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Abstract 

Background Considering the potential association between radiation-induced hypothyroidism (RHT) and the thy-
roid subregions as well as the received radiation dose in each subregion, this study aims to develop a subregional 
prediction model for RHT.

Methods CT images and dose images of 128 patients with nasopharyngeal carcinoma were collected retrospec-
tively. The thyroid subregion was obtained by clustering thyroid voxels and voxel entropy. After extracting 1781 
radiomics features and 1767 dosiomics features, a subregional RHT prediction model was established, and its per-
formance was compared with that of the whole thyroid model. The phenotype and dosimetry parameters of each 
subregion were analyzed by AUC, T test and Delong test.

Results Three subregions (S1, S2, S3) were identified. The subregional prediction model was constructed based 
on 34 radiomics and dosiomics features. According to the Delong test, the prediction performance of the subregional 
model was significantly superior than that of the whole thyroid model (0.813 VS 0.624, p = 0.038). Subregional analysis 
suggests that S1 and S3 regions may have higher radiosensitivity than S2 regions.

Conclusions In this study, a subregional model for predicting RHT was established and the radiosensitivity of the rel-
evant subregions was evaluated. The subregion-based RHT prediction model may help to improve radiotherapy plan 
design for better thyroid function protection.
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Background
Radiotherapy is one of the main treatment methods for 
nasopharyngeal carcinoma (NPC) [1]. Currently, the five-
year survival rate of NPC patients who received radio-
therapy had reached 80%, resulting from the continual 
advancement of radiotherapy technology [2, 3]. Radia-
tion-induced hypothyroidism (RHT) is a prevalent com-
plication observed in patients undergoing radiotherapy 

for the treatment of head and neck tumors, with an inci-
dence of approximately 40% and a peak occurrence rang-
ing from several months to years after the completion 
of radiotherapy [4–6]. RHT exerts a sustained adverse 
impact on patients’ quality of life and patients with RHT 
have to receive lifelong thyroid hormone replacement 
therapy [7, 8]. Therefore, establishing a predictive model 
for RHT is of great significance for personalized planning 
design and radiotherapy application of NPC patients.

RHT is associated with multiple factors, among which 
radiation dose has always been considered one of the 
primary contributors. However, there is currently no 
consensus on the optimal dose limits for the thyroid tis-
sue. Several dosimetric parameters, including Dmean 
(average dose), V50 (the proportion of thyroid volume 
exposed to a dose higher than 50  Gy), or VS45 (the 
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absolute thyroid volume spared from 45  Gy or less), 
have been consistently demonstrated in numerous stud-
ies as reliable predictors for RHT [9–11]. Nevertheless, 
these dosimetric parameters just evaluate thyroid tissue 
as a comprehensive entity, overlooking the spatial het-
erogeneity inside thyroid gland. The latest research sug-
gests the potential existence of regional disparities in the 
radiosensitivity of normal tissues. It is reported that late 
radiation damage was related with the location of dose 
delivery in rat parotid glands, which could be potentially 
applicable in human parotid as well [12]. Furthermore, 
the concept of thyroid functional subregions was raised 
up in a study using 18F-FDG-PET to effectively predict 
the occurrence of RHT, suggesting a potential relation-
ship between radiotherapy complications and the dose 
received in each internal functional subregions [13].

Radiomics is a research methodology that was capable 
of extracting quantitative features from CT, MRI, PET, or 
ultrasound images through a high-throughput manner 
to help realize tissue or organ characterization at patho-
physiological level. Currently, RHT prediction based on 
radiomics method has drawn great interest. By extracting 
radiomics features from the whole thyroid region, a RHT 
prediction model was developed for head and neck tumor 
patients who received radiotherapy [14]. By combining 
radiomics features derived from contrast-enhanced CT 
images and dosimetric parameters, a predictive model 
for RHT with superior predictive performance was estab-
lished, exhibiting the advantage of the integrated model 
[15].

The dosiomics method, inspired by the radiomics 
approach, enables the extraction of features from three-
dimensional dose distribution images, providing a more 
comprehensive and multidimensional information com-
pared to conventional dosimetric parameters. Presently, 
we have extracted dosiomics features from dose distribu-
tion images of 145 NPC patients and established a pre-
dictive model for RHT using various machine learning 
algorithms [16]. Our findings indicate that the predic-
tion models based on dosiomics features demonstrate 
superior predictive performance than the models based 
on dosimetric parameters. Furthermore, dosiomics can 
be integrated with radiomics for bi-omics analysis. Exist-
ing study has reported a dual omics model for RHT 
prediction by integrating radiomics and dosiomics [17]. 
According to their research findings, the dual-omics 
model not only outperforms the normal tissue com-
plication probability (NTCP) model, but also provides 
guidance in designing radiotherapy plans for patients 
with NPC. However, all these studies focused on feature 
extraction of the whole thyroid gland without consider-
ing the impact of subregional phenotypic distribution 
within the thyroid gland on RHT occurrence.

Currently, research on predicting radiotherapy com-
plications based on internal subregions is constantly 
emerging. In patients with oropharyngeal squamous cell 
carcinoma, a predictive model for mandibular radiation 
necrosis was developed by delineating the mandible into 
sixteen subregions based on dental anatomy [18]. The 
findings of aforementioned study indicate that the mani-
festation of mandibular necrosis varies among individu-
als and is intricately associated with the subregional dose 
distribution. Another study also investigated the poten-
tial of subregional radiomics models based on parotid 
glands to accurately predict late xerostomia following 
radiotherapy in patients with head and neck cancer, dem-
onstrating exceptional precision and earlier identification 
using subregional radiomics models [19]. Furthermore, 
functional subregions identified based on a thresh-
old ranging from 20 to 80% of the maximum perfusion 
count on single-photon emission computed tomography 
(SPECT) images also exhibited superior performance in 
the prediction of radiation-induced pneumonia. The does 
volume parameters derived from these functional lung 
subregions outperformed conventional dose-volume 
histogram (DVH) metrics [20]. Similarly, the association 
between specific subregions and acute dysphagia result-
ing from radiotherapy was also proved in another study 
by employing voxel-wise analysis to identify swallowing-
related tissues [21].

If variations in radiosensitivity exist within the thyroid 
and can be identified, selectively protecting more suscep-
tible subregions of the thyroid may aid in mitigating the 
risk of developing RHT. Nevertheless, to the best of our 
knowledge, the prediction of risk for RHT based on sub-
regions remains unexplored. Therefore, the goal of this 
research is to explore and compare the varying levels of 
accuracy among predictive models for RHT that utilize 
subregions and whole thyroid gland volume, while ana-
lyzing the subregion response relationship.

Methods
Data collection
This retrospective study collected clinical data, CT 
images, and dose images of 128 patients with NPC who 
underwent radiation therapy between January 2012 
to January 2015. The treatment plan for each patient 
was designed based on the TomoTherapy Planning Sys-
tem (Accuray Inc., Madison, WI) or  Pinnacle3 (v9.0) 
treatment planning system, with a prescribed dose of 
70–74  Gy administered into 33 sessions. The inclusion 
criteria for this study were as follows: 1) No history of 
previous head and neck radiation therapy, thyroid sur-
gery, or any thyroid-, hypothalamus-, or pituitary-related 
diseases; 2) Serum thyroid function tests (TFTs) were 
conducted prior to treatment; 3) The comprehensive 
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follow-up results of serum TFTs data for determining the 
functional status of the thyroid gland.

The clinical endpoint of this study is the occurrence 
of either clinical or subclinical hypothyroidism. Clini-
cal hypothyroidism is defined as an elevation in serum 
thyroid stimulating hormone (TSH) levels (> 5.5μU/mL) 
during follow-up, accompanied by a decrease in serum 
free thyroxine (FT4) levels (< 12.0  pmol/L). Subclini-
cal hypothyroidism is characterized by an elevation in 
serum TSH levels with normal FT4/T4 levels observed 
at least twice during follow-up monitoring [22]. In this 
study, enrolled patients underwent regular assessments 
of free triiodothyronine (FT3), FT4, and TSH tests every 
3 or 6 months within the first two years following radio-
therapy, followed by annual evaluations starting from the 
third year onwards. The maximum follow-up duration 
was five years since the completion of initial radiotherapy.

A total of 128 enrolled patients were assigned numbers 
and subjected to stratified random sampling to create a 
training set (n = 76) and a testing set (n = 52) at a ratio 
of 3: 2. A comparable proportions of RHT were realized 
between training set and testing set by the stratified ran-
dom sampling. The training set was utilized for feature 
selection and modeling, while the test set was used for 
independent validation and performance comparison 
between different models. Additionally, to further vali-
date the subregional model’s performance, this study also 

developed a model based on the whole thyroid gland. 
The primary methodology employed in this study is illus-
trated in Fig. 1.

Image acquisition
The CT images utilized in this study are radiotherapy 
localization images acquired by SIEMENS Definition AS 
and Philips Brilliance Big Bore scanners. The tube volt-
age is set at 120 kVp, the pixel resolution ranges from 0.8 
to 2.5 mm, and the slice thickness is 3 mm. The patient’s 
dose image is exported from the TPS system, with differ-
ent radiotherapy techniques resulting in dose space rates 
(grid size) of 2.73 × 2.73 × 3  mm3 for TOMO and 4 × 4 × 4 
 mm3 for IMRT.

Subregion segementation and feature extraction
The region of interest (ROI) in this study pertains to the 
thyroid region derived from the radiotherapy plan. Sub-
regions are obtained through clustering of the ROI as 
follows: Firstly, taking each voxel within the ROI as the 
center, calculate the entropy of 9 × 9x9 patches individu-
ally and consider it as the local entropy of that voxel. 
Next, compile a two-dimensional matrix by combining 
the intensity and local entropy values of voxels within 
the ROIs from all patients in the training set, followed by 
applying horizontal clustering using K-means algorithm. 
Horizontal clustering refers to the clustering patterns 

Fig. 1 Workflow in this study
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performed among patients, with selection of its K value 
based on Calinski-Harabasz (CH) score trends.

After obtaining subregions, Pyradiomics was utilized to 
extract features from both the whole thyroid and its sub-
regions separately. A total of 1781 radiomics features and 
1767 dosiomics features were extracted from each patient 
region to enhance model accuracy. Detailed information 
regarding the features and extraction parameters can be 
found in Supplementary Table  S1 and Supplementary 
Table S2.

Feature selection and modeling
The feature selection and modeling process were con-
ducted separately based on either the whole thyroid gland 
or their corresponding subregions. A two-step method 
was employed for feature selection on the training set. 
Firstly, t-tests were utilized to analyze the radiomics and 
dosiomics features between the RHT and the Non- Radi-
ation-induced hypothyroidism (NRHT) patients in the 
training set. For clinical features, chi-square tests, Mann 
Whitney U-tests, and Student’s t-tests were selected 
based on specific circumstances for analysis, with sig-
nificant differences (p < 0.05) being retained for further 
investigation. Subsequently, the least absolute shrinkage 
and selection operator (LASSO) algorithm was applied 
additional feature selection. LASSO is a linear regression 
technique that incorporates regularization to control the 
number of features by adjusting regularization param-
eters accordingly. In this step, a threefold cross-validation 
strategy combined with grid search was employed using 
the reserved feature matrix from previous steps to deter-
mine optimal parameters. Once the most suitable sub-
set of features was determined through LASSO analysis, 
logistic regression was used for modeling.

Subregional analysis
The voxel intensity and entropy between subregions were 
analyzed using a t-test. To investigate the phenotypes and 
radiosensitivity of the subregions obtained in this study, 
the differences in V50, VS45, VS60, and Dmean between 
these subregions were analyzed [9–11]. The calculation 
method for dosimetric parameters in the subregions is as 
follows:

Among them, Sn represents subregion n , Sna demotes 
the areas within subregion n with doses greater than or 
equal to a , and Snb refers to the areas with subregion n 
with doses less than b . The variables vi represents the 

Va(Sn) =
i∈Sna

vi

i∈Sn
vi

VSb(Sn) = i∈Snb
vi

Dmean(Sn) = i∈Sn
vidi

i∈Sn
vi

voxel size, while di represents the dose received by each 
voxel.

After completing the calculation of dosimetric param-
eters, t-tests were employed to analyze the dosimetric 
parameters across different subregions in both RHT and 
NRHT cohorts. Subsequently, the diagnostic perfor-
mance of dosimetric parameters for RHT was evaluated 
using the area under the receiver operating characteris-
tic (ROC) curve (AUC), while any potential differences in 
performance among subregions were assessed using the 
Delong test.

Statistical analysis
All data in this study were analyzed using R software 
(version 4.1.2) and Python (version 3.7), with a signifi-
cance level set at 0.05. Depending on the situation, the 
differences in clinical factors and dosimetric parameters 
between RHT and NRHT were evaluated using the Stu-
dent’s t-test and Mann–Whitney U test, respectively. 
The performance evaluation of the model is based on the 
AUC curve of the subjects, and the Delong test is used to 
compare the performance differences between different 
models.

Results
Patient characteristics
The main clinical factors and dosimetric parameters of 
the patients were presented in Table  1. There were no 
significant differences observed between the training and 
testing sets with respect to gender, age, T-stage, N-stage, 
radiotherapy technique, treatment mode, and serum thy-
roid function outcome (RHT or NRHT).

Subregional clustering and feature selection
The process of determining the optimal value for K in 
K-means clustering is illustrated in Fig.  2. When K = 3, 
the CH score reaches its maximum value. Consequently, 
based on this analysis, the number of thyroid subregions 
in this study was set to three, denoted as S1 region, S2 
region, and S3 region respectively.

For the whole thyroid model, a total of 24 radiomics 
and dosiomics features were determined using a two-step 
methodology. For the subregional model, a comprehen-
sive set of 34 features were obtained from three subre-
gions. Specifically, 14 features were originated from the 
S1 region, while 6 and 14 features were derived from the 
S2 and S3 regions, respectively. The detailed outcomes 
of feature selection for both the whole thyroid model 
and subregional model can be found in Supplementary 
Table S3 and Supplementary Table S4.

The clinical factors, as presented in Table  1, did not 
exhibit any statistically significant differences between 
RHT and NRHT groups with regards to gender, age, T 
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stage, N stage, radiation therapy technique, and treat-
ment mode. The comparative analysis of clinical factors 
can be found in Supplementary Table S5.

Model comparison
The AUC value of the whole thyroid model on the test 
set is 0.624, as depicted in Fig. 3, whereas the subregional 
model achieves an AUC value of 0.813. Statistical analy-
sis using the Delong test reveals a significant difference in 
AUC between the whole thyroid and subregional models 
(p = 0.038). Detailed performance metrics for these mod-
els are summarized in Table 2.

Subregional analysis
The average voxel intensity and voxel entropy of the S1, 
S2, and S3 regions are presented in Fig. 4. Table 3 displays 
the average dosimetric parameters for these regions. As 
depicted in Fig.  5, there were no statistically significant 
differences between RHT and NRHT groups regard-
ing Dmean and V50 in the S1, S2, and S3 regions. How-
ever, a statistically significant difference was observed 

between RHT and NRHT groups for VS45 in the S1 and 
S3 regions but not in the S2 region. Additionally, a sta-
tistically significant difference was found between RHT 
and NRHT for VS60 specifically in the S3 region while no 
significant difference was noted between the S1 and S2 
regions.

The AUC values of dosimetric parameters for S1, 
S2, and S3 regions were presented in Table 4. Based on 
Delong test, the AUC values within S3 region showed a 
statistically significant difference with regard to VS45 and 
VS 60, compared to either S1 or S2 regions.

Discussion
To the best of our knowledge, this study represents the 
first subregions-based investigation on predicting RHT. 
In this study, we employed clustering methods to identify 
distinct subregions within the thyroid gland and com-
pared the disparities of predictive performances between 
whole-thyroid-gland based model and subregions-based 
model. The findings from this study demonstrate that the 
prediction model relying on surpasses its counterpart 
model based on the whole thyroid gland (0.813 vs 0.624, 
p = 0.038). Specifically, although clinical factors such as 
gender and age were considered as predictive values for 
RHT in relevant studies [23], these clinical factors did 
not show statistically significant differences between the 
RHT and the NRHT groups in our study. Therefore, this 
study did not incorporate clinical factors for predictive 
model construction.

Previous studies have demonstrated that adult stem 
cells/progenitor cells exhibit greater radiation sensitiv-
ity when compared to normal tissue cells. Irradiation 
on the regions where these adult stem cells/progenitor 
cells are located is more likely to induce radiation dam-
age [24]. The presence of distinct cell compositions may 
be correlated with varying tissue densities [25]. These 
variations in regional tissue density can be indicated by 
the voxel intensity, while the regional heterogeneity can 
be reflected by voxel entropy. In this study, subregional 
analysis revealed that the S1 region displayed moderate 
average voxel intensity and voxel entropy. The S2 region 
exhibited the lowest average voxel intensity and highest 
average voxel entropy. Conversely, the S3 region had the 
highest average voxel intensity but lowest average voxel 
entropy. In terms of VS45, significant differences were 
observed between RHT and NRHT groups in either S1 or 
S3 region. However, no statistically significant difference 
was found in the S2 region. For VS60, only the S3 region 
showed statistically significant difference between RHT 
and NRHT groups. According to Delong’s test, the AUC 
values for VS45 and VS60 showed a statistically signifi-
cant difference between the S3 region compared to either 
S1 or S2 regions. These findings suggest that cell density, 

Table 1 Characteristics of patients in the training and test sets

IMRT Intensity-Modulated Radiation Therapy, TOMO Tomotherapy, RT 
Radiotherapy, CCRT  Concurrent Chemotherapy and Radiotherapy, RHT 
Radiation-induced hypothyroidism, NRHT Non- Radiation-induced 
hypothyroidism

Characteristics Training set Test set P value

Age 0.102

Range 9–81 10–76

Mean ± STD 43.01 ± 12.84 46.58 ± 10.49

Sex 0.389

Male 59 36

Female 17 16

T-stage 0.581

T1 16 11

T2 9 6

T3 33 28

T4 18 7

N-stage 0.098

N1 0 0

N2 69 41

N3 7 11

Radiation technique 0.389

IMRT 59 36

TOMO 17 16

Therapeutic pattern 0.957

RT Only 16 12

CCRT 60 40

Outcome 0.866

RHT 35 24

NRHT 41 28
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Fig. 2 Subregion segmentation. a is a CT image, (b) is a thyroid gland image, (c) is a DOSE image and (d) is a clustering subregional image. e 
is the trend chart of the Calinski–Harabasz score in the training set under different K value

Fig. 3 ROC curves of different models on the test set. a represents the whole thyroid gland model, and (b) represents the subregional model
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radiosensitivity, and heterogeneity were moderate in the 
S1 region; heterogeneity was highest in the S2 region 
with lower cell density and radiosensitivity; whereas 
heterogeneity was lowest with higher cell density and 

radiosensitivity observed in the S3 region. Therefore, lim-
iting dosage in both the S1 and S3 regions or transferring 
high-dose areas to the S2 region may help reduce the risk 
of developing RHT.

In this study, functional images or voxel analysis were 
not utilized; instead, voxel clustering methods were 
employed to acquire subregions. Although several studies 
have demonstrated the value of functional image-based 
subregions in predicting radiotherapy complications 
prediction [20, 26, 27], there is a lack of research specifi-
cally focusing on the association between specific func-
tional images and RHT. In an existing study that aimed 

Table 2 The prediction performance for whole-thyroid and 
subregional models on test set

AUC , area under curves, ACC  accuracy

Model AUC ACC Sensitivity Specificity

Whole-thyroid model 0.624 0.558 0.500 0.607

Subreigonal model 0.813 0.750 0.875 0.643

Fig. 4 Subregional phenotype analysis of thyroid gland. The ROI is divided into three subregions, as shown in (a). The red region represents the S1 
region, the blue region represents the S2 region, and the yellow region represents the S3 region; (b) shows the comparison of voxel intensity 
in different subregions of the thyroid gland; (c) shows the comparison of voxel entropy in different subregions of the thyroid gland
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to predict RHT based on 18F-FDG PET/CT images, the 
subregion segmentation process was subjectively deter-
mined through setting a specific threshold, which would 
potentially affect the objectivity of extracted radiomics/
dosiomics features from these subregions [13]. For voxel 
analysis, the segmentation results of subregions heav-
ily rely on the registration effect, which poses significant 
challenges for organs with high volume variability such 
as thyroid gland. In contrast to these two methods, our 
study employs clustering algorithms to derive subre-
gions. This data-driven approach not only ensures rela-
tive objectivity but also demonstrates excellent predictive 
performance, as mentioned in numerous radiotherapy 
prognosis studies.

Radiotherapy is a primary treatment modality for 
NPC.The clinical management of NPC requires a deli-
cate balance between minimizing radiation-induced 
complications and maximizing local tumor control 
when designing radiotherapy plans. The continuous 

advancements in high-precision radiotherapy technolo-
gies, such as IMRT, are gradually making personalized 
dose optimization for specific subregions within normal 
tissues feasible to mitigate the occurrence of radiother-
apy complications. For instance, Van Luijk et al. discov-
ered that the radiation dose in a specific subregion of 
the salivary gland containing adult stem cells/progenitor 
cells is associated with salivary gland function one year 
after radiotherapy [28]. Reducing the radiation dose in 
this particular region can help decrease the incidence of 
Sjogren’s syndrome. Similarly, adult stem cells/progeni-
tor cells have also been confirmed to exist in the thyroid 
gland and may play a role during in  vivo regeneration 
following thyroid injury [29, 30]. Furthermore, previ-
ous studies have indicated that decreased thyroid gland 
function is more likely to be linked to its immune vol-
ume when exposed to certain doses of radiation [6, 31, 

Table 3 Comparison of dosimetric parameters between RHT 
and NRHT in different Subregions

Regiona Dosimetric RHT NRHT P-value

S1 Dmean (Gy) 49.15 ± 1.04 49.04 ± 1.13 0.566

V50 (%) 48.85% ± 15.47% 43.78% ± 14.96% 0.062

VS45 (cc) 2.96 ± 1.89 3.83 ± 2.45 0.025
VS60 (cc) 6.26 ± 2.72 7.17 ± 3.44 0.106

S2 Dmean (Gy) 45.30 ± 1.37 45.21 ± 1.25 0.691

V50 (%) 34.55% ± 15.45% 29.77% ± 16.92% 0.100

VS45 (cc) 2.41 ± 1.57 2.53 ± 2.12 0.724

VS60 (cc) 3.82 ± 2.95 4.07 ± 2.28 0.599

S3 Dmean (Gy) 50.67 ± 0.93 50.59 ± 1.00 0.640

V50 (%) 52.07% ± 19.44% 51.17% ± 13.75 0.767

VS45 (cc) 1.20 ± 1.20 2.45 ± 2.37  < 0.001
VS60 (cc) 2.83 ± 2.96 5.34 ± 3.92  < 0.001

Fig. 5 Comparison of dosimetric parameters in different subregions. a, (b), (c), and (d) represent the comparisons between Dmean, V50, VS45, 
and VS60 in RHT group and NRHT group for different subregions. * p < 0.05, * * p < 0.01, * * * p < 0.001, n. s represents no significant difference

Table 4 AUC values of dosimetric parameters in different 
subregions

 ~ S1, ~ S2, ~ S3 represents the p-value of the Delong test for the AUC of the 
dosimetric parameters of S1, S2, S3, respectively

Region Dosimetric AUC  ~ S1  ~ S2  ~ S3

S1 Dmean (Gy) 0.512 - 0.373 0.804

V50 (%) 0.602 - 0.902 0.295

VS45 (cc) 0.613 - 0.281 0.027
VS60 (cc) 0.576 - 0.920 0.005

S2 Dmean (Gy) 0.500 0.373 - 0.759

V50 (%) 0.597 0.902 - 0.279

VS45 (cc) 0.519 0.281 - 0.004
VS60 (cc) 0.567 0.920 - 0.004

S3 Dmean (Gy) 0.508 0.976 0.759 -

V50(%) 0.505 0.295 0.279 -

VS45 (cc) 0.714 0.027 0.004 -

VS60 (cc) 0.733 0.005 0.004 -



Page 9 of 10Ren et al. BMC Medical Imaging           (2025) 25:74  

32], suggesting that identifying the subregions where 
thyroid adult stem cells/progenitor cells are located and 
optimizing dosage can aid in protecting thyroid function. 
However, due to the unclear spatial distribution of adult 
stem cells/progenitor cells within the thyroid gland, there 
still exist challenges in designing functional protective 
radiotherapy plans for specific subregions of the thyroid. 
In this study, we have established a predictive model for 
subregional radiation-induced hypothyroidism (RHT) 
and assessed the radiosensitivity of relevant subregions, 
which may offer valuable insights for optimizing radio-
therapy plans aimed at preserving thyroid function.

This study has several limitations. Firstly, this study is 
a retrospective single-center study. Consequently, the 
generalization ability of the model cannot be determined 
with certainty. Therefore, future research should focus 
on collecting a substantial amount of data from multi-
ple centers to further evaluate and validate the applica-
tion value and stability of the model. Secondly, due to 
the absence of sequencing information and imaging data 
for cell clusters in thyroid subregions, direct analysis of 
biological phenotypes associated with these subregions 
was not possible in this study. To address this limitation, 
future investigations could consider employing single-cell 
sequencing or spatial transcriptome analysis specifically 
targeting the thyroid gland to provide insights into these 
subregions. Lastly, it is worth mentioning that this study 
primarily focused on analyzing factors related to the thy-
roid gland without considering other variables such as 
pituitary radiation dose which may impact model accu-
racy. In subsequent studies, efforts will be made to incor-
porate an analysis of pituitary dose distribution in order 
to enhance overall model performance.

Conclusion
In this study, we utilized data-driven methods to iden-
tify subregions within the thyroid gland and developed 
a predictive model for RHT based on these subregions. 
Our research findings suggest that the subregional model 
exhibits superior predictive performance for RHT and 
reveals significant phenotypic variations among different 
subregions, which may offer valuable technical support in 
designing radiation therapy plans that aimed at preserv-
ing thyroid function in patients with NPC.
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