatives; F1, the harmonic ratio of Recall rate and

Precision rate. NG_V, number of VRGs with FC>2.0 compared to healthy controls; NG_B, number of BRGs with FC>2.0 compared to healthy controls.

https://doi.org/10.1371/journal.pone.0182294.t001
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Pearson correlation coefficient for co-expression and age effect

To study the co-expression relationship among the top genes, we selected 55 genes with FC>2.0

in at least 8 of the 20 discovery datasets (Table B in S1 File). We calculated the Pearson correla-

tion coefficients (PCC) among these 55 genes in dataset GSE48348. The co-expression network

with PCC>0.50 among these 55 genes was drawn by software Cytoscape. Pearson correlation

coefficient was also adopted when we calculated the relationship between gene expression and

age. The build-in correlation function in R language was used.

The effect of sex on gene dys-regulation

To study genes dys-regulation in different sexes, fold changes in different sexes were calculated

separately. After quality control, we obtained the fold changes of the 20 genes from the expres-

sion matrix for the whole datasets without considering the gender information. We also sepa-

rated the samples into male and female groups and calculated the FC within those two groups.

Personalized health monitoring

Aligned sequencing reads in bam format were downloaded from the GEO database (GSE32

874). Then raw reads counts were calculated using HTSeq python package. Variance stabiliz-

ing transformation implemented in R package DESeq2 was performed on raw reads counts to

produce the final gene expression value. The expression values of the 20 genes were extracted

and plotted in R.

Results

Genes frequently dys-regulated in infectious and autoimmune diseases

First, we collected public datasets on blood transcriptome for infectious and autoimmune dis-

eases. Based on the quality of the datasets, we selected one representative dataset for each disease

(whole blood only, Table A in S1 File). For these 20 datasets, we first conducted differential

expression analysis (patients compared to healthy controls). Then, we applied a stringent cutoff

for fold change (FC>2.0 or FC<0.5) to reduce the number of significant genes. The significant

genes were ranked based on the frequency of dys-regulation in these 20 datasets (Table B in S1

File). We found that certain genes displayed high frequency of significant dys-regulation in

these diseases with the vast majority being up-regulation.

For further gene selection, we targeted a total number of 20 genes that could be conve-

niently assayed with low cost. Since both viral and bacterial infections displayed high within-

group concordance, we decided to select genes based on the co-dysregulation pattern in viral

and bacterial infections. This ensured that the selected genes were functional connected rather

than being unrelated biomarkers. The 20 datasets included 4 clearly defined viral infections

and 4 bacterial infections. Considering the mean fold change in viral or bacterial infections,

the total number of significant dys-regulation among the 20 datasets, and direction of gene

dys-regulation, we selected 10 genes consistently up-regulated in viral infections and another

set of 10 genes up-regulated in bacterial infections (Fig 1, Table C in S1 File, please refer to

the Methods section for the detailed procedure for gene selection). The rankings were rela-

tively lower for the consistently down-regulated genes. In addition, these genes did not display

clear distinction between viral and bacterial infections. Therefore, the down-regulated genes

were not considered for further analysis.

The genes up-regulated in viral infections were all involved in interferon signaling, includ-

ing IFI27, IFI44L and ISG15. On the other hand, the genes up-regulated in bacterial infections

such asHP, ANXA3 and ARG1were annotated as anti-bacterial response but were involved in
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diverse pathways. For the ten virus-response genes (VRGs), the average fold change was

between 4.97 and 17.42 in viral infections. For the ten bacteria-response genes (BRGs), the

average fold change was between 4.90 and 15.91 in bacterial infections. Collectively, both

VRGs and BRGs were specific to the corresponding infection type because these genes had

much lower FC in the other type of infection.

To further demonstrate the functional connections among the 20 genes, we conducted co-

expression analysis on the top 55 genes with FC>2.0 in at least 8 of the 20 datasets (Table B in

S1 File). We found that most of these 55 genes were strongly connected to each other. The co-

expression network could be roughly divided into two sub-networks (Fig 2), one containing

all of the 10 VRGs and the other containing 9 of the 10 BRGs. The BRGs may be further

divided into two sub-groups, one containing ARG1,MMP9 and LCN2 and the other contain-

ingHP, S100A12,ANXA3,TLR5, FCGR1A and FCGR1B.

For the other 12 diseases among the 20 discovery datasets, we also observed clear up-regula-

tion of either VRGs or BRGs (Table D in S1 File). Tuberculosis (TB) was the only disease with

significant up-regulation of both VRGs and BRGs, albeit showing lower consistency in BRGs

including much higher level of up-regulation of FCGR1A and FCGR1B compared to other

BRGs. In sarcoidosis and common variable immune deficiency (CVID), moderate up-regula-

tion of VRGs was observed, accompanied by the up-regulation of FCGR1A and FCGR1B in the

BRG category. Up-regulation of BRGs was observed in Kawasaki disease (KD) and systemic

juvenile idiopathic arthritis (sJIA) with notable exception of FCGR1A and FCGR1B. Consider-

ing all 20 discovery datasets, FCGR1A and FCGR1B seemed to be robust makers for respiratory

tract infections, including both viral and bacterial infections.

Fig 1. The most significantly dys-regulated genes in viral and bacterial infections. Darker color indicates larger

fold change. For more details regarding the datasets, please refer to Table A in S1 File. For more details on the fold

change values, please refer to Table C in S1 File.

https://doi.org/10.1371/journal.pone.0182294.g001
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Fig 2. A co-expression network for the top genes in infectious and autoimmune diseases. The 55 genes with fold change (FC>2.0) in at least 8 of the

20 discovery datasets were selected for co-expression analysis. The dataset GSE48348 with 734 blood samples was used to construct the co-expression

network. A cutoff 0.50 for Pearson correlation coefficient was used to retain only strong connections among these 55 genes. Blue color indicates the 10

selected virus response genes (VRGs), while pink color indicates the 10 selected bacteria response genes (BRGs).

https://doi.org/10.1371/journal.pone.0182294.g002
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Among these 12 diseases, SLE displayed the most significant up-regulation of VRGs,

accompanied by moderate up-regulation of a few BRGs. In both burn and injury, significant

up-regulation of BRGs was observed, which could be partially induced by secondary infection

after burn or injury. In addition, down-regulation of several VRGs were observed in burn and

injury, which was clearly different from other diseases examined here. Significant up-regula-

tion of VRGs was also observed in scleroderma and primary Sjögren’s Syndrome (pSS). On

the other hand, significant up-regulation of BRGs was observed in malaria. In addition, mod-

erate up-regulation of a few BRGs was also observed in rheumatoid arthritis (RA). Overall,

these 20 VRGs and BRGs were frequently dys-regulated in many infectious and autoimmune

diseases. The distinctive patterns observed here may deserve further investigation in future

studies.

We shall note that we did not observe much gene dys-regulation in some of the datasets we

examined for infectious or autoimmune diseases, including uremia, psoriasis, ankylosing

spondylitis, and chronic obstructive pulmonary disease (COPD). Due to the limited number

of datasets available for these diseases, we may need to wait for more datasets with high quality

before a convincing conclusion can be drawn for these diseases.

Potential applications of these 20 genes as biomarkers for infectious and

autoimmune diseases

Viral vs bacterial infections. To test whether these 20 genes could be used in distinguish-

ing viral infections from bacterial infections, we collected four datasets containing both types

of infections. As a simple test, we used the number of significant gene dys-regulation in VGRs

and BGRs to discriminate viral from bacterial infections (Table 1). It was clear that high accu-

racy of classification could be achieved in these four datasets with F1 values ranging from 0.81

to 0.90 (the definition of F1 value can be found in Methods). Further exploration with these 20

genes may lead to discrimination models with higher accuracy.

For comparison, we also summarized the relevant findings from the original publications

of the datasets. In two of the original studies, a 156-transcript signature and a 10-gene signa-

ture were identified for the discrimination of viral and bacterial infections, respectively[32]

[33]. In another original study on children, a 2-gene signature was derived which included

IFI44L and FAM89A[15]. FAM89A was not among our top genes from the 20 discovery

datasets.

SLE vs bacterial infections. Due to the high level and consistent up-regulation of VRGs

in SLE, it’s relatively easy to separate SLE from bacterial infections and autoimmune diseases

with the gene dys-regulation pattern of bacterial infections (Table 2). The F1 value ranged

from 0.86 to 0.93 in the three datasets where SLE was compared against JIA or staphylococcus.

As comparison, discrimination between SLE and other diseases was not the focus in the three

original studies[22, 25, 34].

Table 2. Discrimination of SLE and other diseases.

Dataset Factors Model TP FN FP TN Recall Precision F1

GSE17755 NG_V; NG_B K-means 50 7 1 21 0.98 0.88 0.93

GSE29536 NG_V; NG_B K-means 86 10 18 49 0.83 0.90 0.86

GSE22098 NG_V; NG_B K-means 78 4 7 45 0.92 0.95 0.93

K-means model was used. Please refer to Table 1 for the meanings of the abbreviations. SLE has the gene dys-regulation pattern of viral infections. Thus,

NG_V and NG_B can be used to distinguish SLE from bacterial infections or certain autoimmune diseases with the gene dys-regulation pattern of bacterial

infections. GSE17755: SLE vs JIA. GSE29536: SLE vs sJIA. GSE22098: pediatric SLE vs pediatric staphylococcus.

https://doi.org/10.1371/journal.pone.0182294.t002
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Single gene as biomarker. To test whether single-gene could be used as biomarker for

infectious and autoimmune diseases, we collected four diseases each with two independent

datasets. We found that the discrimination model derived from one dataset can be applied to

another dataset with high accuracy (Table 3). For sepsis, burn and injury, the expression level

ofHP could separate patients from healthy controls with F1 value of 0.99–1.00. For Kawasaki

disease, the expression level of ANXA3 could separate patients from healthy controls with F1

value of 0.97.

As comparison, simple biomarker was not the focus of the original publications for these

datasets. [15], [20], [35], [36], [21], [28].

Biomarker for HIV-1 infection. Infection of HIV-1 virus leads to significant up-regula-

tion of VRGs (Table C in S1 File). We found that ISG15 could serve as a reliable biomarker for

HIV-1 infection in several independent datasets (Fig 3). Using the expression value of ISG15,

progressors and non-progressors could be classified with high accuracy. In the two datasets

examined, 91–95% of the progressors had ISG15 level above 2-fold of median value among the

controls, while it’s below the threshold for 87–100% of the non-progressors. The expression

level of ISG15 could also be used in monitoring the effect of drug treatment. Drug treatment

led to 2-fold reduction of ISG15 level in 50–67% of the patients, while the use of placebo did

not lead to 2-fold reduction of ISG15 level in any patients.

As comparison, simple biomarker was not the focus of the original publications of these

datasets[37]. [38]. [39].

Biomarker for TB. As stated earlier, TB is a unique disease with significant dys-regulation

of both VRGs and BRGs. We found that FCGR1A from BRGs could serve as a reliable bio-

marker for TB in several independent datasets (Fig 4). Using the expression value of FCGR1A,

active and latent TB could be classified with high accuracy. In the two datasets examined, 87–

100% of the patients with active TB had high level FCGR1A expression, while only 2–3% of the

patients with latent TB had high level FCGR1A expression using the same cutoff. The expres-

sion of FCGR1A could also be used in monitoring the effect of drug treatment. Significant

reduction of FCGR1A level in 85–96% of the patients was observed after a long-period of drug

treatment. We shall note that the different cutoff applied here is not uncommon in microarray

studies which are originated from different laboratories using different assay platforms and

different experimental designs.

As comparison, one of the original studies proposed a 27-gene signature including

FCGR1A and FCGR1B for the discrimination of active and latent TB[18]. In another original

study, a 664-transcript signature was proposed for the discrimination of active and latent TB

[40]. In the original studies on the treatment response, large number of signature genes were

normalized during the treatment [41]. [42].

Biomarker for sJIA. Systemic JIA is accompanied by the up-regulation of BRGs. We

found that ANXA3 could serve as a reliable biomarker for sJIA in independent datasets (Fig 5).

Using the expression level of ANXA3, systemic and non-systemic JIA could be classified with

Table 3. Single gene as biomarker for infectious or autoimmune diseases.

Disease Training Data Test Data Gene TP FN FP TN Recall Precision F1

Burn GSE37069 GSE19743 HP 112 2 1 62 0.99 0.98 0.99

Sepsis GSE69528 GSE80496 HP 24 0 0 21 1.00 1.00 1.00

Injury GSE36809 GSE11375 HP 155 3 0 26 1.00 0.98 0.99

KD GSE63881 GSE68004 ANXA3 75 1 4 33 0.95 0.99 0.97

Logistic model was used. KD, Kawasaki disease. Please refer to Table 1 for the meanings of the abbreviations.

https://doi.org/10.1371/journal.pone.0182294.t003
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high accuracy. In the dataset examined, 81% of the sJIA patients had ANXA3 level above 3-fold

of the median value among the controls, while it’s below the threshold for 91% of non-systemic

JIA patients. The expression of ANXA3 could also be used in monitoring the effect of drug

treatment. Significant reduction of ANXA3 level (2.5 fold) in 42% of the patients was observed

after drug treatment, while it’s not observed in any of the patients treated with placebo.

As comparison, the original studies did not focus on simple biomarker for sJIA [43].

Potential biomarkers for stroke and cancer

Biomarker for stroke. The potential of single gene as biomarker for diseases was not lim-

ited to infectious and autoimmune diseases. We found consistent dysregulation of BRGs in

stroke and ruptured intracranial aneurysms (RIA). Among the BRGs, the expression level of

ARG1 could separate patients from controls with high accuracy (Fig 6). More details for the

selection of ARG1 could be found in Table F in S1 File (the selection procedure for single-

gene biomarker was similar for other diseases in this work). In these three datasets, 72–74% of

the patients had ARG1 level above 2-fold of the median expression value among the controls,

while it was below the threshold for 87–100% of the controls, resulting in F1 value of 0.82–

0.84. In addition, MMP9 displayed similar level of accuracy as single-gene biomarker. Thus,

ARG1 andMMP9may be used in monitoring the recovery from stroke.

Fig 3. Single-gene biomarker for HIV-1 infection. (A), (B) Progressors and non-progressors of HIV-1 infection can be distinguished using

the expression of ISG15. (C,), (D) Treatment effect can also be monitored using the expression of ISG15. In dataset GSE44228, Samples

were after treatment with antiretroviral therapy (ART). In the upper panel, fold induction was calculated against the median level of healthy

controls. In the lower panel, fold reduction was calculated against the pre-treatment level of the same patient.

https://doi.org/10.1371/journal.pone.0182294.g003
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Fig 4. Single-gene biomarker for TB. Active and latent TB can be distinguished using the expression of FCGR1A. Treatment effect can

also be monitored using the expression of FCGR1A. Fold induction of FCGR1A was calculated against the median level of healthy controls.

https://doi.org/10.1371/journal.pone.0182294.g004

Fig 5. Single-gene biomarker for JIA. Systemic and non-systemic JIA can be distinguished using the expression of

ANXA3. Treatment effect can also be monitored using the expression of ANXA3. In the left panel, fold induction was

calculated against the median level of healthy controls. In the right panel, fold reduction was calculated against the

pre-treatment level of the same patient.

https://doi.org/10.1371/journal.pone.0182294.g005
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As comparison, in one of the original studies on stroke, a 9-gene signature was derived,

including S100A12,ARG1 andMMP9 of our BRGs[44]. Other original studies did not focus

on biomarker[45].

Biomarker for cancer. Cancer can also lead to up-regulation of immune response in

peripheral blood. We found thatHPmay serve as a biomarker for cancer progression based on

several independent datasets (Fig 7). For example, a 5-fold induction ofHP indicated the

advanced stage in colorectal cancer (50% of the patients at stage CD while none at stage AB). A

2-fold induction ofHP indicated double primary tumor in another dataset. The expression of

HP could also be used in prognosis. In two independent datasets for prostate cancer, higher

expression ofHP indicated poor prognosis. Distinctive survival curves were observed for

patients with different levels ofHP expression.

As comparison, the original study on colorectal cancer mainly focused on the discovery of

biomarkers from the tissue sample[3]. In the original study of double primary tumors, the

authors focused on the discovery of 9 probes with statistically significant expression between

single and double primary tumors, none of which was among the 20 genes described in this

work[46]. In one of the original studies on prostate cancer, a nine-gene signature was proposed

for prognosis, none of which is among the 20 genes described in this work[4]. In the other

original study on prostate cancer, the expression levels of 35 genes including HP and LCN2
were found to be correlated with overall survival (OS). In addition, the rs5472 of HP was also

found to be correlated with OS[47].

Application to personal health monitoring

Continuous health monitoring is critical for the early detection of health risks. In a pioneering

study on personalized medicine, multiple omics technologies were applied to the continuous

data collection from a single man over a period of 14 months[48]. Two viral infection events

were recorded during the period, one HRV infection and another RSV infection. We extracted

the expression value of the 20 VRGs and BRGs and plotted the longitudinal expression pro-

files. The two infection events could be clearly detected from the expression levels of multiple

Fig 6. Single-gene biomarker for stroke and RIA. Most of the patients with stroke or RIA displayed 2-fold induction of ARG1 expression.

RIA, ruptured intracranial aneurysms.

https://doi.org/10.1371/journal.pone.0182294.g006
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VRGs and BRGs (Fig 8). The expression levels were clearly higher during infection and came

down at the recovery periods. Interestingly, an “unknown event” at day 301 discussed in the

original publication was also clearly detectable on the expression profiles of multiple VRGs

and BRGs. As comparison, it was not detected by the CRP level and only came to light after

sophisticated analysis of the blood transcriptome data. The local peak at day 307 coincided

with the sudden elevation of blood glucose and onset of diabetes. Due to the much lower cost

of assaying 20 genes than whole transcriptome profiling, this set of 20 genes may have potential

to be applied to personal health monitoring.

Evaluating the robustness and confounding factors

SLE is one of the few diseases with many high quality datasets. Thus, it’s a good candidate dis-

ease to test the robustness of the 20 genes. In the whole blood of SLE, we observed significant

up-regulation of VRGs, some of which were above 10 fold (Fig 9, middle set). This feature was

replicated in the peripheral blood mononuclear cell (PBMC, left set). In addition, the pattern

observed in microarray studies was also replicated in an RNA-Seq study (right set). Therefore,

the gene dys-regulation pattern described in previous sections may not be limited to whole

blood or microarray platform.

Fig 7. Single-gene biomarker for cancer. The expression of HP could be used in the disease classification and prognosis in several

independent datasets for cancer. The expression level of HP was indicated as its induction level using the median expression level in

healthy controls as the reference. CRPC, castration-resistant prostate cancer. CRC, colorectal cancer. PrCa, prostate cancer.

https://doi.org/10.1371/journal.pone.0182294.g007
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Studies on tissues with multiple cell types may be complicated by the change of cell compo-

sition[49, 50]. It is likely that some of the above-described dysregulation may be partially

attributed to the change of blood cell composition. Nevertheless, similar feature have been

observed in several diseases with different blood cell components. For example, both whole

blood and PBMC in SLE displayed similar up-regulation of VRGs (Fig 9). In HIV-1 infection,

we also observed distinctive expression pattern of VRGs in progressors and non-progressors

in independent datasets on whole blood or CD4+ and CD8+ T cells (Fig 3). Although more

detailed information can be obtained by conducting assays on sorted blood cells, it may be suf-

ficient to simply examine the whole blood for many diseases.

Fig 8. Use of the 20 selected genes in personal health monitoring. The expression values of these 20

genes were extracted from an RNA-seq dataset GSE32874 which contains the multi-point sampling of the

blood transcriptome of a single man over a period of 400 days. The HRV onset and RSV onset events were

both captured by the dys-regulation of multiple VGRs as well as several BRGs. The expression profiles also

captured an unknown event at day 301 discussed in the original publication.

https://doi.org/10.1371/journal.pone.0182294.g008

Fig 9. Consistent gene dys-regulation pattern in SLE. Significant up-regulation of VRGs was observed in whole blood

(middle) and PBMC (left). Consistent pattern was also observed in microarray (middle and left) and RNA-Seq (right)

platforms.

https://doi.org/10.1371/journal.pone.0182294.g009
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To study the effect of gender on gene dys-regulation in the blood, we examined two datasets

with gender information (Table J in S1 File). It’s well known that SLE is heavily biased to

female. In the dataset GSE65391, both male and female SLE patients displayed significant dys-

regulation of the 20 genes especially the VRGs. However, the level of dys-regulation in female

patients was much higher than that in male patients (Table K in S1 File). Nine of the 20 genes

exceeded 1.4 fold on the ratio of gene dys-regulation. On the other hand, Kawasaki disease

(KD) is slightly biases to male. In the dataset GSE63881, both male and female KD patients dis-

played significant dys-regulation of the 10 BRGs. However, no significant difference could be

found on the gene dys-regulation between male and female patients (Table K in S1 File).

Therefore, the effect of sex on gene dys-regulation seems to be different for different diseases.

Both sexes could be analyzed separately when the gender information is available and sample

size is sufficiently large.

To study the effect of age on blood transcriptome, we examined four additional datasets

with age information (Table J in S1 File). Overall, the correlation of individual gene expres-

sion with age was weak. OnlyNELL2 displayed negative correlation with age in all four datasets

(from -0.29 to -0.47) (Table L in S1 File). In addition, five genes displayed negative correlation

with age in three of the four datasets, including CCR2,CCR7,MYC, LTB and FAM102A. The

genes with positive correlation with age were not as consistent in the four datasets. Overall, the

20 selected genes described in this work did not show even marginal correlation with age in

any of the four datasets examined here.

Discussion

Functional relevance of the 20 genes to human health

Genetic variations in some of these 20 genes have been reported to be associated with the sus-

ceptibility to various diseases. Among the BRGs, ANXA3 is associated with rheumatoid arthri-

tis in Japanese[51].HP is associated with several diseases and longevity[52]. FCGR1B is

associated with breast cancer[53].MMP9 is associated with metaphyseal anadisplasia 2.

Among the VRGs, ISG15 is associated with immunodeficiency 38. IFI44L is associated with

psychiatric disorders including schizophrenia and bipolar disorder[54]. IFI44L is also associ-

ated with febrile seizure caused by measles, mumps and rubella vaccination[55]. It’s interesting

that some of these genes are also the most reliable single-gene biomarkers for the diseases ana-

lyzed in this work.

In addition to the dys-regulation of mRNAs described in this study, the dys-regulation of

proteins in serum, plasma and primary tissues has also been reported in the literature. For

examples, haptoglobin level in the plasma was a good prognostic biomarker for acute myocar-

dial infarction[56]. In ovarian cancer, the expression of annexin A3 corresponded to the resis-

tance to platinum treatment[57]. In sickle cell disease, arginase activity in the plasma was

found to be significantly increased[58]. In chronic heart failure, plasma level of S100A12 was

significantly elevated[59]. Plasma level of MMP-9 was also an independent risk factor for first

time coronary heart disease[60]. In combination with the dys-regulation of gene expression

described in this work, the functional relevance of these 20 genes to human health has been

supported by three levels of evidence, including genetic variations, dysregulation of mRNAs,

and dysregulation of proteins.

According to the modular framework proposed by Pascual V and coworkers[61], 8 of the 10

VRGs belong to module 3.1 which is enriched with interferon-inducible genes (Table 4). In fact,

the other two genes IFI27 and ISG15 are also well-established interferon-inducible genes. Five of

the 10 BRGs belong to module 2.2 which is enriched with neutrophil marker genes. In addition,

S100A12 is assigned to module 3.3 with broad definition of inflammation.
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According to our data analysis presented in this work, host response to viral infections

seems to converge to the activation of interferon signaling pathway upon detection of viral

RNA in the cytoplasm. On the other hand, host response to bacterial infections involves much

more complex mechanism. FCGR1A and FCGR1B can recognize microbial wall components

and induce phagocytosis. ANXA3 has also been identified in phagosome upon bacterial infec-

tion, likely involving its calcium and phospholipid biding ability. LCN2 can bind to ferric side-

rophore and restrict the critical nutrient for bacteria. TLR5 can bind to flagellin and activate

NFKb pathway. Matrix degradation proteinMMP9 seems to play a special role in host

response because both LCN2 and S100A12 can interact withMMP9. IL18R1 is a critical com-

ponent of the interleukin signaling pathways. In addition, ARG1 can metabolize arginine

which is an immune regulator.

Viral and bacterial infections are among the biggest enemies of human health. During the

long history of evolution, humans have developed defense system to fight against invasions

from virus and bacteria. This defense system may also be utilized to resolve problems arising

from within the human body. Some of the autoimmune diseases are likely caused by unknown

infections, therefore it’s not surprising to observe similar immune response. It’s also under-

standable that similar immune response is observed in cancer, stroke and some other non-

infectious diseases.

Disease-specific genes in peripheral blood

We mainly explored commonly dys-regulated genes in the blood of various disease. It is also

of vital importance to find out genes only dys-regulated in a specific disease. We used SLE as

an example to examine this issue due to the availability of multiple high quality datasets

(Table G in S1 File). We found that the 10 VRGs were still among the top-ranked genes in the

nine datasets for SLE (Table H in S1 File). Some other top-ranked genes in SLE were also dys-

Table 4. Module assignment and relevant functions of the 20 genes.

Gene Module ID Relevant Function

EPSTI1 3.1 IFN signaling

HERC5 3.1 IFN signaling

IFI27 IFN signaling

IFI44 3.1 IFN signaling

IFI44L 3.1 IFN signaling

IFIT3 3.1 IFN signaling

IFITM3 3.1 IFN signaling

ISG15 IFN signaling

LY6E 3.1 IFN signaling/immune regulator

RSAD2 3.1 IFN dependent and independent response

TLR5 Bind to flagellin/activate NFKb pathway

ANXA3 2.2 Calcium and phospholipid

ARG1 2.2 ARG metabolism/immune response

FCGR1A phagocytosis

FCGR1B phagocytosis

HP 2.2 Antioxidant activity / binding to free Hb

IL18R1 IL signaling

LCN2 2.2 Stabilize MMP9/bind to ferric siderophore

MMP9 2.2 Matrix degradation

S100A12 3.3 Bing to RAGE/activate NFKb/inhibit MMP9

https://doi.org/10.1371/journal.pone.0182294.t004
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regulated in multiple datasets of other diseases examined in this study. Therefore, we did not

observe a single gene specifically dys-regulated in SLE with high confidence. In fact, we found

that it was difficult to identify disease-specific genes for viral infections and autoimmune dis-

eases with the gene dys-regulation pattern of viral infections in the original 20 discovery

datasets.

We then used sepsis as another example to examine the issue of disease-specific gene.

Among the three datasets for sepsis (Table G in S1 File), we found 141 genes consistently dys-

regulated in all three datasets (Table I in S1 File). Based on the low frequency of dys-regula-

tion in the 20 discovery datasets, some of the genes such as TMCO3 could potentially serve as

disease-specific markers for sepsis. With the increasing availability of high quality datasets for

various diseases, this issue of disease-specific genes may be re-examined in the future. In a

recent work, deconvolution of cell composition was applied to the blood transcriptome data

for the discovery of disease-specific genes[62]. Again, multiple high quality datasets will be

needed for the validation of the proposed disease-specific markers.

Utilities of house-keeping genes in peripheral blood

House-keeping genes have been frequently used as internal reference in experiments such as

RT-qPCR. We found that many genes were stably expressed in the disease datasets examined

in this study, including the well-known house-keeping genes ACTB, B2M,UBC and GUSB. We

explored whether the relative expression level of the 20 genes as compared to the house-keep-

ing genes can be used in disease classification, prognosis and treatment evaluation. As exam-

ples, we used B2M as the internal control in the datasets of TB and cancer. We found that the

relative expression level of the biomarker gene achieved similar performance without using

the healthy controls as reference. This is important because the selection of healthy controls

could be problematic as observed in some datasets examined in this study.

Individual response to stress and treatment

We observed that individuals may respond differently to certain stress, as evidenced by the

large variation of the induction of the 20 genes in many diseases. Some of the variation could

be linked to the expression level at the baseline. We also observed heterogeneity in individual

response to treatments. For example, patients with HIV-1 infection responded differently to

anti-viral treatment (Fig 3). The expression of ISG15was reduced over 2-fold in some patients

but not others. We found that patients with higher level of ISG15 expression generally had bet-

ter response in terms of the reduction of ISG15 expression. This could also be explained in

another way. For those patients with relatively low level of ISG15 expression, it may not be nec-

essary to further reduce its expression level. Thus, the expression profile of these 20 genes

prior to stress and treatment shall be considered when evaluating the individual response to

stress and treatment.

Limitations of the current study

The main limitations of this study include the limited high quality datasets for each disease

and limited sample size for each dataset. In an ideal scenario, there are multiple high quality

datasets for each disease and every dataset has at least 100 samples for each study group (such

as case and control groups). However, this requirement can not be fulfilled at the current

stage, which may affect the ranking of high frequency gene dys-regulation. To partially allevi-

ate the problem, we restrict our selection of datasets to only those of direct human sources.

This means that the blood samples were profiled without any in vitro treatments. Blood tran-

scriptome studies on animal models were also excluded entirely. Nonetheless, some hidden
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factors may still exert effect on the data analysis. For examples, the use of antibiotics, smoking,

alcohol drinking, and insufficient sleep may all confound the data analysis. The selection of

only commonly dys-regulated genes under diverse health conditions may partially reduce the

noise but certainly not all. In sum, we share bear these limitations in mind when evaluating the

results presented in this work.

Conclusion

In this work, we have demonstrated that a small set of 20 genes displayed frequent and signifi-

cant dys-regulation in infectious and autoimmune diseases. Biomarkers based on these com-

monly dys-regulated genes are likely more robust and reproducible than those biomarkers

from a few limited studies. In combination with other disease-specific assays, these genes may

assist in disease classification, patient stratification, prognosis and treatment follow-up. These

genes may also be used in personal health monitoring. More works are warranted to explore

its application in clinical practice and to elucidate the exact role of each gene in immune

response. In practice, we would suggest the selection of a few VRGs and BRGs to monitor

immune dys-regulation, in addition to the selection of a few potential disease-specific genes

from previous studies. This way we could investigate at medium to large scale how the

immune system is involved in the disease mechanism and whether certain VRGs or BRGs

could become biomarkers for the disease.
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