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Abstract: A steel strand is widely used in long span prestressed concrete bridges. The safety and
stability of a steel strand are important issues during its operation period. A steel strand is usually
subjected to various types of prestress loss which loosens the anchorage system, negatively impacting
the stability of the structure and even leading to severe accidents. In this paper, the authors propose a
wavelet packet analysis method to monitor the looseness of the wedge anchorage system by using
stress wave-based active sensing. As a commonly used piezoceramic material, lead zirconate titanate
(PZT) is employed with a strong piezoelectric effect. In the proposed active sensing approach, PZT
patches are used as sensors and actuators to monitor the steel strand looseness. The anchorage system
consists of the steel strand, wedges and barrel, which forms two different direct contact surfaces to
monitor the tension force. PZT patches are pasted on the surface of each steel strand, corresponding
wedge and barrel, respectively. Different combinations of PZTs are formed to monitor the anchoring
state of the steel strand according to the position of the PZT patches. In this monitoring method of
two contact surfaces, one PZT patch is used as an actuator to generate a stress wave and the other
corresponding PZT patch is used as a sensor to detect the propagated waves through the wedge
anchorage system. The function of these two PZTs were exchanged with the changing of transmission
direction. The wavelet packet analysis method is utilized to analyze the transmitted signal between
PZT patches through the steel strand anchorage system. Compared with the wavelet packet energy
of received signals under different PZT combinations, it could be found that the wavelet packet
energy increased with the increasing of anchorage system tightness. Therefore, the wavelet packet
energy of received signal could be used to monitor the tightness of the steel strand during operation.
Additionally, the wavelet packet energy of the received signals are different when the same PZT
combination exchanges the energy transfer direction. With the comparison on the received signals of
different combinations of PZTs, the optimal energy transfer path corresponding to different contact
surfaces of the steel strand could be determined and the optimal experimental results are achieved.

Keywords: piezoceramics; prestress monitoring; steel strand; wedge anchorage connection; wavelet
packet analysis

1. Introduction

A steel strand is widely used in prestressed structures due to beneficial features such as a large
cross-section area, softness and convenient location, high strength and low relaxation. As a skeleton
component in the prestressed structure, the tension of the prestressed steel strand directly affects the
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durability and overall safety of these structures. However, due to the tensioning process, material
properties and environmental conditions, prestress loss will occur in the steel strands, which will
reduce the bearing capacity of the structure and bring potential or even serious harm to the overall
safety of the structure [1,2].

In recent years, a series of accidents of prestressed bridge failures have occurred, most of which
are caused by the loss of the prestress. During the operation of large-span bridges, problems such as
excessive deflection of the main span and the cracks in the box girder due to the prestress tension not
reaching the design value can be caused easily [3–5]. If the steel strand fails in the prestressed member,
the member may be destroyed quickly without any signs on the surface. For a continuous multi-span
unbonded prestressed structure, once one span of the prestressed steel strand fails, the remaining
span of prestressed steel strands will fail together, resulting in overall structural damage and huge
losses. Therefore, prestress monitoring of the steel strand is very important, and its non-destructive
and in-service measurement has received extensive attention worldwide [6,7]. At present, there are
mainly the vibration frequency method, resistance strain gauge method, pressure transducer method,
magnetic flux leakage method, optical fiber detection method and magnetoelastic method for steel
strand detection, but they have certain limitations [8–10]. Many methods can only detect the accessible
components, such as external prestressed steel strands in concrete or bridge cables, and their application
scope is greatly limited. Some detection methods are too expensive and few measurement points
are arranged in the actual bridge-monitoring process. Meanwhile, most of the measurement sensors
have a limited life span and cannot be replaced later or the replacement process is complex. In recent
years, with the development of research on the propagation characteristics of an ultrasonic guided
wave in a steel strand, the correlation between the propagation characteristics of the guided wave in
the steel strand and the axial tension has been gradually explored [11–15]. Based on the simplified
wire-to-wire contact model, Treyssède [16] used a semi-analytic finite element method to obtain the
dispersion curve of the guided wave in the steel strand. Raišutis [17] conducted ultrasonic guided
wave propagation experiments in multiple-wire ropes with artificial defects, successfully identified the
damaged strands, and verified the feasibility of ultrasonic guided waves in the defect identification
of steel strand. Moustafa [18] introduced fractal theory to evaluate the corrosion of steel strands
through the fractal characteristics of guided wave signals under different degrees of corrosion, and
proposed an outlier algorithm to improve the accuracy of the corrosion detection method. Xu [19]
used a magnetostrictive ultrasonic guided wave to detect multiple broken wires in the same steel wire
of a steel strand. Li [20] determined the influence of propagation length and concrete state on acoustic
emission (AE) strength by comparing the attenuation of AE strength of the steel strand in concrete
under four different environments. Based on ant colony optimization and self-organizing feature
mapping technology, Li [21] identified the stress corrosion pattern of the steel strand and determined
AE feature parameters by analyzing AE characteristic signals at different stress corrosion stages of the
steel strand. When the guided wave propagates in the structure, the phase velocity will change with
the frequency, which is called the dispersion phenomenon. The dispersion of the guided wave makes
the signal width wider and the amplitude lower after the guided wave propagates to a certain distance.
It is difficult to analyze the signal. The mode with larger dispersion is not suitable for waveguide
detection. Therefore, the dispersion characteristics of an ultrasonic guided wave greatly affect the
detection effect [22,23]. Alireza [24] built an ultrasonic guided wave detection system for corrosion
damage of steel strands. Two broadband piezoelectric transducers were used to excite and receive
ultrasonic guided waves. The transmission wave detection method was used to study the guided
wave response during the corrosion of steel strands. The cross-sectional area loss is estimated by using
a parameterless graph formed by the dispersion curve and wave velocity measurement. However, the
current research results show that the guided wave propagation in the steel strand carries obvious
tensile force information, but it is still difficult to find the propagation characteristics that can represent
the tensile force and have strong engineering applicability from the complex guided wave signals.
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Therefore, a new non-destructive testing method is urgently needed for the health assessment of steel
strands under different working conditions.

A piezoelectric lead zirconate titanate (PZT)-based technique is often used in active monitoring
the safety state of structures over their entire life cycle due to great features such as their broadband
frequency response and the ability of being employed as actuators or sensors [25–27]. The recent research
has shown that low cost PZT patches can be used for vibration detection [28,29], energy harvesting [30],
stress wave generation [31,32], damage detection [33,34] and structural health monitoring [35–38].

Wavelet packet analysis, a good signal-processing tool, is utilized by many researchers to monitor
safety states or detect damage in structures. Xu applied PZT-based intelligent aggregate (SAs)
as actuators, using piezoelectrics on the surface of the steel tube as sensors [39]. The artificially
manufactured debonding areas of the concrete inside the steel tube can be monitored according to the
evaluation index. Feng embedded smart aggregates based on PZT properties into reinforced concrete
pipelines [40]. The cracking of a concrete pipeline can be monitored according to the energy attenuation
at the crack location of the concrete pipeline. Zhang bonded PZT patches on the cross bars and vertical
bar of cuplok scaffold, respectively. The propagated energy value increase with the tightness of cuplock
connection, and the safety status of cuplock scaffold can be monitored [41]. Li attached PZT patches to
surface of the pin and steel plate base, and the energy of different tension states is consistent with the
results of a 3D finite element calculation. The experimental result proved that wavelet packet analysis
method can be used to monitor the safety of the pin connection structures [42].

In this paper, an active monitoring method for prestress with a wedge connection based on the
wavelet packet analysis method using piezoceramics was proposed. According to the composition
characteristics of wedge anchorage system, two direct contact surfaces were formed. In the proposed
active monitoring method, three PZT patches were attached to the surface of the steel strand, wedge
and barrel, respectively. Once a certain contact surface was selected for prestress monitoring, two PZT
patches corresponding to the selected contact surface formed a monitoring PZT combination. One PZT
patch acted as an actuator to generate a stress waves, and the other PZT patch was used as a sensor to
detect and receive waves propagated through the selected contact surfaces. The propagated energy of
the received signal depends on the effective contact area of the contact surfaces, which is ultimately
controlled by the tension of the steel strand supplied by a digital jack.

The loading state of the prestressed steel strand can be monitored by analyzing the energy of
the received signal based on the wavelet packet method. Due to the property of the PZT patch and
the characteristics of the wedge anchorage, once the signal transmission direction of the same PZT
combination was interchanged, the energy transmission path was altered, and the received energy was
also different. Especially for structures with multiple contact surfaces, when the direct contact surface
is selected for prestress monitoring, the signal transmission direction has a significant influence on
the propagated energy value. In the test, two signal propagation directions of each PZT combination
were compared to determine the optimal transmission mode according to the corresponding contact
surface. Monitoring data of two direct contact surfaces shows that the transmitted energy based on
wavelet packet method can monitor the tension state of the prestressed steel strand with a wedge
anchorage system.

2. Contact Model of Wedge Anchorage Based on Hertz Contact Theory

Since the energy monitoring technique based on piezoceramics mainly depends on the energy
transferred by the monitored interfaces, it is very important to analyze the change in the effective area
of the monitored contact surface. In order to verify the feasibility of the proposed prestress monitoring
technique, a 3D finite element model of wedge anchorage was established according to Hertz contact
theory to calculate the trend in the contact area between two direct contact surfaces under different
tension conditions.
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2.1. Hertz Contact Theory

Base on Hertz contact theory in contact mechanics, when a rigid cone penetrates an elastic half
space body (as shown in Figure 1), the normal force is proportional to the square of the penetration
depth:

FN =
π
2

E∗
d2

tanθ
(1)

in which, FN is the normal force which was perpendicular to the contact surface when the rigid cone
and the elastic plane were pressed into each other, d is the penetration depth at which the cone was
pressed into the elastic space, θ is the angle between the cone and the contact surface when the cone
and the elastomer are squeezed, and E* is the equivalent elastic modulus of two contact objects.
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Equivalent elastic modulus E* is calculated as follows:

1
E∗

=
1− υ2

1

E1
+

1− υ2
2

E2
(2)

here, E1 and E2 are the elastic modulus of the two elastomers, and υ1 and υ2 are their Poisson’s ratios.
Meanwhile, according to Hertz contact theory when the rigid cylinder is in contact with the elastic

half-space body (as shown in Figure 2), the force is linearly proportional to the depth of penetration:

FR =
π
4

E∗Ld (3)

in which, FR is the normal force which was perpendicular to the contact surface when the rigid cylinder
and the elastic plane were pressed into each other, d is the penetration depth, L is the effective length of
the contact area when the cylinder and elastic half space body are squeezed each other, and E* is the
equivalent elastic modulus.
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2.2. Contact Model

The wedge anchorage system is composed of a barrel, two wedges and a steel strand. Through
the interaction between the steel strand and the teeth in wedges, the tension is transmitted to the
anchorage, which transmits the force to the tensioned object to bear the load in turn. The force analysis
is carried out on the status of the wedges clamping the steel strand and anchoring to the cone hole of
the anchorage, as shown in Figure 3.
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Figure 3. Schematic diagram of stress analysis.

In Figure 3, P is the tensile force of the steel strand, R is the acting force of the anchorage on
wedges, which can be decomposed into the force Rx along the steel strand direction and the force Ry

perpendicular to the steel strand direction. N is the interaction force of the steel strand on wedges, so
the combined force of the anchorage on wedges is N =

∑
Ry. Since the steel strand and wedges have

a good clamping effect, so the steel strand and wedges can be taken as the same isolation body to
analyze their interaction with the anchorage. The overall axial force is balanced, i.e.,

∑
Rx = P.

Since there is an inverted triangle screw tooth on the inside of wedges, it can bite the steel strand
during the anchoring processing, as shown in Figure 4.
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Based on the above analysis, when the tooth of the inverted triangle bites the steel strand, it is
equivalent to the calculation model of the rigid conical indenter pressed into an elastic half-space body.
Therefore, the effective contact area between wedges and the steel strand under different tension state
can be calculated based on the above assumptions.

According to Hertzian contact theory, when a rigid cone enters an elastic half space body, the
relationship between the penetration depth and the contact radius is shown as follows:

d =
π
2

a tanθ (4)

contact area A is calculated as follows:

A = πa2 =
4d2

π tan2 θ
(5)

according to Equation (1), then the relationship between FN and A can be expressed as:

FN =
π2E∗ tanθ

8
A (6)

In Figure 5, when the tensile force P is applied to the steel strand, the force R exerted by anchorage
on wedges lead to the parallel extrusion between the outer conical surface of wedges and the inner
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conical surface of the barrel. According to Hertzian contact theory, the squeezing process between
wedges and the barrel is equivalent to the parallel contact model of two cylinders.
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The contact half width of the two spheres is:

a =
√

Rd (7)

equivalent radius R of two cylinders:
1
R

=
1

R1
+

1
R2

(8)

contact area A is calculated as follow:
A = 2L

√

Rd (9)

based on Equation (3), then the relationship between F and A can be expressed as:

F =
πE∗

16RL
A2 (10)

The 3D finite element model of wedge anchorage (as shown in Figure 6) established by Abaqus
can further verify the variation of contact surfaces during the tension process of the steel strand. In
order to establish the relationship between the monitored contact surface of wedge anchorage and
the effective prestress, two different contact areas were calculated under different tension conditions
respectively. The steel strand was loaded from 0 MPa to 1500 MPa after the preload was considered,
which was divided into 18 working conditions and loaded until the design value. Due to space
limitations, only six loading conditions are shown in Figure 7 that can represent the change in contact
areas during tensioning.
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In Figures 7 and 8, the numerical calculation results of the direct contact surface between the steel
strand and wedges is consistent with the change of theoretical values. This verified the feasibility of
using this contact surface to monitor the anchoring tightness.
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Figure 8. Contact area between steel strand and wedges.

In Figures 9 and 10, the parallel contact area of the two cones between wedges and the barrel
gradually increases with an increase of the applied loading force. The fitting result of the numerical
calculation is consistent with the variation of the theoretical value. It is also verified that this contact
surface can be used to monitor the change of the prestress.
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3.1. Piezoelectric Lead Zirconate Titanate (PZT)-Based Prestress Monitoring with Wedge Anchorage

The wedge anchorage system consists of a steel strand, two wedges and barrel, as shown in
Figure 11. PZT patches were adhered to the corresponding surfaces of the three components by epoxy
glue. The PZT patches attached to the steel strand are marked as PZT A; the PZT patches attached to
wedges are marked as PZT B; PZT patches pasted on the barrel are labeled as PZT C.
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3.2. Detection Principle for Wedge Anchorage-Connected Structures Based on Wavelet Packet Analysis

The wedge anchorage system is the key component for the long-term effective work of prestressed
steel strands. When the tensile force P is applied to the steel strand, the wedge would bite the steel
strand under the effect of horizontal force N and two rough contact faces between wedge and barrel
would be squeezed into each other by the vertical force R, as shown in Figure 12. Due to the three
components of wedge anchorage, one contact surface between the steel strand and wedges (AB
contact surface) and the other direct contact surface between wedge and barrel (BC contact surface)
were formed.
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The excited signal from PZT A can be propagated to PZT B through the AB contact surface. Once
the signal from PZT A was received by PZT B, it also could flow to PZT C through the BC contact
surface to achieve energy transfer across the interface. While the signal from PZT B can be propagated
to PZT A through the AB contact surface, it also can flow to PZT C through the BC contact surface
to achieve multi-interface transmission of energy. Since PZT combines the characteristics of actuator
and sensor, the reverse transmission of energy can be obtained by exchanging the signal transmission
direction in the same PZT combination.

The variation of the contact area of two different contact surfaces is consistent with the variation
of the loading conditions. With the tension of steel strand increasing, the contact areas of the wedge
anchorage system increases, and the energy propagated between two direct contact surfaces is further
increased. Determining the relationship between the transmitted energy of two contact surfaces and
the loading force, the effective prestress can be monitored.

Wavelet is a useful tool for non-stationary signal analysis with energy concentrating on time.
The general step of decomposition of the time-domain signal S was illustrated in Figure 13. Wavelet
packet decomposition is a stepwise decomposition of the original signal, which divides the signal into
low-frequency and high-frequency components. First, signals through the low frequency filter and
high frequency filter are decomposed into the approximation (A1) and the detail (D1), respectively.
Then, the new approximation and detail coefficient are divided into an approximation and a detail
again. In this paper, the transmitted signal is analyzed using wavelet analysis and the transmitted
energy is used as an indicator for the anchor connection quality.

The propagated signal S is a signal set {S1, S2, · · · , S2
n} decomposed by a n-level wavelet packet as

described in Equations (11)–(15):

S = S1 + S2 + · · ·+ Si + · · ·+ S2n−1 + S2n , (i = 1, 2, · · · , 2n) (11)
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where Si is the decomposition signal, and i is the index (i = 1, 2, · · · , 2n). In this paper, n = 5. Si can be
described as follows:

Si = [si,1 si,2 · · · si, j · · · si,m−1 si,m], ( j = 1, 2, · · · , m) (12)

where m is the number of samples. Then, the signal S can be defined as:

E = [E1 E2 · · · Ei · · · E2n−1 E2n ], (i = 1, 2, · · · , 2n) (13)

in which, Ei is the energy of corresponding decomposition signal and is described as:

Ei =
m∑

j=1

s2
i, j, (i = 1, 2, · · · , 2n) (14)

thus, the energy of signal S can be expressed as as follows:

E =
2n∑

i=1

Ei. (15)

Finally, the signal transmitted by two internal direct contact surfaces under different tension
conditions of the steel strand, that can be reflected by the wavelet packet energy to achieve the purpose
of monitoring the tightness of the steel strand.Sensors 2020, 20, x FOR PEER REVIEW 10 of 19 
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4. Experimental Setup

Experimental equipment includes a National Instrument (NI) data acquisition card, a waveform
generator, a computer, and an experimental setup, as shown in Figures 14 and 15. The steel strands
were loaded through the digital jack on the reaction frame. Each test was divided into six different
loading levels, which were sequentially increased by 1016 N. In order to prevent large relative slip of
the wedges during the tensioning process of the steel strand, the initial pretension was usually applied
to the steel strand in the actual engineering tensioning process. During this experiment, an initial
pretension was applied to the steel strand before loading to ensure that the wedge and the steel strand
were embedded in the barrel with the initial contact. According to the structural characteristics of
wedge anchorage, the experiment was divided into two different prestress monitoring methods. The
first monitoring method was based on the contact surface (AB contact surface) between the steel strand
and wedges. The second monitoring method was based on the contact surface (BC contact surface)
between wedge and barrel.
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Figure 15. Piezoelectric lead zirconate titanate (PZT) locations of two monitoring techniques.

During the experiment, when a certain load was applied to the steel strand, the Gaussian pulse
generated from the waveform generator and output to PZT A, which was used as actuator. Then the
stress wave was detected and received by PZT B, which was used as a sensor, through the contact
surface between the steel strand and wedges. Finally, the propagated signal was acquired by the
computer via the NI data acquisition card. According to the energy transmitted by the AB contact
surface under different loading conditions, the relationship between the tensile force of the steel
strand and the wavelet packet energy can be established. In the same way, the energy transmitted by
the BC contact surface under different tension conditions can be obtained. Finally, according to the
propagated energy based on wavelet packet analysis method under different tension conditions, the
prestress can be monitored. In the test, all the propagated signals were analyzed with wavelet packet
analysis technique. Additionally, the signal was decomposed into 32 signal sets by a 5-level wavelet
packet decomposition.

Corresponding information of PZT patchs is shown in Table 1.

Table 1. Parameters of PZTs.

PZT Shape Diameter (mm) Thickness (mm) Paste Position

A round 20 1 steel strand
B round 10 1 wedge
C round 10 1 barrel
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5. Experimental Procedure, Results and Analyses

The energy values corresponding to two contact surfaces of the steel strand under six tension
conditions were collected, respectively. The frequency sweep from 100 Hz to 500 kHz was applied to
each contact surface of wedge anchorage system. One of the received signals and its Fourier spectrum
of each contact surfaces were shown below. It was found that the maximum resonance frequency of
the energy value appeared in the sweep frequency range, which proved the rationality of the selected
sweep frequency range. The input signal was shown in Figure 16.
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5.1. Prestress Monitoring Based on AB Contact Surface

The first prestress monitoring method was through the contact surface (AB contact surface)
between the steel strand and wedges. The wavelet packet energies of PZT AB and PZT BA transmission
modes were compared under the same loading conditions. In the test, PZT AB combinations under six
loading contiditions were performed with a frequency sweep from 100 Hz to 500 kHz. The sweep
frequency results shown that there was an obvious resonance frequency in the range of the sweep
frequency region, which proved the rationality of the experimental selection frequency band. Due to
space limitations, only the sweep result of PZT AB transmission mode is listed in Figure 17.

During the experiment, each steel strand was loaded by digital jack, and the loading process
was divided into six tension conditions with an interval of 1016 N. With the increase of the load of
the steel strand, the amplitude of the corresponding received signal was gradually increased. Due to
space limitations, the received signal of PZT BA transmission mode under four tension conditions was
randomly selected, as shown in Figure 18.
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In order to test the reliability and repeatability of the experiment, five independent experiments
were implemented on PZT AB combinations. In each test, the load of the steel strand was started
from 0 N with six working conditions. Due to the characteristics of the wedge anchorage system,
once the transmission direction of same PZT AB combination was interchanged, that is, the PZT AB
and the PZT BA transmission modes have different energy transmission paths, the obtained wavelet
packet energy values were also different. At the same time, signal transmission directions of PZT AB
and PZT BA combinations were compared with the wavelet packet energy values. The results of five
experiments of PZT AB combinations were presented in Table 2. Using the wavelet energy at 0 MPa as
the reference value, the relative change values of the transmitted energy under each loading condition
were calculated. Then, the difference between the energy value transferred from the maximum loading
condition and the reference value was regarded as the absolute change value of the experiment. Finally,
the relative change rate was calculated according to the relative change value and absolute change
value of the energy received under each loading condition.

Table 2. Tests results of PZT AB combinations.

Tension/N
PZT AB Combination PZT BA Combination

µ/V2 Relative Change/
Absolute Change (%) µ/V2 Relative Change/

Absolute Change (%)

1016 83,334.7045 24.83 83,334.7299 18.46
2032 83,334.7265 44.41 83,334.757 35.58
4064 83,334.7345 51.57 83,334.7847 53.38
8128 83,334.7521 67.15 83,334.8121 70.85
16256 83,334.7889 100.00 83,334.8578 100.00
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In Table 2, the transmitted energy of two transmission modes between PZT AB and PZT BA
combinations increases with the increase of the load. Experimental data were shown that the loading
conditions can be monitored based on the wavelet packet energy of PZT AB combinations. Meanwhile,
under the same tension condition of the steel strand, the focused value of PZT BA transmission mode
was larger than that of PZT AB transmission mode. In addition, the mean of transmitted energy from
two signal transmission directions was compared under the same PZT combination. The minimum
value and maximum value in the experiment are included as error bars in Figure 19.
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In Figure 19, the mean of wavelet packet energy of five experiments for two PZT AB transmission
modes increases as the loading value increases. The wavelet packet energy of two transmission modes
of same PZT combination is different, and the difference of transmitted energy increases with the
increase of the loading values. The trend lines of the average energy of two PZT AB combinations
indicate the feasibility of using this contact surface to monitor the tension state of the steel strand.
When PZT AB transmission mode was selected to monitor the loading conditions, the signal generated
from PZT B, a part of energy was transmitted to PZT A through the AB contact surface, a part of the
energy was transmitted to PZT C through the BC contact surface. While PZT BA transmission mode
was chosen to monitor the anchoring tightness of the steel strand, the signal generated from PZT A was
propagated directly to PZT B through the AB contact surface. Therefore, when using the AB contact
surface to monitor the tension of the steel strand, it is appropriate to select the PZT BA transfer mode.

5.2. Prestress Monitoring Based on Wedge–Barrel (BC) Contact Surface

The monitoring method for the tension of the steel strand based on BC contact surface was
the same as the AB contact surface monitoring method. First, the reasonable sweep interval was
determined by the frequency sweep. Then, wavelet values of PZT BC combinations were compared
under different tension conditions. The frequency sweep result of PZT BC transmission mode is shown
in Figure 20.

The tension process was also divided into six loading conditions. The test results also shown that
the amplitude of the signal transmitted by the BC contact surface increases with the increase of the
tension. The change of received signal of PZT BC transmission mode under four loading conditions is
shown in Figure 21.

Similarly, the monitoring method based on the BC contact surface was repeated five times. Based
on the results of five tests, the average value of the wavelet energy and the relative change ratio of the
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transmitted energy of the two transmission methods under different loading conditions was compared,
as shown in Table 3.
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It can be seen from Table 3 that with the increase of the tension of the steel strand, the mean value
of energy propagated by BC contact surface also increases. Moreover, the energy value of PZT BC
transmission mode was higher than that of PZT CB transmission mode in the same tension state of
steel strand. When the steel strand was loaded step by step, the relative change rate of wavelet energy
changed obviously. Experimental trend lines and error bars are included in Figure 22.

In Figure 22, the average value based on the wavelet packet analysis method of five experiments of
PZT BC and PZT CB combinations increases as the loading value increases. The wavelet packet energy
of two transmission modes of the same PZT combination is different, and the difference increases with
the increase of the tensile force. The trend lines of the average energy of two PZT BC combinations
indicates the feasibility of using this contact surface to monitor the tension state of the steel strand.
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When PZT CB transmission mode was selected to monitor the anchoring tightness, the signal generated
by PZT B was dispersed and transmitted, a part of energy was transmitted to PZT A through the AB
contact surface, and a part of the energy flowed to PZT C through the BC contact surface. While PZT
BA transmission mode was chosen to monitor the anchoring tightness, the signal generated from PZT
A was propagated directly to PZT B through the AB contact surface. Therefore, when using the BC
contact surface to monitor the anchoring tightness of the steel strand, it is recommended to favour the
PZT BC transmission mode.

Table 3. Tests results of PZT BC combinations.

Tension/N
PZT BC Combination PZT CB Combination

µ/V2 Relative Change/
Absolute Change (%) µ/V2 Relative Change/

Absolute Change (%)

1016 83,334.7321 4.79 83,334.7129 6.61
2032 83,334.7651 12.96 83,334.7243 16.55
4064 83,334.8630 37.14 83,334.7396 29.97
8128 83,334.9362 55.21 83,334.7695 56.05
16256 83,335.1174 100.00 83,334.8198 100.00
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6. Conclusions

Monitoring data of two direct contact surfaces of the wedge anchorage system indicated that the
wavelet packet energy increases with the increase of anchoring tightness of the steel strand. Meanwhile,
since the wedge anchorage system contains multiple contact faces, the path of energy transmission at
different contact faces is different. For the two direct contact surfaces between the steel strand-wedge
and wedge-barrel, once the signal transfer direction of the same PZT combination is interchanged,
the propagated energy value is different. When monitoring the tightness of the steel strand according
to the contact surface between steel strand and wedges, PZT BA transmission mode is preferred for
better monitoring. When monitoring the tightness of the steel strand according to the contact surface
between wedges and barrel, it is more appropriate to choose the PZT BC transmission mode. The main
purpose of this paper is to verify the feasibility of the proposed method, and deeper research will
be undertaken in the future. The PZT-based wavelet packet analysis method proposed in this paper
provides an opportunity for the monitoring of the tensioning of wedge connections with potential
future use for the structural health monitoring of wedge connections during loosening.
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