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Abstract In Drosophila, long-term memory (LTM) requires the cAMP-dependent transcription

factor CREBB, expressed in the mushroom bodies (MB) and phosphorylated by PKA. To identify

other kinases required for memory formation, we integrated Trojan exons encoding T2A-GAL4 into

genes encoding putative kinases and selected for genes expressed in MB. These lines were

screened for learning/memory deficits using UAS-RNAi knockdown based on an olfactory aversive

conditioning assay. We identified a novel, conserved kinase, Meng-Po (MP, CG11221, SBK1 in

human), the loss of which severely affects 3 hr memory and 24 hr LTM, but not learning.

Remarkably, memory is lost upon removal of the MP protein in adult MB but restored upon its

reintroduction. Overexpression of MP in MB significantly increases LTM in wild-type flies showing

that MP is a limiting factor for LTM. We show that PKA phosphorylates MP and that both proteins

synergize in a feedforward loop to control CREBB levels and LTM. key words: Drosophila,

Mushroom bodies, SBK1, deGradFP, T2A-GAL4, MiMIC

DOI: https://doi.org/10.7554/eLife.33007.001

Introduction
Forward genetic screens coupled with classical conditioning paradigms (Tully and Quinn, 1985)

have been successful in identifying many molecular determinants of learning and memory in Dro-

sophila (Guven-Ozkan and Davis, 2014). Among the genes identified are several components of

the cAMP signaling pathway, including dunce (a cAMP specific phosphdiesterase), rutabaga (a

cAMP specific adenylyl cyclase), Dc0 (Protein Kinase A, PKA) and CREBB (a transcription factor) (see

Figure 1—figure supplement 1 for these and others) (McGuire et al., 2005). In adult flies, these

genes act in cells of the mushroom bodies (MB), higher brain centers responsible for associating con-

ditioned stimuli (CS) and unconditioned stimuli (US), and for storing these associations (Dubnau and

Tully, 1998). Associations are stored by the MB Kenyon cells (KC), which are activated by CS—such

as odors—via cholinergic transmission from olfactory projection neurons and US—such as electric

shock—via dopamine signaling (McGuire et al., 2005). Acetylcholine receptors permit Ca2+ entry

into KCs, while dopamine receptors activate a Ca2+/Calmodulin-responsive adenylyl cyclase (ruta-

baga), which acts as a coincidence detector (Busto et al., 2010). cAMP produced by Rutabaga acti-

vates PKA and triggers a downstream MAP kinase cascade, which leads to the phosphorylation and
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activation of the transcription factor CREBB (Impey et al., 1999). CREBB binds to cAMP response

elements (CRE), activating the transcription of genes required for long term memory formation

(DeZazzo and Tully, 1995).

CREBB is phosphorylated by several kinases, including PKA and CamKII, two kinases known to be

involved in memory formation (Horiuchi et al., 2004; Mayr and Montminy, 2001) (Figure 1—figure

supplement 1). Here we describe the identification of a novel gene Meng-Po (MP), that is required

for memory formation but not for learning. The MP protein regulates the stability of CREBB together

with PKA. In the absence of MP the protein stability of CREBB is affected, and removing a single

copy of MP and PKA leads to a dramatic loss of CREBB and memory formation. In addition, overex-

pression of MP strongly promotes memory formation, indicating that MP is not only required but

that it also plays an instructive role in memory formation.

Results

Genes encoding protein kinases expressed in MB in adult brain and
behavioral consequences of RNA interference
To identify novel protein kinases involved in learning/memory, we developed a strategy that allows

us to determine which kinases are expressed in MBs. We selected 27 putative kinase-encoding

genes for which fly lines were available that contained intronic insertions of the Minos Mediated Inte-

gration Casette (MiMIC) (Nagarkar-Jaiswal et al., 2015; Venken et al., 2011). These MiMICs con-

tain a swappable cassette, allowing integration of any DNA using recombinase-mediated cassette

exchange (RMCE). We replaced these cassettes with a Trojan exon encoding SA-T2A-GAL4 to per-

mit the detection of cells expressing the kinase-encoding genes using UAS-mCD8::GFP (Diao et al.,

2015). Of the 27 putative protein kinase genes screened, we found 12 that are expressed in MBs

(Figure 1a; Figure 1—figure supplement 2). To determine if these 12 kinases expressed in MB play

a role in learning and memory we knocked down their expression using UAS-RNAi expressed under

the control of the MB-selective OK107-GAL4 driver (Figure 1—figure supplement 3a) and tested

the performance of learning and 3 hr memory in knockdown flies upon an olfactory aversive condi-

tioning assay (Figure 1; Figure 1—figure supplement 3b). In Drosophila, Pavlovian olfactory aver-

sive learning requires coincidence detection of a conditioned stimulus (CS), an odor, and an

unconditioned stimulus (US), an electric shock. Through a single training session using a T-maze

assay in which flies are exposed to 12 CS-US pairings in one min, flies can associate CS with US and

learn to avoid the odor paired with electric shock (Tully and Quinn, 1985). After training, flies can

learn (tested immediately) and form an intermediate-term/3 hr memory (tested after 3 hr)

(Margulies et al., 2005). We identified two putative kinases, CG11221 and wallenda (wnd), which

when knocked down, cause significant reductions in performance index for 3 hr memory, but not for

learning (Figure 1b–c). Overexpression of wnd has been documented to enhance memory in Dro-

sophila (Huang et al., 2012), but CG11221 has not been previously characterized in flies. We there-

fore tested the effects of knocking down CG11221 expression using a second RNAi expressed

specifically in MB neurons to confirm the memory loss phenotype (Figure 1—figure supplement

3b). To provide additional evidence that CG11221 is not required for learning, we used a short CS/

US association protocol (30’ CS + US instead of 60’) to train flies. Knockdown of MP did not affect

learning, further indicating that MP is not required for learning (Figure 1—figure supplement 3b).

CG11221 is an evolutionarily conserved serine/threonine protein kinase (human SBK1: 37% iden-

tity and 75% similarity, Figure 1—figure supplement 4). SBK1 is expressed in the hippocampus, cor-

tex, and cerebellum of adult rodents and loss of SBK1 in mice causes partial embryonic lethality

(Nara et al., 2001; Skarnes et al., 2011). The CG11221MI03008-T2A-GAL4; UAS-mCherry flies exhibit

broad expression of the gene in third instar larvae and adult flies (Figure 1—figure supplement 5).

As shown in Figure 1a, the gene is also expressed in the adult brain and is prominent in the MB. In

light of its importance in memory, we renamed CG11221, Meng-Po (MP), for the Lady of Forgetful-

ness, a character in Chinese mythology who ensures that people are ready for reincarnation by pro-

viding the ‘Tea of Forgetfulness’ so they lose the memory associated with their former life.
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Loss of MP causes a loss of memory
To determine whether the memory deficits resulting from loss of MP are due to its activity in adult

MB neurons or are a result of its developmental expression, we used the deGradFP method

(Caussinus et al., 2011; Nagarkar-Jaiswal et al., 2015) to selectively decrease levels of MP protein

in MB of 5 day old flies. To do so, we replaced the MiMIC insertion of the CG1122103008 in the first

coding intron with a SA-GFP-SD in-frame with the MP coding sequence using a previously described

technique (Nagarkar-Jaiswal et al., 2015). This manipulation insures the expression of an internally-

tagged MP-GFP-MP (MP-GFP) fusion protein. Flies homozygous for the modified MP-GFP gene

were viable and anti-GFP staining of homozygous MP-GFP flies revealed expression in MB

(Figure 2a). Furthermore, these flies did not exhibit obvious viability or learning/memory defects

(Figure 2—figure supplement 1), indicating that the MP-GFP fusion protein retains its function.

Crossing MP-GFP flies to flies that express UAS-deGradFP under the control of the MB-specific

GAL4 driver P247 (Figure 2—figure supplement 2) resulted in progeny in which the MP-GFP fusion

protein was substantially depleted from MB when flies were raised at 28˚C, but not at 18˚C. By shift-

ing flies between these temperatures we can reversibly eliminate the tagged protein from MB

Figure 1. Genes encoding kinases expressed in MB of adult brains and behavioral consequences of RNA interference. (a) Expression patterns of genes

encoding protein kinases in adult brains. The 12 protein kinases shown here are expressed in MB. (b–c) Screening results of behavioral assays by RNAi

knockdown. The MB-GAL4 driver, OK107 was used to drive the UAS-RNAi. Flies were raised at 18˚C until eclosion, transferred to 25˚C for 3 days and

behavioral assays were performed to test (b) learning and (c) 3 hr memory. The mean ±SEM is plotted for each genotype; n = 8 for each group.

*p<0.05, **p<0.01.

DOI: https://doi.org/10.7554/eLife.33007.002

The following figure supplements are available for figure 1:

Figure supplement 1. Overview of the proteins required for olfactory aversive learning/memory formation in Drosophila.

DOI: https://doi.org/10.7554/eLife.33007.003

Figure supplement 2. The T2A-GAL4 expression patterns of protein kinases that are not expressed in MB.

DOI: https://doi.org/10.7554/eLife.33007.004

Figure supplement 3. Reducing the levels of CG11221 in MB affects 3 hr memory formation.

DOI: https://doi.org/10.7554/eLife.33007.005

Figure supplement 4. Comparison of protein sequence between human SBK1 and fly MP (CG11221).

DOI: https://doi.org/10.7554/eLife.33007.006

Figure supplement 5. MP is expressed ubiquitously.

DOI: https://doi.org/10.7554/eLife.33007.007
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Figure 2. Loss of MP causes a loss of memory. (a) UAS-deGradFP driven by MB driver, P247-GAL4. a’-c’: scheme

for temporal control of deGradFP expression via temperature shift. (a’) 18˚C; (b’) 28˚C for three days; (c’) 28˚C for

three days, followed by a shift to 18˚C for two days. MP-GFP-MP expression at the time points shown above by

arrows. (b) Performance scores of learning, 3 hr memory and 24 hr memory. (a’), (b’) and (c’) are referred as the

time points in (a). (b), learning) Learning is normal after knockdown of MP in MB by deGradFP at 28˚C for 3 days

(b’). Flies raised at 18˚C are used as a control (a’). (b, 3 hr memory) 3 hr memory is impaired after knockdown of

MP in MB (b’). However, the performance score of ARM is intact in MP knockdown flies which are treated with a

cold shock and compared to flies raised at 18˚C (3 hr memory a’ and b’+cold shock). In c’ condition, the flies show

normal performance score of 3 hr memory. The 3 hr memory impairment (in b’+cold shock, right panel) can be

fully rescued when the animals are shifted to 18˚C for two days (the groups boxed in dashed line are the exactly

same flies). (c), 24 hr memory) 24 hr LTM (10 x ST) is impaired upon knockdown of MP in MB (b’, red). After

treatment with 35 mM cycloheximide (CXM), the MP knockdown flies (b’+CXM, red) don’t exhibit a performance

that is worse than control flies. In the c’ conditions, the flies exhibit a normal performance score for the 24 hr

memory assay. The performance of ARM (10 x MT) is intact. 10 x ST:10 times spaced training. 10 x MT:10 times

massed training. The mean ±SEM is plotted for each genotype; n = 8 for each group. **p<0.01. ***p<0.001.

DOI: https://doi.org/10.7554/eLife.33007.008

Figure 2 continued on next page
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neurons. Hence, the protein is present during development and early adulthood (Figure 2a,a’),

avoiding developmental requirements. The temperature shift leads to a loss of MP in 5 day old flies

(Figure 2a,b’). Upon a two day recovery period at 18˚C, the protein levels are restored (Figure 2a,

c’). In summary, the deGradFP technique with the MP-GFP flies provides a precise tool for manipu-

lating and monitoring MP levels in specific tissues in adult flies in a reversible manner.

Using this strategy, we reduced the level of MP-GFP in adult MB for three days (Figure 2a,b’)

and assayed learning and memory performance in these flies. As shown in Figure 2b, flies with MP

depleted in the MB (b’, red column) learn as well as y w control animals (b’, white). However, when

tested 3 hr after training, these flies exhibited severe memory deficits (Figure 2b, 3-h memory, mid-

dle panel, b’, red column) when compared with either y w, other controls or animals of the same

genotype tested prior to depletion of MP (Figure 2b, 3-h memory, middle panel). These results are

consistent with those obtained by constitutive knockdown of MP expression using RNAi and demon-

strate that MP is required in MB neurons specifically in adults (Figure 1c; Figure 1—figure supple-

ment 3b).

It has been previously shown that the 3 hr memory has two distinct components: an anesthesia-

resistant memory (ARM) and an anesthesia-sensitive memory (ASM), only the latter of which can be

erased by cold-shock (Lee et al., 2011; McGuire et al., 2005). To determine whether MP functions

in ARM, ASM or in both, we subjected trained animals in which MP-GFP had been depleted in the

MB to cold-shock and found that the residual memory was unaffected (Figure 2b, 3-h memory, b’

with cold shock). Furthermore, the memory performance in these animals was statistically indistin-

guishable from that of control animals subjected to cold shock. These results suggest that MP is

required for ASM, but not for ARM. Importantly, loss of 3 hr memory can be restored by placing the

flies at 18˚C for two days after knockdown (Figure 2b, 3-h memory, c’). To test whether the transient

loss of MP in the MB has long-term consequences to the animal’s ability to form memories, we

restored expression of MP-GFP after 3 days of depletion at 28˚C by returning animals to 18˚C. Their
ability to learn and remember upon restoration of MP-GFP revealed complete recovery of memory

function (Figure 2b, 3-h memory, right panel, column c’).

In parallel studies we also tested animals with reduced MP for deficits in 24 hr long-term memory,

LTM, and radish dependent 24 hr ARM (Margulies et al., 2005). LTM requires CREBB as well as new

protein synthesis (Fropf et al., 2013; Keene and Waddell, 2007) and is typically induced by repeti-

tive (10x) spaced training (ST) at 15 min intervals. In contrast, 24 hr ARM does not require protein

synthesis (Dubnau and Tully, 1998; Keene and Waddell, 2007) and is induced by repetitive mass

training (MT) without the 15 min resting intervals. We found that MP is dispensable for 24 hr ARM

(Figure 2b, 24-h memory, 10x MT), but is required for LTM (Figure 2b, 24-h memory, 10x ST, b’,

red column). After treatment with 35 mM cycloheximide (CXM), an inhibitor for protein synthesis,

the MP knockdown flies (Figure 2b, 24-h memory, 10x ST, b’+CXM, red column) do not perform

worse than other control flies. This indicates that the loss of memory is protein synthesis-dependent.

Loss of 24 hr LTM memory can be restored when returning the flies to 18˚C for two days after knock-

down. (Figure 2b, 24-h memory, 10x ST, c’). Hence, loss of MP affects neither learning nor ARM, but

severely impairs 3 hr ASM and 24 hr LTM.

Overexpressing MP enhances 24 hr LTM and increases CREBB activity
To determine whether MP is not only necessary for LTM, but also acts as a limiting factor for LTM,

we overexpressed MP in MB and analyzed 24 hr LTM. To avoid saturating LTM, as occurs when the

spaced training is repeated 10x, we adopted a paradigm in which flies were subjected to only a 3X

training paradigm (Lee et al., 2011) (3x ST). Conditional overexpression of MP in MB under the con-

trol of OK107-GAL4 was accomplished using a temperature-sensitive GAL4 inhibitor (Tub-GAL80ts),

Figure 2 continued

The following figure supplements are available for figure 2:

Figure supplement 1. MP-GFP-MP animals have proper learning and memory.

DOI: https://doi.org/10.7554/eLife.33007.009

Figure supplement 2. P247-GAL4 was used for protein knockdown.

DOI: https://doi.org/10.7554/eLife.33007.010
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which blocks UAS-MP expression at 18˚C (Figure 3a,a’–b’), but not 29˚C (McGuire et al., 2004).

Flies grown at 18˚C and placed at 29˚C for two days robustly expressed MP as detected by Western

blot (Figure 3a,c’).

Flies were subjected to temperature protocols that either did (Figure 3b,b’) or did not

(Figure 3b,a’) induce MP overexpression and we then tested their performance in both learning and

LTM using the T-maze assay. The learning scores of Tub-GAL80ts/+;UAS-MP-HA/+;OK107-GAL4/+

flies temperature-shifted to 29˚C, and therefore overexpressing MP, were the same as those of

unshifted flies of the same genotype and those of other control groups (Figure 3b,c’). In contrast,

Figure 3. Overexpressing MP enhances 24 hr LTM and increases CREBB activity. (a) Spatial and temporal control of MP expression was achieved with a

MB-GAL4 driver and Tub-GAL80ts. Schemes are shown in (a’) and (b’). MP expression was assessed by Western blot with a-HA antibody in (c’). (b)

Temporal overexpression of MP in MB enhances 24 hr LTM. Diagrams for MP overexpression, training and testing of behavior are shown in (a’) and (b’).

The learning scores are normal after MP overexpression in (c’) (red column, b’). 24 hr LTM is significantly enhanced after 3x ST training in (d’) (red

column, (b’). However, memory enhancement can be erased by feeding flies with cycloheximide. The 24 hr ARM is unaltered after MP overexpression in

(d’) (red column, (b’), a’=no overexpression, b’=overexpression, and 3x ST (spaced training) or 3x MT (massed training). The mean ±SEM is plotted for

each genotype; n = 8–12 for each group with 200 animals per group. *p<0.05. (c) Overexpressing MP increases CRE-luciferase activity. The CRE-F-Luc

system is shown in (a’). The diagram is shown in (b’). The fly genotypes are shown in (c’). blue curve: MP-GAL4,CRE-F-Luc/UAS-FLP;Tub-GAL80ts/UAS-

MP-HA. orange curve: MP-GAL4,CRE-F-Luc/UAS-FLP;Tub-GAL80ts/+. In (d’), the luciferase activity of the two genotypes of flies at the following time

points: 1, 2, 3 and 4 which are shown in (b’). (1) at 18˚C for one day after eclosion. (2) at 29˚C for three days. (3) at 29˚C for three days, then shift to 18˚C
for one day. (4) at 29˚C for three days then shift to 18˚C for two days. 10 fly heads (five males/five females) were collected for a single assay. RLU:

relative luminescence unit. The mean ±SEM is plotted for each point; n = 6.

DOI: https://doi.org/10.7554/eLife.33007.011
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the performance scores of these flies for 24 hr LTM were significantly enhanced after MP overexpres-

sion in MB (3x ST; Figure 3b,d’). The observed memory enhancement can be erased by feeding flies

35 mM CXM, indicating that enhanced memory is protein synthesis-dependent (3x ST +CXM;

Figure 3b,d’). Moreover, this enhancement is specific to 24 hr LTM, and not 24 hr ARM induced by

3-times mass training (3x MT; Figure 3b,d’). Thus, MP is not only necessary for LTM, but also is also

promoting LTM formation.

Given that CREBB is a central player in LTM formation, we tested its activity in MB during MP

overexpression using a previously described luciferase assay. This assay relies on CREBB-mediated

transcription of luciferase from the CRE-F-Luc construct, which contains three copies of the CREBB-

binding cAMP Response Element (CRE), upstream of an FRT-flanked mCherry-encoding stop cas-

sette and the firefly luciferase gene (Figure 3c,a’) (Tanenhaus et al., 2012). Spatial control of lucifer-

ase expression can be achieved by using the GAL4/UAS system to drive the cell-type specific

expression of a UAS-FLP recombinase (Figure 3c,a’–b’). We created flies of the following genotype:

MP-T2A-GAL4,CRE-F-Luc/UAS-FLP;Tub-GAL80ts/UAS-MP-HA (Figure 3c,c’). In these flies, GAL4

drives expression of UAS-MP-HA and UAS-FLP when the flies are shifted to 29˚C. FLP removes the

stop cassette in the CRE-F-Luc construct, allowing translation of luciferase in the MP-expressing neu-

rons (Figure 3c,a’–b’). When assayed for luciferase activity, flies placed at 29˚C for 3 days display a

very significant increase—measured in relative luminescence units (RLU)—when compared to the

flies kept at 18˚C. The RLU gradually decrease to base line upon return to 18˚C (Figure 3c,d’, blue).

In contrast, the luciferase activity of control flies that do not carry the UAS-MP (genotype: MP-T2A-

GAL4,CRE-F-Luc/UAS-FLP;Tub-GAL80ts/+) display no change in RLU when subjected to the same

temperature shifts (Figure 3c,c’–d’, orange). In summary, overexpression of MP in MB significantly

enhances 24 hr LTM and increases CRE-luciferase activity. Our results are consistent with a model in

which MP facilitates LTM by positively regulating CREBB activity (Dubnau and Tully, 1998).

MP is a kinase, and loss of MP affects CREBB protein levels in MP gene
trap animals
Given that MP encodes a putative kinase, we tested its ability to phosphorylate a known substrate of

two other kinases, ERK and PKA. We expressed MP-HA in S2 cells, affinity purified the protein, and

performed kinase assays on Myelin Basic Protein (MBP) (Martenson et al., 1983). As shown in

Figure 4a, ERK, PKA and MP phosphorylate MBP. Given the CRE-luciferase assay results and the

established regulation of CREBB by phosphorylation (Horiuchi et al., 2004; Tully et al., 2003), we

hypothesized that CREBB is a substrate of MP. To determine if MP can phosphorylate CREBB we

purified the CREBB protein from S2 cells and performed kinase assays. Unlike PKA, which is able to

phosphorylate CREBB, MP was not able to phosphorylate CREBB (Figure 4b). Hence, although

CREBB activity is dependent on MP levels, CREBB may not be a direct substrate of MP.

To more generally assess how MP upregulates CREBB, we sought to determine how CREBB activ-

ity is affected by loss of MP function. The MI03008 MiMIC insertion in the MP gene functions as a

gene trap (Figure 4—figure supplement 1a) and RT-PCR fails to amplify a product between these

exons (Figure 4—figure supplement 1b). This and other evidence suggest that MI03008 is a severe

loss of function allele of MP. To estimate the levels of CREBB in MI03008 mutants, we probed West-

ern blots of protein isolated from the heads of adult MI03008/MI03008 animals using an anti-phos-

pho-CREBB antibody (Fropf et al., 2013) and compared the signal to that observed in Western

blots from heads of control animals. In parallel, we analyzed the signals obtained using a second

antibody (Pan-CREBB) that assesses total CREBB protein levels. Both antibodies revealed an approx-

imately 60% reduction in immunoreactivity in samples from MP mutant brains (Figure 4c,a’–b’).

Note, that there is a minor reduction in the ratio of phospho-CREBB/total CREBB (Figure 4c,c’). In

contrast, CREBA protein levels are not altered (Figure 4d), consistent with the observation that

CREBA has no role in memory formation (Abrams and Andrew, 2005). Finally, CREBB mRNA levels

are unchanged in MP mutants (Figure 4—figure supplement 1c), indicating that the observed

reduction in CREBB protein is a post-transcriptional effect.

We also tested if ATG2-CREBB is affected. This CREBB isoform is encoded by a downstream, in-

frame initiation codon of one of the transcripts of the CREBB gene, and corresponds to a transcrip-

tional activator. It has been shown to be required for memory enhancement (Tubon et al., 2013). As

shown in Figure 4—figure supplement 1d, we find that both the anti-Pan-CREBB antibody and the

antibody recognizing ATG2-CREBB (Fropf et al., 2013) identify a ~30 kDa band that is reduced in
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Figure 4. MP is a kinase, and loss of MP affects CREBB protein levels in MP gene trap animals. (a) MP can

phosphorylate myelin basic protein similar to ERK and PKA. Arrow points to MBP. (b) CREBB is not

phosphorylated by MP kinase. As a positive control, we used PKA to phosphorylate the CREBB-His tag protein.

MP failed to phosphorylate CREBB under these conditions. BSA was used as a negative control. Arrow points to

CREBB. (c) In (a’–b’), protein levels of phospho-CREBB and total CREBB in the absence of MP are decreased, and

Figure 4 continued on next page
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MI03008 mutant brains. Hence, these data suggest that MP promotes the translation or stabilization

of CREBB protein.

If CREBB mediates the effects of MP on LTM and loss of MP function reduces CREBB protein lev-

els, then reducing CREBB in MB should phenocopy the effects of eliminating MP in MBs. To deter-

mine whether this is the case, we knocked down CREBB mRNA in adult MB using OK107-GAL4 and

two independent UAS-RNAi lines by shifting 3–5 day old flies kept at 18˚C to 25˚C three days prior

to testing. We find that decreasing CREBB in MB causes a reduction of 24 hr LTM with both RNAi

knockdowns (10 x ST; Figure 4e,a’), but it does not affect learning (Figure 4e,c’) or ARM (10 x MT;

Figure 4e,b’). Comparison of these results with the knockdown of MP in MBs (Figure 2) indicates

that loss of MP or CREBB function results in very similar memory defects. The most parsimonious

explanation of these data is that loss of the MP protein kinase leads to reduced levels of CREBB pro-

tein, which in turn leads to a severe LTM impairment.

MP is regulated by PKA
The MP protein contains the canonical PKA phosphorylation motif RRFS (Huang et al., 2005) at resi-

dues 331–334 (Figure 5—figure supplement 1). To determine whether serine residue 334 is a sub-

strate of PKA we introduced a S334A mutation into MP (MPS334A) and examined phosphorylation of

both the wild-type and mutant proteins by PKA. As shown in Figure 5a, MP is phosphorylated by

PKA, but MPS334A is barely phosphorylated. We conclude that S334 is required for proper MP phos-

phorylation by PKA. To determine whether phosphorylation alters the MP kinase activity, we next

assayed the kinase activities of both wild-type MP and MPS334A. As shown in Figure 5b, the kinase

activity of MPS334A is significantly lower than that of wild-type MP.

The above data indicate that PKA activates MP in addition to activating CREBB. Loss of function

mutations in PKA cause a subtle but significant reduction in CREBB (Figure 5—figure supplement

2). Hence, PKA and MP may work together in a coherent feedforward loop (Mangan et al., 2003) to

upregulate CREBB activity and support LTM formation. To assess possible synergistic interactions

between PKA and MP, we simultaneously reduced the protein levels of both MP and the catalytic

subunit of PKA by creating MI03008,Pka+/MP+,Pka-C1B10 heteroallelic flies, and assessed the levels

of CREBB protein by Western blot (Fropf et al., 2013). CREBB immunoreactivity in the heads of

these animals is very severely reduced compared to that observed in the heads of either wild-type

contols or animals with reduced gene dosage of only MP or Pka-C1 (Figure 5c). Simultaneous reduc-

tion of PKA and MP thus substantially potentiates the effects of reducing either protein alone, con-

sistent with a model in which the two kinases act within the same signaling pathway to regulate

CREBB activity and LTM. To determine if the MI03008,Pka+/MP+,Pka-C1B10 animals exhibit memory

defects, we assayed their ability to both learn and form 24 hr LTM. We find that these flies exhibit

normal learning (Figure 5d,a’) and ARM (10 x MT; Figure 5d,c’), but lack 24 hr LTM (10 x ST;

Figure 5d,b’) consistent with the loss of CREBB function. Interestingly, flies heterozygous for either

MP or Pka-C1 display neither learning nor LTM defect, suggesting a potent synergistic interaction

and feedforward loop between PKA and MP.

Figure 4 continued

also the phosphorylation ratio of phospho-CREBB/total CREBB in (c’). Total CREBB was detected by anti-Pan-

CREBB, phosphorylated CREBB was detected by anti-PO4-CREBB (**p<0.01. ***p<0.001). (d) Protein levels of

CREBA are not affected in MP gene-trap flies. CREBA protein was detected by anti-CREBA. The protein levels

were normalized to actin. (Student’s t test, n = 3). (e) Knocking down CREBB in MB with CREBB RNAi causes 24 hr

LTM defects (10x ST, a’), but not ARM (10x MT, b’) and learning in (c’). 10x ST = 10 times spaced training. 10x

MT = 10 times massed training. The mean ±SEM is plotted for each genotype; n = 8 for each group. **p<0.01.

***p<0.001.

DOI: https://doi.org/10.7554/eLife.33007.012

The following figure supplement is available for figure 4:

Figure supplement 1. CREBB mRNA level is not affected in MP gene trap fly, but CREBB proteins are reduced.

DOI: https://doi.org/10.7554/eLife.33007.013
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Discussion
Using MiMIC technology, we converted 27 genes encoding putative protein kinases with the Trojan

T2A-GAL4 exon and performed an image screen for genes expressed in MBs (Diao et al., 2015).

This tagging approach is especially useful for genes that are expressed at low levels in the CNS. By

tagging the proteins with GFP, a conditional and reversible knockdown can be achieved in almost

any tissue or cell (Nagarkar-Jaiswal et al., 2015). This allowed us to identify a novel serine/threonine

protein kinase, Meng-Po (MP), that is a critical player in LTM formation in Drosophila. MP is a homo-

logue of SBK1 in mammals (Figure 1—figure supplement 4), a gene that is expressed in the hippo-

campus and the cortex (Nara et al., 2001; Skarnes et al., 2011). Loss of this gene in mice is

Figure 5. MP kinase is regulated by PKA. (a) The potential PKA phosphorylation site of MP was altered to S334A. MP can be phosphorylated by PKA,

but MPS334A is severely impaired. Arrow points to wild-type and mutant MP. (b) MPS334A has severely reduced kinase activity compared to wild-type MP.

Arrow points to MBP. (c) CREBB protein levels are dramatically reduced in MP gene-trap +/+Pka-C1B10 heteroallelic flies. CREBB protein levels are

probed with anti-Pan-CREBB antibody. (d) MP gene-trap +/+Pka-C1B10 heteroallelic flies have intact learning in (a’) and ARM in (c’), but show 24 hr LTM

impairment in (b’). The mean ±SEM is plotted for each genotype; n = 8 for each group. **p<0.01.

DOI: https://doi.org/10.7554/eLife.33007.014

The following figure supplements are available for figure 5:

Figure supplement 1. Human SBK1 and fly MP (CG11221) both contain a PKA phosphorylation site.

DOI: https://doi.org/10.7554/eLife.33007.015

Figure supplement 2. Protein levels of CREBB are reduced in Pka-C1 mutants.

DOI: https://doi.org/10.7554/eLife.33007.016
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associated with embryonic lethality (Skarnes et al., 2011), whereas in flies, loss of MP leads to a

reduction in viability as well as sterility.

Our data show that CREBB stability is highly susceptible to loss of MP. CREBB activity is modu-

lated by phosphorylation via PKA and CamKII in Drosophila (Horiuchi et al., 2004). Although our

findings indicate that MP kinase activity is critical for maintaining CREBB levels and that MP kinase

activity acts in synergy with PKA (Figure 6), we have not been able to demonstrate that CREBB is a

direct target of MP. However, some kinases require a previously phosphorylated residue as part of

their recognition sequence and we have not mixed various kinases with MP in our in vitro assays

(Horiuchi et al., 2004). Hence, it remains to be established how CREBB is degraded in the absence

of MP.

A reduction in CREB levels has been shown to be associated with an age-dependent memory loss

in rodents. Interestingly, delivery of CREB protein in the hippocampus using somatic cell transfer

attenuated LTM impairement (Mouravlev et al., 2006). However, no gene has so far been shown to

affect CREBB stability in vivo and our findings that MP, together with PKA, synergize to dramatically

affect CREBB levels via a feedforward loop (Mangan et al., 2003), reveal another mechanism to con-

trol CREBB levels during memory formation (Figure 6). This model is supported by the observation

that overexpression of MP increases CREBB activity and promotes memory formation, suggesting

that it is a central player in LTM.

Materials and methods

Fly strains
Fly strains were maintained on standard cornmeal-yeast-agar medium at 25˚C, at 60–70% relative

humidity and on a 12/12 hr light/dark cycle. The MiMICs were created in the Bellen lab (Diao et al.,

2015; Nagarkar-Jaiswal et al., 2015; Venken et al., 2011) and P247-GAL4 (Zars, 2000), OK107-

GAL4 (Pascual and Préat, 2001), Tub-GAL80ts, Pka-C1H2, PKa-C1B10, UAS-FLP, 20xUAS-6xmCherry

Figure 6. Model. In wild-type animals, rutabaga (rut) as a coincidence detector can receive the odor and electric shock signals then activate cAMP-PKA

signaling. MP is phosphorylated by PKA which maintains the CREBB levels, possibly by inhibiting proteasomal or autolysosomal degradation. It permits

CREB-dependent LTM to form. Knocking down MP will unlock this inhibition and facilitate CREBB degradation thereby disrupting LTM. In contrast,

overexpression of MP promotes LTM formation.

DOI: https://doi.org/10.7554/eLife.33007.017
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and UAS-mCD8::GFP (Pfeiffer et al., 2010) were obtained from the Bloomington Drosophila Stock

Center (USA). The Canton-S w1118 (iso1CJ) wild-type fly (Lee et al., 2011) was from Josh Dubnau.

The CRE-F-Luc fly was from Jerry Yin (Tanenhaus et al., 2012). UAS-RNAi flies were from BDSC or

VDRC. The stock information is listed on Supplementary file 1.

Plasmid constructs
The MP-HA and CREBB-6xHis cDNA were synthesized by GenScript. The cDNA fragments were

double digested with EcoRI and XhoI and cloned into pUAST-attB. For site-directed mutagenesis of

MP, the primer sets below were used:

MPS334A-F: 5’-CGCCGCTTCGCCCCCCGCCTGAT-3’

MP-R: 5’-CTTCAACAGCCCGTGGAACCACC-3’

The PCR reaction was performed with the Q5 Site-Directed Mutagenesis kit (NEB). The PCR

product was ligated and transformed into E.coli competent cells, and the colonies were selected on

ampicillin/LB agar plates. For transgenic animals, the UAS-MP-HA plasmid was extracted with HiPure

Plasmid Midiprep kit (Invitrogen) for microinjection.

RT-PCR
Total RNA of flies was extracted with the RNAspin Mini kit (GE Healthcare). RT-PCR was performed

with OneStep RT-PCR kit (QIAGEN). For RT-PCR, the primer sets below were used:

MP-RT-F: 5’-GAAAACAAGTCTTCAGAAATGGGCACTATCG-3’

MP-RT-R: 5’-AAAGTCCGGCGTGAAGACCAGGATAT-3’

CREBB-RT-F: 5’-ACAACAGCATCGTCGAGGAGAACG-3’

CREBB-RT-R: 5’-CGTGTTCGGTTCGGGCTTGATCTT-3’

rp49-RT-F: 5’-CCAAGGACTTCATCCGCCACC-3’

rp49-RT-R: 5’-GCGGGTGCGCTTGTTCGATCC-3’

Confocal imaging
Image processing was performed as described previously (Lee et al., 2011). Briefly, dissected brains

were fixed in PBS with 4% paraformaldehyde at 4˚C overnight, transferred to PBS with 2% Triton

X-100 at room temperature, vacuumed for 1 hr and left overnight in the same solution at 4˚C. For
immunostaining of GFP, the samples were incubated with anti-GFP antibody conjugated with FITC

(1:500) (Abcam) in PBS with 0.5% Triton X-100 overnight. Brains were cleared and mounted in Rapi-

Clear (SunJin Lab Co.) and imaged with a Zeiss LSM 880 Confocal Microscope under a 20 x or 40 x

C-Apochromat water immersion objective lens.

Overexpression and pulldown of MP, MPS334A and CREBB in S2 cells
The Effectene transfection reagent (QIAGEN) was used to deliver DNA to S2 cells. For protein over-

expression, 2 � 106 S2 cells were transferred into 5 ml fresh media overnight (Schneider’s Drosophila

medium, Gibco). The cells were collected by centrifuging them for 2 min. UAS-MP-HA, UAS-

MPS334A-HA or UAS-CREBB-6xHis were co-transfected with Act-GAL4 into S2 cells. Transfected cells

were placed at room temperature for two days in medium, collected, and lysed with sample lysis

buffer (50 mM Tris-Cl pH 7.5, 125 mM NaCl, 5% glycerol, 1% NP40, 1.5 mM MgCl2, 0.2 mM DTT)

containing a protease inhibitor mix (cOmplete, Roche). The cell lysate was collected and a-HA aga-

rose (EZview Red Anti-HA Affinity Gel, Sigma) or a-His resin (HisPur Ni-NTA Resin, ThermoFisher)

was added for protein pulldown.

Western blot
Fly heads were collected and mashed in a sample lysis buffer. The samples with SDS sample buffer

were boiled and run on a 10% SDS-PAGE gel and transferred to nitrocellulose membranes. Primary

antibodies for PO4-CREBB (1:1000), pan-CREBB (1:5000) (Fropf et al., 2013), CREBA (1:5000)

(Andrew et al., 1997) (Developmental Studies Hybridoma Bank), HA-tag (1:2000) (BioLegend), His-

tag (1:2000) (Clontech) and actin (1:10,000) (Abcam) were used and detected by HRP conjugated

secondary antibody (1:10,000) (Jackson ImmunoResearch). For detecting the ATG2-CREBB protein

(Fropf et al., 2013), 50 adult brains were dissected and collected in 20 mL of the sample lysis buffer

and placed at �80˚C for overnight. After vortexing for one minute, samples were mixed with SDS
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sample buffer and boiled before loading into an SDS-PAGE gel and transferred to nitrocellulose. Pri-

mary antibodies for ATG2-CREBB (1:1,000) (Fropf et al., 2013) was used and detected by HRP con-

jugated secondary antibody (1:10,000) (Jackson ImmunoResearch). An ECL reagent kit

(ThermoFisher) was used for Western blot detection.

Kinase assay
ERK and PKA were purchased from NEB. MP and MPS334A were overexpressed and purified from S2

cells. For kinase assay, the kinases (ERK: 0.01U (NEB), PKA: 0.1U (NEB), MP and mutant MP: 13.5 ml

of a-HA-agarose pulldown) were added into a cocktail containing the kinase buffer (0.5 mg/ml BSA,

15 mM Tris-Cl pH7.5 in final) MgCl2/ATP (0.2 mM in final), g-32P-ATP (10 mCi in final), and myelin

basic protein (MBP) (1.2 mM in final). For testing if MP or CREBB are substrates of PKA, MP and

CREBB were pulled down, and incubated at 30˚C for 30 min. The reactions were terminated by add-

ing 2x SDS sample buffer, boiling for 5 min, and run on SDS gels. After transferring to nitrocellulose

membranes, radioactive signals were detected by CL-X posure film (ThermoFisher).

Luciferase activity assay
The luciferase assay system was from Promega. All groups of flies were raised in the same incubator

in 12 hr light/12 hr dark conditions, and the CRE-luciferase assay was performed at the same time

for all genotypes tested to avoid a circadian effect (Fropf et al., 2014). Briefly, fly heads were col-

lected and homogenized in a reporter lysis buffer (10 heads/20 ml) and placed at �80˚C overnight.

The supernatant of lysate was collected and mixed with luciferase assay reagents (20 ml lysate/100 ml

luciferase assay reagent) at RT for 1 min in 96-well plate. The luciferase activity was analyzed using

an Optima luminescence reader (BMG LABTECH).

Behavioral assay
Behavioral assays were performed with balanced comparative groups which were trained and tested

in parallel without blinding. For behavior assays, MB-GAL4 flies were outcrossed with Canton-S

w1118 (iso1CJ) or y w flies for at least five generations, and Tub-Gal80ts, UAS-RNAi and UAS-MP-HA

flies were outcrossed with iso1CJ. For RNAi knockdown, flies were raised at 18˚C until eclosion then

transferred to 25˚C for 3 days. Aversive olfactory learning was performed using the T-maze appara-

tus (Tully and Quinn, 1985). In brief, one training session consists of approximately 100 flies that

were electrically shocked while exposed to one of two odors (3-octanol and 4-methylcyclohexanol,

Sigma). The shock was alternated between 3-octanol and 4-methylcyclohexanol. Flies trained by one

training session and tested immediately are tested for learning, whereas those tested 3 hr later are

assessed for 3 hr memory. Flies undergoing ten training sessions and tested 24 hr later are assessed

for 24 hr memory or LTM. For cycloheximide (CXM, Sigma) feeding (DeZazzo and Tully, 1995), 35

mM CXM in 5% glucose was added on Whatman 3 MM filter paper in a bottle with fly food to feed

flies overnight prior to performing training sessions. After training, the flies are placed in a vial con-

taining CXM filter paper with fly food for another 24 hr prior testing.

Statistics
Statistical analyses were performed by KaleidaGraph 4.1 (Synergy software). Behavioral data were

evaluated via one-way ANOVA followed with Tukey’s test for multiple comparisons (Lee et al.,

2011). Data from two groups are analyzed by t-test. All data are presented as ‘mean ±SEM’.

*p<0.05, **p<0.01, ***p<0.001.
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