
METHODS
published: 25 May 2021

doi: 10.3389/fphys.2021.662314

Frontiers in Physiology | www.frontiersin.org 1 May 2021 | Volume 12 | Article 662314

Edited by:

Michael Döllinger,

University Hospital Erlangen, Germany

Reviewed by:

Koen Degeling,

The University of Melbourne, Australia

Dominic G. Whittaker,

University of Nottingham,

United Kingdom

*Correspondence:

Hawre Jalal

hjalal@pitt.edu

Specialty section:

This article was submitted to

Computational Physiology and

Medicine,

a section of the journal

Frontiers in Physiology

Received: 01 February 2021

Accepted: 20 April 2021

Published: 25 May 2021

Citation:

Jalal H, Trikalinos TA and

Alarid-Escudero F (2021) BayCANN:

Streamlining Bayesian Calibration With

Artificial Neural Network

Metamodeling.

Front. Physiol. 12:662314.

doi: 10.3389/fphys.2021.662314

BayCANN: Streamlining Bayesian
Calibration With Artificial Neural
Network Metamodeling

Hawre Jalal 1*, Thomas A. Trikalinos 2 and Fernando Alarid-Escudero 3

1Department of Health Policy and Management, University of Pittsburgh, Graduate School of Public Health, Pittsburgh, PA,

United States, 2Departments of Health Services, Policy & Practice and Biostatistics, Brown University, Providence, RI,

United States, 3Division of Public Administration, Center for Research and Teaching in Economics (CIDE), Aguascalientes,

Mexico

Purpose: Bayesian calibration is generally superior to standard direct-search algorithms

in that it estimates the full joint posterior distribution of the calibrated parameters.

However, there aremany barriers to using Bayesian calibration in health decision sciences

stemming from the need to program complex models in probabilistic programming

languages and the associated computational burden of applying Bayesian calibration.

In this paper, we propose to use artificial neural networks (ANN) as one practical solution

to these challenges.

Methods: Bayesian Calibration using Artificial Neural Networks (BayCANN) involves

(1) training an ANN metamodel on a sample of model inputs and outputs, and (2)

then calibrating the trained ANN metamodel instead of the full model in a probabilistic

programming language to obtain the posterior joint distribution of the calibrated

parameters. We illustrate BayCANN using a colorectal cancer natural history model. We

conduct a confirmatory simulation analysis by first obtaining parameter estimates from

the literature and then using them to generate adenoma prevalence and cancer incidence

targets. We compare the performance of BayCANN in recovering these “true” parameter

values against performing a Bayesian calibration directly on the simulation model using

an incremental mixture importance sampling (IMIS) algorithm.

Results: We were able to apply BayCANN using only a dataset of the model inputs and

outputs and minor modification of BayCANN’s code. In this example, BayCANN was

slightly more accurate in recovering the true posterior parameter estimates compared to

IMIS. Obtaining the dataset of samples, and running BayCANN took 15 min compared

to the IMIS which took 80 min. In applications involving computationally more expensive

simulations (e.g., microsimulations), BayCANN may offer higher relative speed gains.

Conclusions: BayCANN only uses a dataset of model inputs and outputs to obtain

the calibrated joint parameter distributions. Thus, it can be adapted to models of various

levels of complexity with minor or no change to its structure. In addition, BayCANN’s

efficiency can be especially useful in computationally expensive models. To facilitate

BayCANN’s wider adoption, we provide BayCANN’s open-source implementation in R

and Stan.

Keywords: Bayesian calibration, machine learning, mechanistic models, artificial neural networks, emulators,

surrogate models, metamodels
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1. BACKGROUND

Modelers and decision-makers often use mathematical

simulation models to simplify real-life complexity and inform

decisions, particularly those for which uncertainty is inherent.
However, some of the model parameters might be either
unobserved or unobservable due to various financial, practical or

ethical reasons. For example, a model that simulates the natural
history of cancer progression may lack an estimate for the rate at

which an individual transitions from a pre-symptomatic cancer
state to becoming symptomatic. Although this rate might not
be directly observable, it may be estimated using a technique

commonly referred to as calibration (Alarid-Escudero et al.,
2018; Vanni et al., 2011; Rutter et al., 2009). Thus, calibration
involves modifying the model input parameters until the desired

output is obtained.
Calibration has the potential for improving model inference,

and recent guidelines recommend that model calibration of
unknown parameters should be performed where data on
outputs exist (Weinstein et al., 2003; Briggs et al., 2012). Modelers
are also encouraged to report the uncertainty around calibrated
parameters and use these uncertainties in both deterministic and
probabilistic sensitivity analyses (Briggs et al., 2012).

There are several calibration techniques with various levels
of complexity. For example, Nelder-Mead is a direct-search
algorithm commonly used to calibrate models in health and
medicine. Nelder-Mead is a deterministic approach that searches
the parameter space for good-fitting parameter values (Nelder
and Mead, 1965). Although Nelder-Mead is generally effective,
it cannot estimate parameter distributions or directly inform
on the correlations among the calibrated parameters. It is
also not guaranteed to find a global optimal value because it
might converge to a local optimum. Unlike the direct-search
algorithms, Bayesian methods are naturally suited for calibration
because they estimate the input parameter’s posterior joint and
marginal distributions (Menzies et al., 2017). However, Bayesian
methods are difficult to implement due to the complexity of the
models used and the computational challenges of applying these
methods. Bayesian calibration often requires tens or hundreds
of thousands of simulation runs and a model written in a
probabilistic programming language, such as Stan (Carpenter
et al., 2017) or Bayesian inference Using Gibbs Sampling (BUGS)
(Lunn et al., 2009). We argue that the complexity of these
tasks and their potential computational demand have prevented
a wider adoption of Bayesian calibration methods in health
decision science models.

In this manuscript, we use artificial neural network (ANN)
metamodels as a practical approach to streamlining Bayesian
calibration in complex simulation models. Metamodels have
increasingly been used to overcome the computational burden
of Bayesian calibration. A metamodel is a surrogate model that
can be used to approximate themodel’s input-output relationship
(Jalal et al., 2013). Metamodels can provide an approximation
to the simulation model in a fraction of the time. While ANN
metamodels are not fully probabilistic, they are flexible functions
that canmap highly non-linear relationships in large data.We use
an ANN metamodel as an emulator to substitute the simulation

model in the Bayesian calibration analysis. Thus, the ANN acts
as a low computational cost proxy of the simulation model.
In addition, analysts do not need to program their simulation
model in a probabilistic language because coding the ANN in
probabilistic languages (e.g., Stan) is relatively straight-forward,
and analysts can reuse the provided Stan code with little or no
modification.

We refer to our approach as Bayesian calibration via artificial
neural networks, or BayCANN for short. We demonstrate
BayCANN by calibrating a realistic model of the natural history
of colorectal cancer (CRC).We compare this approach’s results to
an approximate Bayesian calibration of the original model using
an incremental mixture importance sampling (IMIS) algorithm.
We provide the code in R and Stan for our application that
researchers can adapt to calibrate their models.

2. METHODS

We start this exposition by reviewing elements of Bayesian
calibration. We describe the computational burden of using
Bayes theorem in most realistic models, and how deep
ANNs can streamline Bayesian calibration methods to calibrate
these models. We illustrate this approach by calibrating a
natural history model of CRC. We also compare BayCANN’s
performance to a Bayesian calibration using IMIS directly on a
simulation model.

2.1. Bayesian Calibration
The Bayes theorem states that

p(θ |data) =
p(data|θ)p(θ)

p(data)
, (1)

where θ is a set of model parameters, data is the observed data,
and p(data|θ) is the same as the likelihood l(θ |data). Because the
denominator is not a function of θ , we can rewrite Equation (1) as

p(θ |data) ∝ l(θ |data)p(θ). (2)

Table 1 shows how each term in Equation (2) can be mapped
to a component in a calibration exercise. The prior distribution,
p(θ), represents our uncertainty about the distribution of the
model parameters before calibrating the model. Modelers often
use various distributions to describe this uncertainty, including
beta or logit-normal distribution for probabilities, gamma for
rates, or log-normal distributions for rates or hazard ratios. Thus,
we can think of a prior distribution as the uncertainty of the
pre-calibrated model input parameters. For example, we can
represent a vague distribution by a uniform distribution where
all the values are equally likely within a defined range.

Bayesian calibration will update the prior distribution based
on the observed target data. The term p(θ |data) is called the
posterior distribution, representing the updated distribution
of θ after observing some data. The posterior distribution is
equivalent to the calibrated parameter distribution when the data
are the calibration targets.

The likelihood function, l(θ |data), denotes how likely the
observed data arise from a given data generation mechanism
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TABLE 1 | The Bayes formula in a calibration context.

Term Bayesian context Calibration context

p(θ ) Prior distribution of the model

input parameters θ

Pre-calibrated model input

parameters

p(θ |data) Posterior distribution of the

model parameters θ given

observed data

Calibrated model parameters to

target data

l(θ |data) Probability of the data given

model parameters θ (model

likelihood)

Objective function or

goodness-of-fit measure; how

well the model output fits the

target data given a particular

value of θ

with a parameter set values θ . From a simulation modeling
perspective, l(θ |data) is equivalent to measuring the goodness of
the model output fit to the calibration targets given a simulation
model’s input parameter set θ .

Thus, we can map all components of Bayes theorem
to calibration components and use Bayesian inference to
obtain the calibrated parameter distributions (a.k.a. the
posterior distributions).

Bayesian calibration is often challenging to adopt in practice
in health decision science models. The main challenge lies
in the complexity of applying Equation (2). Specifically, an
analytical solution for p(θ |data) is unlikely to exist for most
realistic simulation models. Thus, specialized algorithms, such
as Markov-Chain Monte-Carlo (MCMC) might be necessary at
the expense of being practically challenging to implement for
complex models and computationally expensive.

2.2. Metamodels
To overcome the computational and practical challenges of
Bayesian calibration, we propose to use artificial neural network
(ANN) metamodels. As described above, a metamodel is a
surrogate model that approximates the relationship between
the simulation model’s inputs and outputs (i.e., a metamodel
is a model of the model) (Blanning, 1974; Kleijnen, 1975;
Kleijnen et al., 2005; Kleijnen, 2015). Metamodels range from
simple models, such as linear regressions, to complex non-linear
models, such as artificial neural networks (ANN). Although
linear regression models are the most common form of
metamodels (Barton and Meckesheimer, 2006; Barton, 2009;
Sacks et al., 1989; Fu, 1994; Weiser Friedman, 1996; Banks,
1998; Kleijnen and Sargent, 2000; Jalal et al., 2013, 2015), in
this paper we focus on ANN because they are more flexible
while still being relatively simple to implement in Stan or
BUGS.

Metamodels are often used because they generally offer a
vast reduction in computation time (Kleijnen, 1979; Friedman
and Pressman, 1988; Barton, 1992; Weiser Friedman, 1996;
O’Hagan et al., 1999; Barton and Meckesheimer, 2006; Santos
and Santos, 2007; Reis dos Santos and Reis dos Santos, 2009;
Khuri and Mukhopadhyay, 2010). For example, a model that
takes several hours or even days to run can be approximated with
a metamodel that may only take a few milliseconds. This feature

has been an attractive attribute of metamodels for many decades
in engineering and computer science. Examples of metamodels
in health decision sciences involve revealing model uncertainty
using linear regression mdetamodeling (Jalal et al., 2013), and
speeding up computationally expensive microsimulation models
using Gaussian processes metamodeling (Stevenson et al., 2004;
de Carvalho et al., 2019).

An additional benefit of using metamodels for Bayesian
calibration is that one can reuse the same metamodel structure to
calibrate very different simulation models. The same BayCANN
code can be adapted to other problems with no or minimal
change.

2.2.1. ANN Metamodels
Artificial neural networks (ANNs) are networks of non-linear
regressions that were initially developed to mimic the neural
signal processing in the brain and to model how the nervous
system processes complex information (Másson and Wang,
1990; Michie et al., 1994; Rojas, 1996; Jain et al., 1996; Olden
et al., 2008). ANNs have recently witnessed significant advances
for applications in machine learning, artificial intelligence, and
pattern recognition (Ravì et al., 2016).

Figure 1 illustrates the basic structure of a four-layer neural
network with two hidden layers with I neurons (nodes) in the
input layer, J hidden nodes in the first hidden layer, K hidden
nodes in the second hidden layer, and O output nodes in the
output layer. The ANNs with more than one hidden layer are
often referred to as deep ANNs. The following sets of equations
represent the structure of this ANN

z(1) = W(1)θ + b(1)

h(1) = f (1)
(

z(1)
)

z(2) = W(2)h(1) + b(2)

h(2) = f (2)
(

z(2)
)

z(3) = W(3)h(2) + b(3)

Y = f (3)
(

z(3)
)

,

(3)

where θ is the simulation model inputs, Y is the model
outputs to be compared to the calibrated targets, and (W, b) =
(

W(1), b(1),W(2), b(2),W(3), b(3)
)

are the ANN coefficients. W(1)

are the weights connecting the inputs θ with the nodes in the
first hidden layer, W(2) are the weights connecting the nodes
in the first and second hidden layers, and W(3) are the weights
connecting the nodes in the second hidden layer with the output
Y . The terms b(1), b(2) and b(3) are corresponding bias (intercept)
terms. f (1) is the activation function, commonly, a sigmoid
function such as a hyperbolic tangent function

f (1)
(

z(1)
)

=
2

1+ e−2z(1)
− 1. (4)

The function f (3) is called a transfer function that transforms the
results from the last hidden layer’s nodes into a working output.
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FIGURE 1 | Diagram of general structure of a deep neural network with I

inputs, two hidden layers with J and K hidden nodes and O outputs.

The transfer function can also be a sigmoid function or a simple
linear function. Thus, the z(1), z(2) and z(3) are the weighted
sum of inputs from the input layer and the first and second
hidden layers, respectively. ANNs can be made more flexible by
increasing the number of hidden layers and/or the number of
nodes in these layers.

2.3. BayCANN Algorithm
We implement BayCANN with TensorFlow to fit the ANN
and Stan to obtain the parameter’s posterior distributions. We
use the package keras in R to create ANN metamodels
that approximate the relationship between our model’s input
parameters and outputs and estimate the coefficients b and W
(R Core Team, 2018; Jalal et al., 2017). We built the ANN from
a set of probabilistic samples using a Latin hypercube sampling
(LHS) design of experiment (DoE) to efficiently sample the
input parameter space. Once we obtain the ANN coefficients, we
perform the Bayesian calibration using the ANN rather than the
simulation model.

We implemented the deep ANN in Stan (Carpenter et al.,
2017) which uses a guided MCMC using gradient descent,
referred to as HamiltonianMonte-Carlo. Similarly, the R package
rstan.

Both TensorFlow and Stan utilize multithreading; thus, it is
essential to ensure sufficient memory is available for all threads
to run efficiently.

Below we outline the steps to conduct BayCANN.

1. Structure the simulation model such that it produces outputs
corresponding to the calibration targets. For example, if
calibration targets are disease incidence or prevalence, ensure
the model generates these outputs.

2. Generate two datasets of input parameter sets—one for
training the ANN (training dataset) and the second for
validating it (validation dataset). The analyst could use an LHS
to efficiently sample the model inputs’ prior distributions.

3. Run the simulation model using both training and validation
datasets to generate their corresponding simulation
model outputs.

4. Train an ANN using the training dataset, and validate it using
the validation dataset. Obtaining a high-fidelity ANN is crucial
to ensure getting accurate and reliable results from BayCANN
(Degeling et al., 2020). Adjust the ANN’s structure to obtain
an accurate metamodel before proceeding.

5. Perform the Bayesian calibration by passing the ANN
coefficients W and b, the prior input parameter samples, and
the calibration targets to the programmed ANN framework in
Stan. Stan then returns the joint posterior distribution of the
calibrated parameters.

The code for implementing BayCANN is available on GitHub
at https://github.com/hjalal/BayCANN. In the case study below,
we use BayCANN to calibrate a colorectal cancer natural history
model.

2.4. Case Study: Natural History Model of
Colorectal Cancer
We use BayCANN to calibrate a state-transition model (STM)
of the natural history of colorectal cancer (CRC) implemented
in R (Jalal et al., 2017). We refer to our model as CRCModR.
CRCModR is a discrete-time STM based on a model structure
originally proposed by (Wu et al., 2006) that has previously been
used for testing other methods (Alarid-Escudero et al., 2018;
Heath et al., 2020). Briefly, CRCModR has 9 different health states
that include absence of the disease, small and large precancerous
lesions (i.e., adenomatous polyps), and early and late preclinical
and clinical cancer states by stage. Figure 2 shows the state-
transition diagram of the model. The progression between health
states follows a continuous-time age-dependent Markov process.
There are two age-dependent transition intensities (i.e., transition
rates), λ1(a) and µ(a), that govern the age of onset of adenomas
and all-cause mortality, respectively. Following Wu’s original
specification (Wu et al., 2006), we specify λ1(a) as a Weibull
hazard such that

λ1(a) = lγ aγ−1, (5)

where l and γ are the scale and shape parameters of the
Weibull hazard model, respectively. The model simulates two
adenoma categories: small (adenoma smaller than or equal to
1 cm in size) and large (an adenoma larger than 1 cm in
size). All adenomas start small and can transition to the large
size category at a constant annual rate λ2. Large adenomas
may become preclinical CRC at a constant annual rate λ3.
Both small and large adenomas may progress to preclinical
CRC, although most will not in an individual’s lifetime. Early
preclinical cancers progress to late stages at a constant annual
rate λ4 and could become symptomatic at a constant annual
rate λ5. Late preclinical cancer could become symptomatic
at a constant annual rate λ6. After clinical detection, the
model simulates the survival time to death from early and
late CRC using time-homogeneous mortality rates, λ7 and λ8,
respectively. In total, the model has nine health states: normal,
small adenoma, large adenoma, early preclinical CRC, late
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FIGURE 2 | State-transition diagram of the natural history model of colorectal cancer. Ovals represent health states and arrows represent transitions. All states can

transition to death from causes other than CRC with rate µ(a). CRC, colorectal cancer.

TABLE 2 | The parameters of the natural history model of colorectal cancer (CRC).

Parameter Description Base value Calibrate? Source Prior range

l Scale parameter of Weibull hazard 2.86e-06 Yes Wu et al., 2006 [2× 10−6, 2× 10−5]

g Shape parameter of Weibull hazard 2.78 Yes Wu et al., 2006 [2.00, 4.00]

λ2 Small adenoma to large adenoma 0.0346 Yes Wu et al., 2006 [0.01, 0.10]

λ3 Large adenoma to preclinical early CRC 0.0215 Yes Wu et al., 2006 [0.01, 0.04]

λ4 Preclinical early to preclinical late CRC 0.3697 Yes Wu et al., 2006 [0.20, 0.50]

λ5 Preclinical early to clinical early CRC 0.2382 Yes Wu et al., 2006 [0.20, 0.30]

λ6 Preclinical late to clinical late CRC 0.4852 Yes Wu et al., 2006 [0.30, 0.70]

λ7 CRC mortality in early stage 0.0302 No Wu et al., 2006 -

λ8 CRC mortality in late stage 0.2099 No Wu et al., 2006 -

padeno Prevalence of adenoma at age 50 0.27 Yes Rutter et al., 2007 [0.25, 0.35]

psmall Proportion of small adenomas at age 50 0.71 Yes Wu et al., 2006 [0.38, 0.95]

The base values are used to generate the calibration targets and the ranges of the uniform distribution used as priors for the Bayesian calibration.

preclinical CRC, CRC death, and other causes of death. The
state-transition diagram of the model is shown in Figure 2. The
model simulates the natural history of CRC of a hypothetical
cohort of 50-year-old women in the U.S. over a lifetime. The
cohort starts the simulation with a prevalence of adenoma of
padeno. A proportion, psmall, corresponds to small adenomas
and prevalence of preclinical early and late CRC of 0.12 and
0.08, respectively. The simulated cohort in any state is at risk
of all-cause mortality µ(a) obtained from the U.S. life tables
Arias (2014). Similar models to CRCmodR have been used
to inform population-level screening guidelines in the U.S.
(Knudsen et al., 2016).

CRCModR has 11 parameters summarized in Table 2 (Alarid-
Escudero et al., 2018). Mortality rates from early and late stages
of CRC (λ7, λ8]) could be obtained from cancer population
registries (e.g., SEER in the U.S.). Thus, we calibrate the model
to the remaining nine parameters (padeno, psmall, l,γ , λ2, λ3, λ4,
λ5 and λ6).

2.4.1. Confirmatory Analysis
We conducted a confirmatory analysis to compare BayCANN vs.
IMIS. To obtain the “truth” that we could compare BayCANN
and IMIS against, we generated the synthetic targets using the
base-case values in Table 2. We generated four age-specific
targets, including adenoma prevalence, the proportion of small
adenomas, and CRC incidence for early and late stages which
represent commonly used calibration targets for this type of
model (Kuntz et al., 2011). To generate the calibration targets, we
ran CRCModR as a microsimulation (Krijkamp et al., 2018) 100
times to produce different adenoma-related and cancer incidence
outputs. We then aggregated the results across all 100 outputs
to compute their mean and standard errors (SE). Different
calibration targets could have different levels of uncertainty
given the amount of data to compute their summary measures.
Therefore, to account for different variations in the amount
of data on different calibration targets, we simulated different
numbers of individuals for adenoma targets (N = 500) and
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FIGURE 3 | Generated calibration targets and its 95% credible interval of a cohort of 500 and 100,000 simulated individuals for adenoma-related targets cancer

incidence targets, respectively plotted against age in years on the x-axis. These distributions are from 100 different runs using the same parameter set values in each

set of runs.

cancer incidence targets (N = 100, 000). Figure 3 shows the
generated adenoma-related and cancer incidence calibration
targets aggregated over 100 different runs using the parameter set
in Table 2.

To create a deep ANN metamodel, we generated a DOE
by sampling each of the nine parameters from the ranges of
the uniform distributions using an LHS design as shown in
Table 2. Specifically, we created two LHS input datasets of sizes
8,000 samples and 2,000 samples for training and validating
the ANN, respectively. We then ran the natural history model
and generated adenoma prevalence and CRC incidence for each
parameter set.

We define an ANN with two hidden layers and 100 nodes
per hidden layer. Then, we evaluated the ANN’s performance
by validating the predicted values for the 36 outcomes against
the observed values from the validation dataset. The likelihood
function for BayCANN was constructed by assuming that the
targets, yti , are normally distributed with mean φti and standard
deviation σti , where φti = M[θ] is the model-predicted output
for each type of target t and age group i at parameter set θ . We
defined uniform prior distributions for all θu based on previous
knowledge or nature of the parameters (Table 2).

We compare BayCANN against a full Bayesian calibration
of the natural history model using the incremental mixture
importance sampling (IMIS) algorithm. The IMIS algorithm

has been described elsewhere (Raftery and Bao, 2010),
but briefly, this algorithm reduces the computational
burden of Bayesian calibration by incrementally building
a better importance sampling function based on Gaussian
mixtures.

3. RESULTS

We present the ANN’s performance in approximating the
output of the simulation model and compare the generated
joint posterior distribution of the simulation model parameters
produced from BayCANN against the full joint posterior from
the IMIS approach. We compare both BayCANN and IMIS
results recovering the “true” values—the parameter values we
used to generate the calibration targets in the confirmatory
analysis.

3.1. Validation
Figure 4 illustrates the ANN’s performance in predicting the
model outputs using the validation dataset. Each plot represents
one of the model outputs, where we compare the ANN’s
prediction on the y-axis against the model’s output on the x-
axis. Each red dot represents one of the 2,000 DOE validation
samples not used to train the ANN. The ANN had a high
prediction performance in approximating the model outputs

Frontiers in Physiology | www.frontiersin.org 6 May 2021 | Volume 12 | Article 662314

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Jalal et al. Bayesian Calibration via Neural Networks

FIGURE 4 | Validation of the fitted ANN on the validation Latin hyper cube sample (LHS) dataset. The x and y axes represent the scaled model outputs and scaled

ANN predictions, respectively.

(R2 > 99.9%), indicating that the deep ANN is a high fidelity
metamodel of the simulation model within the parameter ranges
we evaluated.

3.2. Comparing BayCANN and IMIS
Figure 5 compares BayCANN against IMIS in recovering the true
parameter values used to generate the targets. The 95% credible

Frontiers in Physiology | www.frontiersin.org 7 May 2021 | Volume 12 | Article 662314

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Jalal et al. Bayesian Calibration via Neural Networks

FIGURE 5 | Prior and Marginal posterior distributions of the calibrated parameters from the IMIS and BayCANN methods. The vertical solid lines indicate the “true”

parameter values (i.e., the value of the parameters used to generate the calibration targets in the confirmatory analysis). The vertical dashed lines represent the

maximum a posteriori (MAP) for BayCANN and the incremental mixture importance sampling (IMIS).

intervals (CrI) of each parameter distribution obtained from
BayCANN cover all nine true parameters. For IMIS, the 95%
CrI did not cover the true parameters for λ2 and λ3. This figure
also shows the maximum a posteriori (MAP) estimate for both
BayCANN and IMIS. The MAP is the sample associated with the
highest log-posterior and indicates the posterior parameter set
that best fits the target data.

Figure 6 compares the results of BayCANN against all the
calibration targets for the probability of developing multiple
adenomas, the proportion of small adenomas, and early and late
clinical CRC incidence. Upon visual inspection, BayCANN fits
all calibration targets well, indicating that the joint posterior
distribution from BayCANN can produce targets in the desired
ranges. The results here represent the model-predictive mean
and the credible interval of using 10,000 posterior samples from
BayCANN.We also present the results of using BayCANN’sMAP
estimates which closely follow the model-predicted posterior
mean from the 10,000 posterior samples.

In this example, BayCANNwas five times faster than the IMIS.
The IMIS algorithm took 80min to run in aMacBook Pro Retina,
15-inch, Late 2013 with a 2.6 GHz Intel Core i7 processor with
4 cores and 16 gigabytes of RAM. BayCANN took only 15 min

on the same computer; 5 min to produce 10,000 samples for both
LHSDOE dataset generations and about 10min to fit the ANN in
TensorFlow and produce the joint posterior distributions in Stan.
The computational gain of BayCANN was modest given that our
case study model was efficient and deterministic.

Figure 7 presents the joint distribution of all pairwise
parameters in BayCANN, and along the diagonal, the marginal
distributions of each parameter. This figure reveals insightful
information about this calibration exercise. In practice, many
calibrated parameters are correlated as shown in this figure.
The absolute value of these correlations range from 0.013 to
0.963. The strength of the correlation reflects the level of non-
identifiability between that pair of parameters. The stronger the
correlation the higher the non-identifiability and the greater need
to add additional target data or modify the model structure
to separate the parameters in question (Alarid-Escudero et al.,
2018).

4. DISCUSSION

In this study, we propose BayCANN as a feasible and practical
solution to Bayesian calibration challenges in complex health
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FIGURE 6 | BayCANN calibration results by age in years on the x-axis. The upper panels show adenoma targets and lower panels show cancer incidence targets by

stage. Calibration targets with their 95% confidence intervals are shown in black. The colored curves show the posterior model-predicted mean, and the shaded area

shows the corresponding 95% posterior model-predicted credible interval of the outcomes. The dashed-dotted lines represent the output using the maximum a

posteriori (MAP) estimate from BayCANN.

decision science models. The distinct advantage of using
BayCANN is that it represents the model on a functional
basis as an ANN. Then, the ANN can become a high-
fidelity representation of the model. Thus, those interested in
implementing BayCANN can do so without the need to code
their models in a probabilistic programming language. Given
the high computational efficiency of the ANN, BayCANN can
also provide a computational advantages over other Bayesian
calibration methods.

BayCANN uses ANNs specifically to streamline Bayesian
calibration. ANNs have also been used as metamodels of
both stochastic and deterministic responses, mainly for their
computational efficiency (Barton, 2009; Badiru and Sieger, 1998;
Hurrion, 1997; Chambers and Mount-Campbell, 2002; Zobel
and Keeling, 2008). One of the first implementations of ANN
as metamodels was in 1992 for a scheduling simulation model
(Pierreval et al., 1992; Pierreval and Huntsinger, 1992). Since
then, ANNs have been successfully implemented as emulators of
all sorts of discrete-event and continuous simulation models in a
wide variety of fields (Kilmer, 1996; Sabuncuoglu and Touhami,
2002; Fonseca et al., 2003; El Tabach et al., 2007). ANNs have also
been proposed as proxies for non-linear and simulation models
(Paiva et al., 2010;Mareš and Kučerová, 2012; Pichler et al., 2003).
An example of ANNs as metamodels is estimating the mean and

variance of patient time in emergency department visits (Kilmer,
1994; Kilmer et al., 1997). Nowadays, ANNs are widely popular
as machine learning tools in artificial intelligence (Schmidhuber,
2015). Deep learning using ANNs are used for visual recognition
in self-driving cars (Ndikumana et al., 2020) and in classifying
galaxies (Folkes et al., 1996). ANNs have been used for calibration
of computationally expensive models, such as general circulation
and rainfall-runoff models in climate science (Khu et al., 2004;
Hauser et al., 2012), and other complex global optimization
techniques such as genetic algorithms (Wang, 2005).

The superior performance of BayCANN relative to IMIS
may pertain to the bias of the ANN in BayCANN being
relatively lower than that of the Bayesian approximation of
IMIS. BayCANN uses ANNs as high-fidelity metamodels of
the simulator and conducts full Bayesian calibration. However,
IMIS is an approximation of Bayesian inference that directly
uses the simulator itself. Thus, visual examination of the ANN’s
performance similar to Figure 4 is an important step to ensure
obtaining high-fidelity ANN for BayCANN.

Bayesian calibration provides other practical advantages
over direct-search algorithms because the samples from the
joint posterior distribution can be used directly as inputs to
probabilistic sensitivity analyses (PSA) which are now required
for cost-effectiveness analyses (Neumann et al., 2016; Rutter
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FIGURE 7 | Joint posterior distribution of the calibrated parameters of the case study using the ANN method.

et al., 2019). This joint posterior distribution is also informative
in non-identifiable calibration problems where calibration
targets are not sufficient to provide a unique solution to the
calibrated parameters. Non-identifiability is often overlooked
using standard non-Bayesian calibration approaches (Alarid-
Escudero et al., 2018).

In our case study, BayCANN was both faster and overall
more accurate in recovering the true parameter values than the
IMIS algorithm. We developed BayCANN to be generalizable to
models of various complexities, and we provide the open-source
implementation in R and Stan to facilitate its wider adoption.

BayCANNmay have an additional advantage for representing
models with first-order Monte-Carlo noise from individual-
based state-transition models (iSTM). Traditionally, calibrating
these models has been challenging because of (1) the stochasticity
of each simulation due to the simulator’s output varying given
the same set of input parameter values, and (2) the extra
computational burden involved in calibrating iSTM. Because
BayCANN averages over a set of simulations, it can account for
the first-order Monte-Carlo noise. Further research is needed to
study BayCANN’s performance in stochastic models.

We chose ANNs over other metamodeling techniques because
of their flexibility, efficiency, and ability to accept a large number
of inputs. The use of metamodels in Bayesian calibration has

been mostly limited to Gaussian processes (GP) (Kennedy and
O’Hagan, 2001; Gramacy, 2020). GPs are attractive because they
can be specified fully as Bayesian models (Kennedy and O’Hagan,
2001). However, GPs are not without limitations, the main
one being that they are themselves relatively computationally
expensive. In practice, computational challenges limit training
GPs to datasets in the low thousands limiting their applicability
to health decision sciences models (Gramacy, 2020).

Our approach has some limitations. First, ANNs are not
fully probabilistic, thus, the joint posterior distribution produced
from the Bayesian calibration is an approximation of the
true distribution. Other metamodels, such as GPs are fully
probabilistic and can produce the full joint posterior distribution
(Gramacy, 2020). However, applying GPs in complex models
can be computationally infeasible (Gramacy, 2020). Second,
accuracy—Because ANNs (and GPs) are metamodels, they may
rarely achieve 100% precision compared to using the simulation
model itself. In our example, with a relatively simple ANN (only
two hidden layers with 100 hidden nodes each), we were able
to achieve 99.9% accuracy. However, for other application, the
accuracy of the ANN might be lower especially if the model
outputs are not continuous or smooth in certain region of
the parameter space. In addition, over-fitting can be a serious
problem with any metamodel especially when the purpose of
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the metamodel is as sensitive as calibration. To reduce the
chance of over-fitting, we validated the model against a subset
of simulation runs. We visually inspected the degree of fit
for the simulation output against those predicted by the ANN
(Figure 4). Third, similar to any Bayesian model, the choice of
priors can be important. Fortunately, in health decision sciences’
models, analysts often make careful choices of their priors when
designing their models and running PSA analyses. Additionally,
the best-fitting parameters may be outside the simulated ranges.
Notably, the joint posterior distribution can give insights into the
parameter ranges. For example, if a parameter is skewed heavily
without a clear peak, that may indicate that the parameter range
needs to be shifted to cover values that may fit better. This process
is usually iterative and may involve multiple steps or redefining
the parameter ranges and recalibrating the model. Finally, there
is no strict guideline for choosing the number of hidden ANN
layers or the number of nodes per layer. In this study, we chose an
ANN with two hidden layers and 100 nodes per layer. Adjusting
these parameters and additional parameters of the Bayesian
calibration process can improve the calibration results and can
be easily changed in BayCANN. While determining these values
apriori can be challenging, we recommend modelers who wish to
use BayCANN to start with simple settings and gradually increase
the complexity of the ANN to accommodate their particular
needs. We provide flexible code in R and Stan to simplify these
tasks.

In summary, Bayesian calibration can reveal important
insights into model parameter values and produce outcomes
that match observed data. BayCANN is one effort to target the
computational and technical challenges of Bayesian calibration
for complex models.
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