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During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput
microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology
based approaches were used to predict the protein function, but they failed when a new protein was different from the previous
one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational
intelligence techniques have been proposed in the recent past.This paper presents a state-of-the-art comprehensive reviewof various
computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction
network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular
localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and
pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these
problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The
summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction.

1. Introduction

Protein function prediction is a very important and chal-
lenging task in bioinformatics. Protein is the most important
molecule in our life. It is responsible for structuring the
organs, catalysis of biochemical reaction for metabolism, and
maintenance of cellular components. The knowledge of the
functionality of a protein is very important to develop new
approaches in any biological process. The experiment based
protein function prediction required a huge experimental
and human effort to analyze a single gene or protein. So to
remove this drawback a number of very high throughput
experimental procedures have been invented to investigate
the methods that are used in function prediction. These
procedures have generated a variety of data, such as protein
sequences, protein structures, protein interaction network,
and gene expression data used in function prediction. There
are many databases to maintain these data, such as SWISS-
PROT [1], DIP [2], NCBI [3], STRING [4], and PDB [5].

The homology basedmethods used the structure of a pro-
tein and it identifies the protein with most similar structure
using structural alignment techniques. The global and local
sequence alignment techniques have been proposed in papers
[6–8] and the sequence motifs have been proposed in papers
[9, 10] for protein function prediction. The BLAST in paper
[6] and FASTA in paper [11] have been proposed for the com-
parison of amino acid sequences. The position specific score
matrix (PSSM) was used in paper [7] to search the protein
databases which provide high sensitivity for detecting remote
homologs. In paper [12] the authors have observed that the
proteins that diverged from a common ancestral gene may
have the same function but no detectable sequence similarity.
Therefore the sequence similarity based approaches may not
always be adequate for protein function prediction.

The protein structures are more conserved than sequen-
ces so when a sequence based function prediction cannot be
achieved with high accuracy then three-dimensional struc-
tures of proteins are used for protein function prediction.The
structure of a protein determines several functional features
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such as cellular location, overall fold, active site residues and
their conformation in enzymes, and interactions with ligands
and other protein. In paper [13] the authors have used the
fold information depending on global and local structural
alignment algorithms. The global and local conformational
similarities between proteins indicate functional similarities
and are useful for inferring functions of proteins. The
authors of paper [14] have developed amolecular binding site
prediction method which integrates sequence conservation
estimates with structure based methods to identify protein
surface cavities, ligand binding packets, individual ligand
binding residues, catalytic sites, and drug binding pockets.
The structural properties based protein function prediction is
useful for single static structure and is not useful in dynamic
structure, but structural dynamics can enhance the function
prediction, so in paper [15] the authors have used molecular
dynamics simulation with structure based function predic-
tion algorithm to find the binding sites for protein function
prediction. But the availability of high-resolution structural
data of the proteins or their homologues is the major limita-
tion of this type of protein function prediction methods.

Sequence and structure based methods used homology
relationships among proteins for protein function prediction.
When sequence based homology failed, then structure based
homology is used to predict protein function. But these
methods have problems in protein function prediction due
to availability of adequate data of homologous proteins and
homologous proteins may have a different function. So these
methods fail when homology relationships cannot be estab-
lished for target proteins [16]. Protein function prediction
based on the structure has been restricted in scope because of
the availability of a limited number of structures and folds in
the databases. Protein function prediction from sequence is
a great challenge for the protein that has low or no sequence
similarity to proteins of known function. So computational
intelligence techniques have been found useful in protein
function prediction by using sequence derived properties
independent of sequence similarity that have a great potential
for low and nonhomologous protein [17].

The advancement of high throughput technologies has
produced a large amount of high throughput data such as
protein-protein interaction and gene expression data that are
also useful for protein functions prediction. Gene expression
measurements provide the genes which are active under
certain condition that produces a protein to perform a
given function under such conditions. So it is expected that
coexpressed genes perform similar cellular functions.Various
computational intelligence techniques are used to annotate
unknown genes that coexpress with known genes. Proteins
perform a specific function by interacting with another pro-
tein. So protein-protein interaction network provide valuable
data that is useful in protein function prediction. Pathway
consists of genes that chemically act together for specific
cellular or physiological functions so pathway analysis of gene
expression data is also useful for gene function prediction.

There are various online servers which are also available
to predict the various protein functions. The BPBind (http://
lcg.rit.albany.edu/dp-bind/) [18] and BindN (http://bioinfo
.ggc.org/bindn/) [19] are the web servers to predict binding

sites using sequence derived properties of protein sequence.
The SVMPort (http://jing.cz3.nus.edu.sg/cgi-bin/svmprot
.cgi) [20] is the web server to predict protein function by
using sequence and structure derived properties of protein
sequence.The GPCRsclass (http://www.imtech.res.in/raghava/
gpcrsclass/) [21] is the SVM based web server to predict the
G-protein coupled receptors and their subfamilies by using
amino acid and dipeptide composition of protein sequences.
MemType-2L (http://www.csbio.sjtu.edu.cn/bioinf/MemType/)
[22] is the ensemble classifier based web server to predict the
membrane proteins by using pseudoamino acid composition.

2. An Overview of Computational Intelligence
Techniques in Protein Function Prediction
by Using Sequence and Structure

This section presents a state-of-the-art comprehensive review
of various computational intelligence techniques used in
wide areas of applications such as prediction of DNA and
RNA binding sites, subcellular localization, enzyme func-
tions, signal peptides, catalytic residue, nuclear/G-protein
coupled receptors, andmembrane proteins by using sequence
and structure; it also presents the summary of the result
obtained by many researchers to solve these problems by
using computational intelligence techniques with appropriate
datasets to improve the prediction performance.

2.1. Computational Intelligence Techniques in Prediction of
Binding Sites. The interaction of protein-DNAplays themost
important role in cellular function. The predictions of DNA-
binding sites in proteins are very important for understand-
ing the molecular mechanisms of protein-DNA interaction.
So it is necessary to design a robust and efficient computa-
tional intelligence techniques based method to predict the
DNA binding sites. So for achieving this objective various
computational intelligence techniques have been proposed
in literatures. Some of the prominent computational intel-
ligence techniques reported in literature for the application
under consideration include artificial neural network (ANN),
support vector machine (SVM), Näıve Bayes, and random
forest based ensemble classifiers based methods.This section
of the paper presents an analysis of various research papers in
literature and examines the efficacy of each of these methods
for the predictions ofDNA andRNA-binding sites in proteins
which are as follows.

An artificial neural network (ANN) based method has
been proposed in papers [23, 24] to predict the DNA binding
sites by using information on the amino acid sequence
composition, solvent accessibility and secondary structure in
paper [23], and position specific scoring matrices (PSSM) in
paper [24].The authors observed that theANNbasedmethod
had not obtained the desired level of performance in these
works.

The support vector machine (SVM) based methods to
predict the DNA binding sites have been proposed in papers
[18, 25–29] by using the different sequential and structural
features. In paper [25] surface and overall composition,
overall charge, and positive potential patches on the protein
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surface have been used. In paper [26] amino acid sequence,
PSSM, and low-resolution structural information have been
used. The authors of this paper compared their result by
using only sequence, sequence and structure, PSSM, and
PSSM with structure. From the comparative analysis it was
observed by the authors that the highest prediction accuracy
is achieved by using a combination of evolutionary conser-
vation (PSSM) and low-resolution structural information.
In paper [18], amino acid sequence and PSSM have been
used. In paper [27], amino acid sequence, pseudoamino acid
composition, autocross-covariance transforms, and dipep-
tide composition have been used. In paper [28], normalized
PSSM score, normalized solvent accessible surface area, and
protein backbone structure have been used. In paper [29],
PSSM, amino acid composition, hydrophobicity, polarity,
polarizability, secondary structure, solvent accessibility, nor-
malized Vander Waals volume, and binding and nonbinding
propensity have been used. In paper [30] the authors have
proposed a combination of SVM and ANN based method
to predict the DNA binding sites with PSSM and structural
features such as secondary structure, solvent accessibility,
and globularity. They then compared their results by using
only sequence, PSSM, PSSM and sequence, protein-protein
interaction data, and PSSM with structural features. It was
observed by the authors of the paper that structural informa-
tion is necessary for improving the prediction performance
of DNA binding sites.

The random forest based method to predict the DNA
binding residues has been proposed in papers [31–33] by
using the different sequential and structural features. In paper
[31], mean and standard deviation of amino acid sequence
features, side chain pKa value, hydrophobicity index, molec-
ular mass, and PSSM have been used. Then, the result was
compared by the authors by using the mean and standard
deviation side chain pKa value, hydrophobicity index, and
molecular mass with and without PSSM. It was observed by
the authors of the paper that result was improved by using the
PSSM. In paper [32], PSSM, secondary structure information,
orthogonal binary vector information, two physical-chemical
properties dipoles, and volumes of the side chains have been
used. In paper [33], pseudoamino acid compositions have
been used. Regardless of homology based approaches, in
paper [34], a Gaussian Naive Bayes based method has been
proposed for the prediction of the DNA-binding proteins by
using random forest for ranking the features. The wrapper-
based feature selection using forward best first search strategy
was used for selecting the features. These features include
the information fromprimary sequence, predicted secondary
structure, predicted relative solvent accessibility, and PSSM.
The authors compared their result with decision tree, logistic
regression, k-nearest neighbor, support vector machine with
polynomial kernel, and support vector machine with radial
basis function. It was observed by the authors of the paper
that the proposedmethod outperformed five other classifiers.

The prediction of RNA binding residues is necessary for
understanding the function and mechanism of biological
activities involved in RNA-protein interactions. So for the
prediction of RNA binding sites in paper [35] the authors
have proposed a Naive Bayes classifier by using amino acid

sequence and various features, such as relative accessible sur-
face area, sequence entropy, hydrophobicity, secondary struc-
ture, and electrostatic potential. To improve the prediction
performance the support vector machines based method has
been proposed in papers [36, 37] to predict RNAbinding sites
by using the different sequential and structural features. In
paper [36], sequence of amino acids and PSSMhas been used.
Then to improve the prediction performance in paper [37],
the authors used smoothed PSSM with the correlation and
dependency from the neighboring residues for each amino
acid in a protein. A Näıve Bayes classifier with support vector
machine has been proposed in paper [38] to predict RNA
binding sites by using structural and topological information.
The authors compared the results with different datasets, and
it was observed by the authors that the highest AUC was
achieved by a support vector machine, by using PSI-BLAST
profile, accessible surface area, and retention coefficient. In
paper [39] the authors have developed an enriched random
forest based method with the features amino acid sequences
such as PSSM, physicochemical properties of amino acids,
polarity charge, and hydrophobicity to predict the RNA
binding sites. In paper [40] the authors have used themajority
voting system with protein sequence amino acid composi-
tion and physicochemical properties such as hydrophobicity,
predicted secondary structure, predicted solvent accessibility,
normalizedVanderWaals volume, polarity, and polarizability
for the prediction of RNA binding sites.

In paper [41] the authors have proposed integrated
SVMs based method for the prediction of rRNA, RNA,
and DNA-binding proteins by using protein sequence amino
acid composition and physicochemical properties such as
hydrophobicity, predicted secondary structure, predicted sol-
vent accessibility, normalized Vander Waals volume, polar-
ity, and polarizability. In papers [19, 42] the authors have
developed a support vector machines based method for the
prediction of DNA and RNA binding residues by using three
amino acid sequence features. In paper [19], side chain pKa
value, hydrophobicity index, and molecular mass have been
used. In paper [42], the authors used PSSM with mean and
standard deviation of side chain pKa value, hydrophobicity
index, and molecular mass. It was observed by the authors
that sensitivity and specificity were increased by 8% by using
PSSM with mean of all three features. In paper [44], the
authors have proposed the Bayesian classifier based method
for the recognition of zinc binding sites of protein by using
structural properties of a protein. In paper [43] the SVM
based approaches have been proposed to predict metal
binding by using the sequence and structural properties of
proteins. In paper [45] a knowledge based method has been
proposed with the combination of structural comparison
and the evaluation of statistical potential for identifying
DNA-binding proteins and binding sites. In paper [46]
an approach based on binding assessment with distance-
scaled, finite, ideal gas reference based statistical energy
function and structural alignment of known protein has been
proposed for the simultaneous prediction of RNA binding
proteins and binding sites. Table 1 presents the summary of
various computational intelligence techniques in prediction
of binding sites.
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2.2. Computational Intelligence Techniques in Prediction of
Subcellular Location. The subcellular location of a protein
is closely correlated to the function of the protein. So it
is necessary to design a robust and efficient computational
intelligence techniques based method to predict subcellular
locations in a protein. So for achieving this objective various
computational intelligence techniques have been proposed
in literatures. Some of the prominent computational intel-
ligence techniques reported in literature for the application
under consideration include artificial neural network (ANN),
support vector machine (SVM), and k-nearest neighbors (k-
NN).This section of the paper presents an analysis of various
research papers in literature and examines the efficacy of each
of these methods for the predictions of subcellular locations
in a protein which are as follows.

The SVM based methods have been proposed in papers
[47–51] to predict protein subcellular location by using dif-
ferent sequence derived properties. In paper [47] amino acid
compositions have been used. In paper [48] the functional
domain compositions of protein have been used. In paper
[49], amino acid subsequences have been used. In paper [50],
physiochemical properties of amino acid have been used. In
paper [51], amino acid and dipeptide composition have been
used. It is observed that physiochemical properties are much
useful to predict the subcellular localization. But to increase
the prediction performance in paper [52] a hybrid approach
basedmethod have been proposed that integrates PSI-BLAST
and three SVM modules based on compositions of residues,
dipeptides, and physicochemical properties to predict the
subcellular localization of gram-negative bacterial proteins.

The k-nearest neighbor based methods has been pro-
posed by the authors of papers [53–56] to improve the
prediction performance of subcellular locations with dif-
ferent sequence derived properties. In paper [53], dipep-
tide composition of amino acids has been used. In paper
[54], amino acid compositions, dipeptide compositions, and
physicochemical properties have been used. In paper [55],
functional domain composition has been used. In paper
[56], low dimensional feature vector that is represented by
fusing PSSM and pseudoamino acid composition has been
used. Here it is observed that the PSSM with physiochemical
properties may provide better results.

In paper [57] the authors have proposed a SVM based
approach for the prediction of protein subcellular localization
by using the integration of N-terminal targeting sequences
amino acid composition and protein sequence motifs. In
paper [58] the authors have proposed the C-support vector
machine with pseudoamino acid composition. In this paper
authors used multiscale energy to extract the features which
provide the information about the sequence order to predict
protein subcellular locations. In paper [59] the authors have
proposed an evolutionary SVM by using combination of
genetic algorithm with SVM to select most appropriate fea-
ture of physiochemical composition by using physiochemical
property of amino acid to predict subcellular locations in a
protein.

In papers [60–63] the authors have used support vec-
tor machine with different sequence derived properties,
sequence motifs, and alignments to predict the subcellular

locations of a protein. In paper [60], the combination of
sequence alignment and amino acid composition has been
used. In paper [61], amino acid composition and PSSM have
been used. In paper [62], pseudoamino acid composition has
been used. In paper [63], sequence motifs including motifs
with gap have been used to predict the subcellular locations
of a protein. In paper [64] the authors have developed
a SVM and adaptive neurofuzzy based system by using
amino acid composition, amino acid pair, 1-gapped-amino-
acid pair, 2-gapped-amino-acid pair, and 3-gapped-amino-
acid pair compositions. It was observed by the authors that
the proposed method performed better in comparison to
previous proposed methods. In paper [65] the authors have
proposed a SVM based prediction system that integrates
features from phylogenetic profiles and gene ontology (GO)
terms derived from the protein sequence to improve the
prediction performance of subcellular locations in a protein.

In paper [66] the authors have proposed a recurrent
neural network based method by using the essential fea-
tures that is extracted by principal component analysis
(PCA) from amino acid composition. Similarly in paper
[67] the authors have proposed an N-to-1 neural network
with protein sequence for the prediction of subcellular
location of proteins. In paper [68] the authors have proposed
a SVM based approach along with a diversity algorithm
by using amino acid composition, dipeptide, composition,
reduced physiochemical properties, gene ontology, evolu-
tionary information, and pseudoaverage chemical shift for
the prediction of submitochondria location. In paper [69]
the authors have proposed a hybrid method that used a
support vector machine and an artificial neural network with
known locations and structure of a protein for the prediction
subcellular localization of proteins. Table 2 presents a sum-
mary and performance evaluation of various computational
intelligence techniques used for prediction of subcellular
localization of a protein.

2.3. Computational Intelligence Techniques in the Prediction
of Enzyme Function/Family. Enzyme catalyzes biochemical
reactions and plays a very important role in the metabolic
pathways. So it is necessary to design a robust and efficient
computational intelligence techniques based method to pre-
dict enzyme function. So for achieving this objective various
computational intelligence techniques have been proposed in
literatures. Some of the prominent computational intelligence
techniques reported in literature for the application under
consideration include random forest, artificial neural net-
work (ANN), support vector machine (SVM), and k-nearest
neighbors (k-NN). This section of the paper presents an
analysis of various research papers in literature and examines
the efficacy of each of these methods for the predictions of
enzyme function which are as follows.

In paper [145] the authors have developed an artifi-
cial neural network based method for the classification
of enzymes from sequence by using sequence similarity
and other sequence derived features such as cotranslational
and posttranslational modification, secondary structure, and
physical and chemical properties. The k-nearest neighbor
based methods have been proposed by the authors of papers
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Table 2: Summary of computational intelligence (CI) techniques in prediction of subcellular localization.

Reference CI techniques Performance Datasets
[47] SVM Accuracy: 86.3% Amino acid compositions
[48] SVM Average accuracy: 66.7% Functional domain composition of protein
[49] SVM Overall recall: 89.8% Amino acid subsequence
[50] SVM Overall accuracy: 93.1% Physiochemical property of amino acid

[51] SVM Accuracy: 84.9% Amino acid composition, dipeptide composition, and
similarity information

[52] SVM Accuracy: 91.2% Compositions of residues, dipeptides, and
physicochemical properties

[53] 𝑘-NN Overall accuracy: 80% Dipeptide composition of amino acids

[54] 𝑘-NN Overall accuracy: 92.5% Amino acid compositions, dipeptide compositions, and
physicochemical properties

[55] 𝑘-NN Overall accuracy: 85.4% Functional domain composition
[56] 𝑘-NN Overall accuracy: 93.57% PSSM and pseudoamino acid composition

[57] SVM Overall accuracy: 74.00% N-terminal targeting sequences amino acid
composition and protein sequence motifs

[58] CSVM Overall accuracy: 80.03% Pseudoamino acid composition
[59] SVM with GA Overall accuracy: 72.82% Physiochemical property of amino acid

[60] SVM Overall accuracy: 90.96% and MCC:
0.8655

Combination of sequence alignment and feature based
on amino acid composition

[61] SVM Accuracy: 73.71% Amino acid composition and PSSM
[62] SVM Accuracy: 88.3% Pseudoamino acid composition
[63] SVM Recall: 91.30% Sequence motifs

[64] SVM Accuracy: up to 94.00% Amino acid composition, amino acid pair, 1, 2.3 gapped
amino acid pair compositions

[65] SVM Accuracy: up to 93% Integrates features from phylogenetic profiles and gene
ontology

[66] Recurrent NN Overall accuracy: 72.55% Pseudo amino acid composition
[67] N-to-1 NN Accuracy: up to 89% Protein sequence

[68] SVM Overall accuracy: 93.57%
Amino acid and dipeptide, composition, reduced
physiochemical properties, gene ontology, PSSM, and
pseudoaverage chemical shift

[69] SVM and ANN Accuracy: 68% Structural properties of a protein

[70–74] by using different sequence derived properties. In
paper [70], functional domain composition of a protein has
been used. In paper [71], pseudoamino acid composition that
includes both features such as sequence order related features
and the function related features has been used. In paper
[72], functional domain composition and PSSM have been
used. In paper [73], amino acid composition has been used. In
paper [74], pseudoamino acid composition with approximate
entropy and the hydrophobicity pattern of an amino acid
sequence have been used to predict enzyme function of a
protein.

The SVM based methods have been proposed by the
authors of papers [20, 75–82] by using different sequence
derived properties. In paper [75], pseudoamino acid com-
position has been used. In paper [76], hydrophobicity of
amino acid from pseudoamino acid composition has been
used. In papers [77, 79], pseudoamino acid composition with
the conjoint triad features (CTF) to represent the protein
sequences not only the composition of amino acids, but

also the neighbor relationships in the sequence have been
used. In paper [78], feature vector from protein functional
domain composition has been used. In paper [20], amino
acid sequence has been used. In paper [80], features extracted
from the global structure based on fragment libraries have
been used. In paper [81], pseudoamino acid composition
has been used. In paper [82], amino acid composition,
physiochemical properties, and dipeptide composition have
been used to predict enzyme functions of a protein. It is
observed that the pseudoamino acid composition with the
conjoint triad features provides better results than other
features. In paper [83] the authors have proposed theBayesian
based approach with structure derived properties of a protein
to predict the function of an enzyme.

The random forest based method has been proposed by
the authors of papers [84, 85] to predict the functional class
and subclass of enzymes by using sequence derived features.
In paper [84], the authors have proposed a top-down three-
layer approach where the top layer classified a query protein
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Table 3: Summary of computational intelligence (CI) techniques in prediction of enzyme function/family.

Ref. CI techniques Performance Datasets
[70] 𝑘-NN Accuracy: 85% Functional domain composition
[71] 𝑘-NN Accuracy: 76.6% Amphiphilic pseudoamino acid composition

[72] OET-𝑘NN
Overall accuracy: 91.3%, 93.7%,
and 98.3% for the 1st, 2nd, and
3rd level

Functional domain composition and PSSM

[73] 𝑘-NN Accuracy: 99% Amino acid composition

[74] Fuzzy 𝑘-NN Accuracy: 56.9% Pseudoamino acid composition, approximate entropy,
and hydrophobicity

[75] SVM Accuracy: 80.87% Amphiphilic pseudo amino acid composition
[76] SVM with DWT Accuracy: 91.9. Pseudoamino acid composition
[77] SVM MCC: 0.92 and accuracy: 93% Pseudoamino acid composition with CTF
[78] SVM Accuracy: 91.32% Functional domain composition

[79] SVM Accuracy: 81% to 98%
and MCC: 0.82 to 0.98 Pseudoamino acid composition with CTF

[20] SVM Accuracy: 95.25% Structural features based on fragment libraries
[80] SVM Accuracy: 69.1–99.6% Amino acid sequence

[81] SVM Sensitivity: 85.6% and specificity:
86.1% Pseudoamino acid composition

[82] SVM Accuracy: 77.4% Sequence similarity, amino acid composition,
physiochemical properties, and dipeptide composition

[83] Bayesian classifier Accuracy: 45% Structural properties

[84] Random forest
Overall accuracy: 94.87%, 87.7%,
and 84.25% for the 1st, 2nd, and
3rd level

Sequence derived features

[85] Random forest Precision: 0.98 and recall: 0.89 Set of specificity determining residues

[86] SVM and random forest Accuracy: 71.29–99.53% by SVM
and 94–99.31% by random forest Sequence derived properties

[87] N-to-1 neural network Overall accuracy: 96%,
specificity: 80%, and FP rates: 7% Amino acid sequences

sequence as an enzyme or nonenzyme, the second layer
predicted the main function class, and bottom layer further
predicted the subfunction class. In paper [85], the authors
have used a set of specificity determining residues to predict
the class and subclass of an enzyme. In paper [86], the authors
have proposed a SVM and random forest based methods
by using sequence derived properties to predict the enzyme
function and subfunctions. In paper [87], the authors have
proposed an N-to-1 Neural Network for accurate prediction
of enzyme by using amino acid sequences. It is observed
that random forest based proposed methods with sequence
derived properties provide the better results so random
forest is much useful to predict the enzyme function and
subfunctions. Table 3 presents a summary and performance
evaluation of various computational intelligence techniques
used for prediction of enzyme function/family.

2.4. Computational Intelligence Techniques in Prediction of
Signal Peptide. A signal peptide is a small peptide that is
anticipated towards the secretory pathway. So it is necessary
to design a robust and efficient computational intelligence
techniques basedmethod to predict the signal peptide. So for
achieving this objective various computational intelligence

techniques have been proposed in literatures. Some of the
prominent computational intelligence techniques reported
in literature for the application under consideration include
artificial neural network (ANN) and k-nearest neighbors (k-
NN).This section of the paper presents an analysis of various
research papers in literature and examines the efficacy of each
of these methods for the predictions of signal peptides which
are as follows.

The ANN based method has been proposed by the
authors of papers [88, 89] to predict the signal peptide
by using amino acid sequences. Similarly in paper [90],
the authors have proposed a bidirectional recurrent neural
network based approach for the prediction of signal peptides
in human protein sequences. In paper [92], the authors have
proposed a neural network based method for detection of
signal peptides in proteins by using the divided protein
sequence into overlapping short sequence fragments. Then
each fragment was analyzed with respect to the probability
of it being a signal peptide. In paper [91], the authors have
proposed an ensemble classifier that was formed by fusing
many individual optimized evidences theoretic k-nearest
neighbors for the prediction of signal peptide sequences and
their cleavage sites by using pseudoamino acid composition.
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Table 4: Summary of computational intelligence (CI) techniques in prediction of signal peptides.

Reference CI techniques Performance Datasets
[88] ANN Accuracy: 97% Amino acid sequences
[89] ANN Accuracy: 97% Amino acid sequences
[90] Bidirectional recurrent NN Accuracy: 97% Amino acid sequences
[91] OET-𝑘NN Accuracy: 73.4% Pseudoamino acid composition
[92] ANN Accuracy: 93% Amino acid sequences
[93] SVM Accuracy: 97% Pseudoamino acid composition
[94] SVM Sensitivity: 90.97% and selectivity: 97.42% Position specific amino acid composition

[95] Bayesian reasoning network
Accuracy: 97.73% for secretory and
nonsecretory and 90.90% for signal
peptide cleavage site

Sequence derived features

Table 5: Summary of computational intelligence techniques in prediction of catalytic residue.

Reference CI techniques Performance Datasets

[96] ANN Accuracy: 69% Features of amino acid sequence and
structure

[97] GA with ANN Accuracy: 91.2% Residue properties
[98] SVM Accuracy: 86% Sequence and structural properties
[99] SVM Recall: 61% Protein structure
[100] SVM Accuracy: 88.6%–95.76% Sequence and structural properties

[101] SVM MCC: 0.74, sensitivity: 0.76, and
specificity: 0.51 Structural features of a protein

In papers [93, 94], authors have proposed a support vec-
tor machine based method for predicting signal peptides
and their cleavage sites. In paper [93], pseudoamino acid
composition has been used. In paper [94], position specific
amino acid composition has been used. In paper [95] the
authors have proposed a Bayesian reasoning network that was
formed by fusing the results of different Bayesian classifiers
which used sequence derived features through the weighted
voting system based method to predict the N-terminal signal
peptide and cleavage site. Table 4 presents a summary and
performance evaluation of various computational intelli-
gence techniques used for prediction of signal peptides.

2.5. Computational Intelligence Techniques in Prediction of
Catalytic Residue. The enzyme active site is the binding
site for catalytic reactions of enzymes. So it is necessary to
design a robust and efficient computational intelligence tech-
niques based method to predict the catalytic residues. So for
achieving this objective various computational intelligence
techniques have been proposed in literatures. Some of the
prominent computational intelligence techniques reported
in literature for the application under consideration include
artificial neural network (ANN) and support vector machine
(SVM). This section of the paper presents an analysis of
various research papers in literature and examines the efficacy
of each of these methods for the predictions of catalytic
residues which are as follows.

In paper [96] the authors have proposed a neural network
based approach for the prediction of catalytic residues by
using protein sequence and structural properties. Similarly

in paper [97] the authors have proposed an integrated
genetic algorithm and neural network based method for the
prediction of catalytic residues by using residue properties.
The support vector machine based method has been pro-
posed by the authors of papers [98–101] by using different
sequence derived properties. In paper [98], protein sequence
and structural properties have been used. In paper [99],
protein structure has been used. In paper [100], sequence and
structural features have been used. In paper [101], structural
features of a protein have been used for the prediction of cat-
alytic residues. Table 5 presents a summary and performance
evaluation of various computational intelligence techniques
used for prediction of catalytic residue.

2.6. Computational Intelligence Techniques in Prediction of
Nuclear/G-Protein Coupled Receptor. Nuclear receptors (NR)
are key transcription factors that regulate a wide variety
of biological processes, such as homeostasis, reproduction,
development, and metabolism. The nuclear receptors are
involved in many physiological and pathological processes
so prediction of different NR families and subfamilies is a
most challenging problem in bioinformatics. The G-protein
coupled receptors (GPCR) are involved in various physio-
logical processes. So it is necessary to design a robust and
efficient computational intelligence techniques basedmethod
to predict the different NR and GPCR subfamilies. So for
achieving this objective various computational intelligence
techniques have been proposed in literatures. Some of the
prominent computational intelligence techniques reported
in literature for the application under consideration include



10 International Journal of Proteomics

Table 6: Summary of computational intelligence techniques in prediction of nuclear/GPC receptor.

Reference CI techniques Prediction Performance Datasets
[102] SVM NR Overall accuracy: 82.6%–97.5% Amino acid composition and dipeptide composition
[103] SVM NR Overall accuracy: 96% 4-tuple residue composition
[104] SVM NR Overall accuracy: 99.6% Pseudoamino acid composition
[105] SVM NR Accuracy: 98% Pseudoamino acid composition

[106] SVM NR Accuracy: 97% Amino acid composition, dipeptide composition, and
physicochemical property

[107] Fuzzy 𝑘-NN NR Overall accuracy: 93% Pseudoamino acid composition with physicochemical
and statistical features

[108] SVM GPCR Overall accuracy: 99.5% Dipeptide composition of amino acids
[21] SVM GPCR Overall accuracy: 89.8%–96.4% Amino acid composition and dipeptide composition
[109] SVM GPCR Overall accuracy: 99.6% Pseudoamino acid composition

[110] Adaboost GPCR Overall accuracy: 96.4% and MCC: 0.930 Pseudoamino acid composition with approximate
entropy and hydrophobicity patterns

[111] PCA GPCR Overall accuracy: 80.47–99.5% Sequence derived features

support vector machine (SVM) and k-nearest neighbors (k-
NN).This section of the paper presents an analysis of various
research papers in literature and examines the efficacy of
each of these methods for the predictions of NR and GPCR
subfamilies which are as follows.

In papers [102–106] the authors have proposed the SVM
basedmethods by using different sequence and structural fea-
tures. In paper [102], amino acid composition and dipeptide
of amino acids have been used. In paper [103], 4-tuple residue
composition instead of dipeptide composition to encode
the sequences has been used. In paper [104], pseudoamino
acid composition and, similarly in paper [105], pseudoamino
acid composition whose components were derived from a
physical-chemical matrix via a series of autocovariance and
cross-covariance transformations have been used. In paper
[106], amino acid composition, dipeptide composition, and
physicochemical properties have been used to predict the
nuclear receptor and their subfamilies. In paper [107], the
authors have proposed a fuzzy k-nearest neighbor classifier
based on the pseudoamino acid composition with physic-
ochemical and statistical features derived from the protein
sequences, such as amino acid composition, dipeptide com-
position, complexity factor, and low-frequency Fourier spec-
trum components to predict the nuclear receptors and their
subfamilies. Here it is observed that amino acid composition,
dipeptide composition with pseudoamino acid compositions
may provide the better results.

In papers [21, 108], the authors have proposed the SVM
basedmethod to predict the G-protein coupled receptors and
their subfamilies. In paper [108], dipeptide composition of
amino acids and, similarly in paper [21], amino acid and
dipeptide composition have been used. A nearest neighbor
method has been proposed in paper [109] to discriminate
GPCRs from non-GPCRs. In this paper, GPCRs have been
classified at four levels on the basis of amino acid composition
and dipeptide composition of proteins. In paper [110], the
authors have proposed an adaboost classifier to predict
G-protein coupled receptors by using pseudoamino acid

composition with approximate entropy and hydrophobicity
patterns. In paper [111], the authors have proposed a principal
component analysis based method for the prediction of
GPCRs, families, subfamilies, subsubfamilies, and subtype.
In this paper the authors used sequence derived features
such as amino acid composition, dipeptide composition,
autocorrelation descriptors, normalized Vander Waals vol-
ume, polarity, polarizability, charge, secondary structure, sol-
vent accessibility, relative hydrophobicity, and pseudoamino
acid composition. Here it is observed that amino acid
composition, dipeptide composition, and pseudoamino acid
compositions with physiochemical properties basedmethods
may provide better results to predict the GPCR and their
subfamilies. Table 6 presents a summary and performance
evaluation of various computational intelligence techniques
used for prediction of nuclear/GPC receptor.

2.7. Computational Intelligence Techniques in Prediction of
Membrane Protein. Membrane proteins are involved in var-
ious cellular processes to perform various important func-
tions. So it is necessary to design a robust and efficient
computational intelligence techniques based method to pre-
dict the membrane proteins. So for achieving this objective
various computational intelligence techniques have been pro-
posed in literatures. Some of the prominent computational
intelligence techniques reported in literature for the appli-
cation under consideration include support vector machine
(SVM), ensemble classifiers, and k-nearest neighbors (k-NN).
This section of the paper presents an analysis of various
research papers in literature and examines the efficacy of
each of thesemethods for the predictionsmembrane proteins
which are as follows.

In papers [112, 113], the authors have proposed the k-
nearest neighbor based method to predict the membrane
proteins. In paper [112], the dimensionality reduction has
been used to decrease the complexity. In this paper the
original high-dimensional feature vectors transformed into
the low dimensional feature vectors. Then this encoded



International Journal of Proteomics 11

Table 7: Summary of computational intelligence techniques in prediction of membrane protein.

Reference CI techniques Performance Datasets
[112] 𝑘-NN Overall accuracy: 92.6% PSSM and pseudoamino acid composition
[113] 𝑘-NN Overall accuracy: 87.65% Protein sequence and PPI data
[114] Fuzzy 𝑘-NN Overall accuracy: 95.7% Pseudoamino acid composition
[22] OET-𝑘-NN Overall accuracy: 91.6% Pseudoamino acid composition
[115] SVM Overall accuracy: 90.1% Protein sequence
[116] Discriminant analysis Overall accuracy: 86.5% Protein sequence information

[117] Ensemble classifier Overall accuracy: 91.2% Pseudoamino acid composition and the
approximate entropy

sequence fused with PSSM and pseudoamino acid compo-
sition has been used. In paper [113], sequence homology and
protein-protein interaction network with pseudoamino acid
composition were used to predict the membrane proteins.
In paper [114], the authors have proposed a fuzzy k-nearest
neighbor algorithm by using pseudoamino acid composition
to predict the membrane proteins. In paper [22], the authors
have proposed an ensemble classifier formed by fusing many
individual optimized evidence theoretic k-nearest neighbors
and their types by using pseudoamino acid composition to
predict the membrane proteins. A support vector machine
based method has been proposed in paper [115] for the
classification of transmembrane proteins by using protein
sequence. In paper [116], the authors have proposed the step-
wise discriminant analysis for extracting high order sequence
information for amino acids and peptides that were distinct
for different types of the membrane proteins. Then their
occurrence frequencies inmembrane proteins have beenused
to predict the types of membrane proteins. Similarly in paper
[117], the authors have proposed an ensemble classifier based
on the pseudoamino acid composition and the approximate
entropy to predict the types of membrane protein. Here it
is observed that ensemble classifiers with pseudoamino acid
compositions and PSSM may provide better results. Table 7
presents a summary and performance evaluation of various
computational intelligence techniques used for prediction of
membrane protein.

3. Computational Intelligence Techniques
in Protein Functions Prediction by Protein
Interaction Network

Performing a specific function a protein must interact with
another protein. The interaction of the protein is represented
in the form of network called protein-protein interaction
network. So by using the knowledge of this interaction
network various computational techniques based approaches
have been proposed for protein function prediction by using
one or more interaction networks. These are categorized
in four ways, the one that assigns a level to an annotated
protein by transferring labels in its neighbor is known
as neighbor based techniques, the second finds density
connected region in the interaction network called cluster
and assigns a label to an annotated protein based on most

dominant label in the corresponding cluster is known as
clustering based approaches, the third that utilizes the entire
connectivity structure on the network is called optimization
based technique, and the fourth that uses association analysis
algorithm to detect frequently occurring sets in interaction
network for protein function prediction is known as associ-
ation analysis based techniques. In paper [146], the authors
have proposed a graph based approach for global alignment
of protein-protein interaction network based on alignment
scoring matrix derived from both biological and topological
information from the network. In this paper an alignment
score matrix has been constructed by similarity score matrix
and interaction score matrix. The similarity score matrix was
the sum of topological score matrix and the biological score
matrix that indicate the topological and biological similarity
between two nodes in the protein-protein interaction net-
works, respectively. In paper [147], the authors have used a
SVM and genetic algorithms for the detection of gene-gene
interaction. In paper [148], the authors have developed a
PCA based clustering algorithm to reduce the dimension-
ality and produce a better informative cluster for multiple
functional association of protein. In paper [118], authors
have proposed a Markov random field based approach for
protein function prediction from protein-protein interaction
network using functional probability of each protein by using
aBayesian approach. In paper [119] the authors have proposed
a network flow based algorithm for exploiting the protein-
protein interaction network. A hyper clique pattern is a
type of an association pattern which contains protein and is
highly associated with each other. Proteins within the same
hyper clique pattern more likely perform the same function
and participate in the same biological process. Therefore in
paper [149], the authors have proposed a hypercube pattern
discovery approach for extracting functional module (hyper
clique pattern) for protein function prediction. In paper [120],
the authors have developed two-step algorithm to predict the
protein function. In this paper the authors first assigned a
weight to each of level 1 and level 2 neighbors by calculating
its functional similarity with the protein using the protein-
protein interaction network and then scoring each function
based on the weighted frequency in the neighbors. Similarly
in paper [121] authors have proposed an association analysis
based method by using h-confidence to find exact group
of object having high similarity with each other. In paper
[122] the authors have proposed a Näıve Bayes approach by
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Table 8: Summary of computational intelligence for protein function prediction by using protein interaction network.

Reference CI techniques Performance Datasets

[118] Markov random field Specificity: 45%, sensitivity: 64% Functional probability of each
protein

[119] Network flow based algorithm Accuracy: 10–90% Structure of protein interactive
maps

[120] Neighbor based techniques Precision: 0.9-1.0, recall: 98% Label 1 and label 2 neighbors

[121] Association analysis based
method Accuracy: 93% H confidence, adjacency matrix

[122] Näıve Bayes classifier Precision: 49%, recall: 62%,
MCC: 0.37 PPI data

[123] RWR with 𝑘-NN Accuracy: 58–73% Neighborhood features

[124] Time sequenced subnetwork Significant module: 95.95% Integrating the gene expression
data and PPI data

[125] Gibbs sampling based
bootstrapping TP/FP: 0.5 to 1.5 Interaction and annotation data

[126] Network based approach Precision: 54.83%,
𝐹-score: 43.74% Function-function correlation

[127] Neighborhood majority voting
system

Precision: 67.3%,
recall: 40.30% Diffusion state distance (DSD)

using information from protein-protein interaction network
to predict protein function.Geneswith similar functions have
similar annotation patterns in their neighborhood, regardless
of the distance between them in the interaction network.
Therefore in paper [123], the authors have proposed a two-
phase approach to predict molecular functions of uncharac-
terized genes by comparing their functional neighborhoods
to genes of known function. In this paper authors have
extracted functional neighborhood features of a gene using
random walks with restarts (RWR). Then authors used a
k-NN classifier to predict the function of uncharacterized
genes based on the computed neighborhood features. In
paper [124], the authors have proposed a method for pro-
tein function prediction by integrating the gene expression
data and protein-protein interaction data. In this paper the
authors considered the dynamic value of protein-protein
interaction network and constructed the time sequenced
subnetwork according to the time when the network was
activated. Then authors have developed an algorithm to
identify the protein complexes from time sequenced sub-
network and then applied a second algorithm to predict
the protein function from these protein complexes from
the time sequenced subnetwork. In paper [125], the authors
have used the graph based centrality metrics to select proper
candidate for labeling. Firstly the authors clustered a PPI
network by using spectral clustering algorithms and selected
a proper candidate for labeling within each cluster. Then
they applied a collective classification for protein function
prediction. In paper [126] the authors have proposed a mul-
tilevel classification technique by using function-function
correlation to predict protein function from protein-protein
interaction network. The previous proposed methods have
used the shortest path distance as a measure proximity which
has limited ability to capture fined grained neighborhood
distinction because most of the protein is closed to each

other and there are many ties in proximity. So by considering
this problem in paper [127], the authors have proposed a
diffusion state distance to capture a fined grained distinction
in proximity for transfer of function prediction in protein-
protein interaction network. It is observed that the neighbor
based, association analysis based, graph based, and clustering
based methods are useful in protein function prediction by
using protein-protein interaction network but integration of
PPI datawith gene expression datamay provide better results.
Table 8 presents a summary and performance evaluation
of various computational intelligence techniques for protein
function prediction by using protein interaction network.

4. Computational Intelligence Techniques
in Protein Functions Prediction by Gene
Expression Data

Gene expression is the process by which information from a
gene is transformed into functional product such as protein
or RNA by transcription and translation process. DNA
microarrays are used to analyze the gene expression level.
Gene expression data are analyzed in the form of a matrix
where each row represents a gene and each column represents
a sample. Gene expression data first filtered and normalized
before using cluster analysis. So it is necessary to design a
robust and efficient computational intelligence techniques
based method to predict the protein function by using
gene expression data. So for achieving this objective various
computational intelligence techniques have been proposed
in literatures. Some of the prominent computational intel-
ligence techniques reported in literature for the application
under consideration include support vector machine (SVM),
genetic programming, k-means, self-organizing map (SOM),
and Hypergraph. This section of the paper presents an
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Table 9: Summary of computational intelligence for protein function prediction by using gene expression data.

Reference CI techniques Performance Datasets

[128] Multilayer perceptron TP rate: up to 79.6%, FP
rate: up to 97% DNA array expression data

[129] MRF with Bayesian Sensitivity: 87%

PPI, genetic interactions, highly
correlated gene expression network,
protein complex data, and structural
properties

[130] SVM Accuracy: 89.44 Gene expression data
[131] Genetic programming Accuracy: 92.50–98.7% Gene expression data

[132] Majority voting genetic
programming Accuracy: 81.82% Gene expression data

[133] Genetic programming Accuracy: 94.9–99.27% Gene expression data

[134] Genetic programming Accuracy: 95.24–100% Gene expression values and constant
values

[135] Fuzzy nearest cluster Top N accuracy: 65.27% Gene expression data
[136] 𝑘-means Accuracy: 0.16–0.24 PPI and gene expression data
[137] Hypergraph Accuracy: 97.95% Gene expression data

[138] Discriminative local
subspaces with SVM

Average precision: 63% and
𝐹 score: 0.44 Gene expression data

analysis of various research papers in literature and examines
the efficacy of each of these methods to predict the protein
function by using gene expression data which are as follows.

In papers [150–154] The self-organizing map (SOM) has
been used for the analysis of gene expression data. In paper
[128] the authors have proposed a multilayer perceptron for
gene function prediction from gene expression data. In paper
[129] an integrated probabilistic model has been proposed
that combined protein physical interactions, genetic inter-
actions, highly correlated gene expression network, protein
complex data, and domain structures of individual proteins
together for the prediction of protein functions. In paper
[130] amulticlass support vectormachine has been developed
for the cancer diagnosis from gene expression data.

In papers [131–134] the genetic programming based
methods have been proposed for the classification of gene
expression data. In paper [131], the authors have used the
similarity between classification rules by matching in repre-
sentation level and then a set of comprehensive and precise
rules was obtained by genetic programming after evaluating
the diversity.Then a fusion based method has been used with
a subset of diverse classification rules for the final decision.
In paper [132], the authors have proposed a majority voting
technique for prediction of the labels of test samples. In this
paper the authors have evolved multiple rules instead of a
single set of rules with genetic programming and then applied
those rules to test samples to determine their labels by using
the majority voting technique. In papers [133, 134], genetic
programming based approaches have been proposed for the
classification of gene expression datasets.

In paper [135] the authors have proposed a fuzzy nearest
clusters method for gene function prediction by using gene
expression data. In this paper the hierarchical clustering has
been used to detect homogeneous coexpressed gene sub-
groups or clusters in each possible heterogeneous functional

class. Then classification algorithm was used to predict the
functional roles of the unclassified genes based on their
corresponding similarities to the detected functional clusters.
In paper [136] the authors have used a k-means method for
clustering gene expression data by incorporating protein-
protein interaction data to improve the similarity measures.
In paper [137] an unnormalized, random walk and sym-
metric normalized hyper graph, which is a Laplacian based
semisupervised learning method, have been proposed for
the gene function prediction by using gene expression data.
In paper [138] the authors have proposed a discriminative
local subspace that combines supervised machine learning
and coexpression technique for the gene function prediction.
Table 9 presents a summary and performance evaluation
of various computational intelligence techniques for protein
function prediction by using gene expression data.

5. Computational Intelligence
Techniques in Pathway Analysis
from Gene Expression Data

The pathway is a series of interconnected enzymatic steps
linked with the production of intermediates that are used in
the next enzymatic step so we can say that it is a series of con-
secutive enzymatic reactions that produce specific products.
Pathway consists of genes that chemically act together for
specific cellular or physiologic function so pathway analysis
is useful for gene function prediction. There are two types
of pathways, metabolic pathways and signaling pathways.
The metabolic pathways are biological network that involves
enzymatic catalysis, while signaling pathways are the series
of specific action in a cell in which signal is passed in one
molecule to the next in series. In pathway analysis each
pathway will be ranked based on the score obtained either by
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Table 10: Summary of computational intelligence techniques in pathway analysis from gene expression data.

Reference CI techniques Performance Datasets

[139] Gene set enrichment
analysis

Sensitivity: 0.78, specificity: 0.98,
AUC: 0.94

Gene expression data with significance
analysis of microarray

[140] Linear discriminant
analysis Error rate: 10–15% Covariance matrix with group

relationships among variables
[141] Random forest Error rate: 11–17% Gene expression data

[142] Näıve Bayes, decision tree
based ensemble classifier

Accuracy: 91.2% and 𝐹-measure:
0.787 Gene expression data

[143] SVM, Bayesian approach,
C5.0, and random forest Error rate: 7–15% Gene expression data

[144] Bayesian approach AUC: 90.56%, Accuracy: 75.7% Single-nucleotide polymorphisms

the Enrichment analysis or by machine learning approaches.
The highest score will be given to the pathway which has
most relevant gene to related phenotype. So it is necessary
to design a robust and efficient computational intelligence
techniques based method for pathway analysis from gene
expression data. So for achieving this objective various
computational intelligence techniques have been proposed in
literatures. Some of the prominent computational intelligence
techniques reported in literature for the application under
consideration include gene set enrichment analysis, linear
discriminant analysis, random forest, and decision tree based
ensemble classifiers. This section of the paper presents an
analysis of various research papers in literature and examines
the efficacy of each of these methods for pathway analysis
from gene expression data which are as follows.

In paper [155] the authors have used the combination
of a scoring function for the prediction of most interesting
pathways from gene expression data. In paper [139] a gene
set enrichment analysis (GSEA) based method has been
proposed for pathway analysis by using gene expression
data with significance analysis of microarray. In paper [140]
the authors have proposed a LDA based method for the
classification of gene expression data by integrating biological
knowledge of gene functions. In paper [141] the random forest
has been used for clustering the pathways. In this paper the
authors have constructed the decision trees using a gene in a
pathway and combined the decision tree of all the pathways
into a forest to predict the phenotype. In paper [142] the
authors have proposed aNäıve Bayes andDecisionTree based
ensemble classifier for the prediction of metabolic pathways
from gene expression data. In paper [143], a two-stage
machine learning algorithm has been proposed for pathway
analysis from gene expression data. Similarly in paper [144]
the authors have proposed a hierarchical Bayesian model for
the prediction of pathways by using gene expression data.
Table 10 presents a summary and performance evaluation
of various computational intelligence techniques in pathway
analysis from gene expression data.

6. Observations and Discussions

6.1. Computational Intelligence Techniques in Protein Func-
tion Prediction by Using Sequence and Structure. Some of
the observations related to the computational intelligence

techniques for predictions of DNA and RNA binding sites
presented in Section 2.1 are as follows.

(i) The ANN, SVM, random forest, and Naı̈ve Bayes
based methods are useful for the prediction of DNA,
RNA, and metal binding sites.

(ii) The overall accuracy obtained by ANN ranges in
between 64% and 73.6%, ranges in between SVM77%
and 96.6%, and ranges in between random forest 78%
and 91.41% and Näıve Bayes ranges in between 79%
and 85% for the various diverse datasets as reported
in Table 1.

(iii) The SVM based method obtained maximum 96.6%
by using various sequence derived properties and
random forest obtained maximum 91.41% accuracy
by using various sequence and structural properties
for the prediction of DNA binding sites.

(iv) The SVM based method obtained maximum 87.99%
by using various sequence derived properties with
PSSM and random forest obtained maximum 88.63%
accuracy by using various sequence derived proper-
ties with PSSM for the prediction of RNA binding
sites.

Therefore, from the above observations it is recom-
mended that the combination amino acid composition,
dipeptide composition, pseudoamino acid composition, cor-
relation factors, and PSSM with support vector machine may
be useful for the prediction of DNA and RNA binding sites.

Some of the observations related to the computational
intelligence techniques in prediction of subcellular locations
of protein presented in Section 2.2 are as follows.

(i) The SVM, k-NN, and ANN based methods are useful
for the prediction of subcellular localization of pro-
tein.

(ii) The overall accuracy obtained by SVM ranges in
between 66.7% and 94%, ANN ranges in between
68% and 89%, and k-NN ranges in between 80% and
93.57% for the various diverse datasets as reported in
Table 2.

(iii) The SVM based method obtained maximum 94%
accuracy by using amino acid composition, amino
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acid pair, and 1, 2, 3 gapped amino acid pair compo-
sitions.

(iv) The k-NN based method obtained maximum 93.57%
accuracy by using PSSMandpseudoamino acid compo-
sition.

(v) The combination of SVM and ANN based method
obtained only 68% accuracy by using structural prop-
erties of a protein for the prediction of subcellular
localization.

(vi) So from the analysis it is observed that the only
sequential properties of a protein affect the prediction
performance of subcellular localization in compari-
son to structural properties.

Therefore from the above observations it is recommended
that the k-NN based approaches by using combination amino
acid composition, pseudoamino acid composition, PSSM,
and physiochemical properties of sequence may be useful for
the prediction of subcellular locations of protein.

Some of the observations related to the computa-
tional intelligence techniques in prediction of enzyme func-
tions/families of protein presented in Section 2.3 are as
follows.

(i) The SVM, random forest, and k-NN based methods
are useful for the prediction of enzyme functions and
families.

(ii) The overall accuracy obtained by SVM ranges in
between 69.1 and 99.53%, random forest ranges in
between 71.29 and 99.31%, and k-NN ranges in
between 56.9 and 99.0% for the various diverse
datasets as reported in Table 3.

(iii) All the SVM, random forest, and k-NN basedmethod
obtained maximum accuracy by using the sequence
derived properties.

(iv) The variation of ANN is proposed as N-to-1 neural
network and by using protein sequence and obtained
96% accuracy.

(v) So from the analysis it is observed that the sequence
derived properties are useful to predict the enzyme
functions and families.

Therefore from the above observations it is recommended
that the random forest based ensemble classifier by using
combination amino acid composition, dipeptide composi-
tion, and pseudoamino acid composition with physiochemi-
cal properties of sequence may be useful for the prediction of
enzyme functions/families of protein.

Some of the observations related to the computational
intelligence techniques in prediction of signal peptides of
protein presented in Section 2.4 are as follows.

(i) The ANN and SVM based methods are useful for the
prediction of signal peptides.

(ii) The overall accuracy obtained by ANN ranges in
between 93% to 97%, and the same obtained by
SVM ranges in between 90.97 to 97% for the various
discrete datasets as reported in Table 4.

(iii) Both the ANN and SVM based methods obtained
maximum97%accuracybyusing amino acid sequence
and pseudoamino acid composition, respectively.

(iv) Bayesian reasoning network obtained 97.73% accu-
racy by using sequence derived properties; thus it is
also useful to predict the signal peptides.

Therefore from the above observations it is recommended
that the SVM and based methods by using sequence derived
properties may be useful for the prediction of signal peptides
in protein.

Some of the observations related to the computational
intelligence techniques in prediction of catalytic residues of
protein presented in Section 2.5 are as follows.

(i) The ANN and SVM based methods are useful for the
prediction of catalytic residues.

(ii) The overall accuracy obtained by ANN ranges in
between 69 and 91.2% and for SVM ranges in between
86 and 95.76% (see Table 5).

(iii) The ANN based method obtained maximum 91.2%
accuracy by using the residue properties of protein
sequence.

(iv) The SVM based method obtained maximum 95.76%
accuracy by using the sequence and structural prop-
erties of protein.

Therefore from the above observations it is recommended
that the SVM and based methods by using sequence and
structural derived properties may be useful for the prediction
of catalytic residues of protein.

Some of the observations related to the computational
intelligence techniques in prediction of nuclear and G-
protein coupled receptors of protein presented in Section 2.6
are as follows.

(i) The SVM and fuzzy k-NN based methods are useful
for the prediction of nuclear and G-protein coupled
receptors families and their subfamilies.

(ii) The overall accuracy obtained by SVM ranges in
between 82.8 and 99.6% and by fuzzy k-NN is 93%
(see Table 6).

(iii) The fuzzy k-NN based method obtained maximum
93% overall accuracy by using the pseudoamino
acid compositionwith physicochemical and statistical
features.

(iv) The SVM based method obtained maximum 99.6%
accuracy by using the pseudoamino acid composition
of protein.

Therefore from the above observations it is recommended
that the SVM based methods by using amino acid compo-
sition and dipeptide composition with pseudoamino acid
compositions may be useful for the prediction of nuclear and
G-protein coupled receptors families and their subfamilies.

Some of the observations related to the computational
intelligence techniques in prediction of membrane protein
presented in Section 2.7 are as follows.
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(i) The SVM, ensemble classifier, and k-NN based meth-
ods are useful for the prediction of membrane pro-
teins.

(ii) The overall accuracy obtained by SVM 90.1%, ensem-
ble classifier 91.2%, and k-NN based classifier ranges
in between 87.65 and 95.7% (see Table 7).

(iii) The fuzzy k-NN based method obtained maximum
accuracy of 95.7% by using the pseudoamino acid
composition.

(iv) The ensemble based classifier obtained maximum
accuracy of 91.2% by using the pseudoamino acid
composition with approximate entropy.

Therefore from the above observations it is recommended
that the fuzzy k-NN based methods pseudoamino acid
compositions and PSSM with approximate entropy may be
useful for the prediction of membrane portions.

6.2. Computational Intelligence Techniques in Protein Function
Prediction by Protein InteractionNetwork. Some of the obser-
vations related to the Computational Intelligence Techniques
in Protein Function Prediction by Protein Interaction Net-
work presented in Section 3 are as follows.

(i) The neighbor based, association analysis based, graph
based, and clustering based methods are useful in
protein function prediction by using protein-protein
interaction network.

(ii) A graph based approach is useful for global alignment
of protein-protein interaction network by using align-
ment scoring matrix.

(iii) SVM and genetic algorithms are useful for the detec-
tion of gene-gene interaction.

(iv) The network flow based method obtained maximum
90% accuracy by using protein interactions maps.

(v) The neighbor based method obtained maximum 98%
accuracy by using both label 1 and label 2 neighbors.

(vi) The association based method obtained maximum
93% accuracy by using h-confidence and adjacency
matrix.

(vii) The integration of gene expression with protein-
protein interaction data is also useful for protein
function prediction.

Therefore from the above observations it is recommended
that neighbor based methods by using the protein-protein
interaction data such as diffusion state matrix, h-confidence
values, alignment score matrix may be useful for protein
function prediction.

6.3. Computational Intelligence Techniques in Protein Function
Prediction by Gene Expression Data. Some of the observa-
tions related to the Computational Intelligence Techniques
in Protein Function Prediction by gene expression data
presented in Section 4 are as follows.

(i) The genetic programming, SVM, hypergraph, and
clustering based approaches are useful in function
prediction by using gene expression data.

(ii) The overall accuracy obtained by genetic program-
ming ranges in between 81.82 and 100%, clustering
based methods ranges in between 16 and 65.27%,
SVM 89.44% and by hypergraph based method
97.95% (see Table 9).

(iii) It is also observed that the genetic programming with
gene expression data provides better results.

Therefore from the above observations it is recommended
that genetic programming based methods by using the gene
expression datawith constant valuesmay be useful for protein
function prediction.

6.4. Computational Intelligence Techniques in Pathway Anal-
ysis from Gene Expression Data. Some of the observations
related to the Computational Intelligence Techniques in Pro-
tein Function Prediction by gene expression data presented
in Section 5 are as follows.

(i) The gene set enrichment analysis (GSEA), linear
discriminant analysis, Naı̈ve Bayes, and decision tree
based ensemble classifiers are useful in pathways
analysis of gene expression data.

(ii) The overall accuracy is obtained by GSEA 78%,
by Naive Bayes and decision tree based ensemble
classifier 91.2%, and by Bayesian approach 75.7% (see
Table 10).

(iii) It is observed that themaximum accuracy is observed
by Naive Bayes and decision tree based ensemble
classifier.

(iv) The linear discriminant analysis based method pro-
vides 11–17% error rate by using covariance matrix
with group relationship among variables while SVM,
Bayesian approach, and C5.0 with random forest
based method provide 7–15% error rate.

Therefore from the above observations it is recommended
that SVM, Naive Bayes, and C5.0 with random forest based
methods by using the gene expression data with covariance
matrix with group relationship among variables may be
useful for protein function prediction.

7. Case Study for Protein Function Prediction
by Using Sequence Derived Properties

The paper shows that there are various computational
intelligence based methods that are used to predict the
protein function using sequence, structure, protein-protein
interaction network, and gene expression data. The papers
reported in literature used different-different data to predict
the protein function. Therefore for the comparative analysis
of computational intelligence based approaches a protein
sequence of different functions is collected from UniProt
database. For the classification of various protein functions
384 numbers of DNA binding sites, 136 numbers of RNA
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Table 11: The results analysis of different classifiers to predict protein functions.

Computational intelligence based techniques DNA RNA Membrane Enzyme Nuclear
receptor

G-protein
coupled
receptor

Overall

Random forest ACC 78.6 64.7 89.2 81.6 97.4 94.6 86.7
MCC 0.74 0.71 0.86 0.74 0.94 0.97 0.84

Support vector machine ACC 81.3 68.4 95 92 96.7 99.5 91.5
MCC 0.86 0.76 0.91 0.83 0.96 0.98 0.90

𝑘-nearest neighbor ACC 66.9 60.3 96.8 66.3 76.8 94.8 78.8
MCC 0.74 0.51 0.68 0.70 0.85 0.97 0.76

Näıve Bayes ACC 64.8 86 84.4 60.7 98.8 97.2 80.7
MCC 0.61 0.64 0.81 0.65 0.87 0.98 0.77

SVM with AAC ACC 72.4 73.5 87.7 89.3 99.8 70.8 84.1
MCC 0.83 0.81 0.90 0.82 0.74 0.82 0.82

SVM with AAC + DC ACC 82 71.3 95 91.8 96.9 94.3 91
MCC 0.86 0.78 0.91 0.84 0.94 0.95 0.89

binding sites, 463 numbers of membrane protein, 522 num-
bers of enzymes, 384 numbers of nuclear receptors, and
384 numbers of G-protein coupled receptors of sequences
have been collected from the UniProt database. For the
prediction of protein function three feature vectors with
20 numbers of amino acid composition, 400 numbers of
dipeptide composition, and 50 numbers of pseudoamino acid
composition, thus a total of 470 numbers of features, are
calculated. The support vector machine, k-nearest neighbor
classifier, random forest, and Naı̈ve Bayes are used for the
prediction of protein function by using sequence derived
properties of sequences. The 10-fold cross validation is used
for the performance analysis of the classifiers. The complete
results analysis is shown in Table 11.

The results of Table 11 show that the performance of
support vector machine is better in comparison with other
classifiers to predict the protein function from sequence
derived features. The support vector machine based method
provides overall accuracy of 84.1% and MCC values of 0.82
with amino acid composition (see Table 11). The overall
accuracy increases from 84.1% to 91% and from 91% to
91.5%byusing dipeptide andpseudoamino acid composition,
respectively (see Table 11). Therefore it is observed from
Table 11 that the fusion of sequence derived properties
improves the prediction performance of the classifier to
predict the protein function perdition.

8. Conclusion

This paper presented a state-of-the-art comprehensive review
of various computational intelligence techniques for pro-
tein function predictions using sequence, structure, protein-
protein interaction network, and gene expression data used
in wide areas of applications such as prediction of DNA
and RNA binding sites, subcellular localization, enzyme
function, signal peptide, catalytic residue, nuclear/G-protein
coupled receptor, membrane protein, and pathway analysis
from gene expression datasets. The summaries of the results

obtained by many researchers to solve these problems by
using computational intelligence techniques with appropriate
datasets to improve the prediction performance have been
presented. The summaries presented in this paper indicate
that ensemble classifiers and integration of multiple hetero-
geneous data are also useful for protein function prediction.
The most successful approach is the integration of multiple
computational intelligence techniques with integrating the
multiple heterogeneous data to predict protein function.
However, there aremore possibilities for improvement in this
area, since there are large numbers of proteins available with
unknown function.
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