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ABSTRACT The genome of the murine commensal strain Escherichia coli NGF-1
contains a 5.03-Mbp chromosome and plasmids of 40.2 kbp and 8.56 kbp. NGF-1 ef-
ficiently colonizes the mouse gut and is genetically tractable. The genome sequence
reported here facilitates genetic engineering and research in mouse models of
healthy and diseased intestine.

The gut microbiome plays a key role in health and disease (1). Escherichia coli
NGF-1 is of particular interest because it was isolated from a healthy BALB/c

mouse from Charles River Labs, colonizes mice efficiently, and can be engineered
with complex genetic circuits (2–6) (Table 1). Kotula and colleagues placed a
tetracycline-inducible trigger element and a memory element in E. coli K-12 and E.
coli NGF-1 and found essentially identical responses to tetracycline treatment in
vitro and in the mouse gut (2). Riglar et al. showed that engineered NGF-1 was
stable in C57BL/6 mice for over 6 months (3). In the work of Certain at al., E. coli
NGF-1 survived near a surgical implant, allowing study of persistent infection (4).
Kim et al. constructed a communication system which could be observed in the
mouse gut, and Ziesack et al. introduced NGF-1 as a member of an engineered
consortium into gnotobiotic mice (5, 6).

To obtain the NGF-1 sequence, a glycerol stock was used to inoculate an LB agar
plate for the isolation of single colonies. A single colony was then used to inoculate an
overnight culture in LB broth (37°C, with shaking at 220 rpm). Genomic DNA was
extracted using the Qiagen DNeasy blood and tissue kit and quantified using a Life
Technologies Quant-iT PicoGreen double-stranded DNA (dsDNA) assay kit. The DNA
was sheared on a Covaris S2000 machine, and a library was prepared using an Illumina
TruSeq kit. Sequencing was done using the Illumina MiSeq reagent kit v2 (2 � 250 bp),
and quality filtering, trimming, and filtering of adapter sequences were performed
using FastQC with standard settings (7). The resulting 6.6 million paired-end reads with
an average length of 207 bp were assembled de novo with SPAdes version 3.7.1 (8),
using the “careful” option to minimize mismatches in the final contigs. The 64 resulting
contigs were filtered for contaminants via a BLAST search against several E. coli
genomes using Projector2 (9) and Ragout (10) with standard parameters, resulting in 51
contigs at an average read coverage of 22�. Contig ends were joined by two methods.
First, some contig ends were identified that had ends with identical segments that fell
below the alignment threshold of the joining software. These joinings were validated
by alignment of the joined sequences with sequences of other E. coli strains. Second,
in cases such as those where identical rRNA genes prevented inference of continuity
between sequences on either side of the repeated element, we hypothesized associ-
ations based on other E. coli sequences and then confirmed the association by PCR
using unique sequence flanking primers and observation of a DNA fragment of
predicted size. One case of sequence ambiguity was attributed to an inverting-phase
variation-type element.
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The genome was annotated with the Rapid Annotation using Subsystem Technol-
ogy (RAST) server (11) and the Pan-Genomes Analysis Pipeline (PGAP) (12), followed by
manual curation. NGF-1 contains a 5,026,105-bp chromosome and two plasmids,
pNGF1-CROD2 (40,158 bp) and pNGF-colY (8,556 bp), encoding 5,218, 57, and 10 genes,
respectively. The colicin-producing plasmid may help explain the efficient colonizing
ability of this strain.

NGF-1 is similar to E. coli K-12 and murine E. coli strains. Specifically, NGF-1 has 98%
nucleotide sequence identity with K-12 and �99% with mouse-derived strains, such as
MP1, ATCC 25922, and LF82. NGF-1 is distinct from all known E. coli strains, but its
genome is a mosaic of genes known from other strains, plus prophage genes. NGF is
a niacinamide auxotroph, likely caused by a sense mutation in the nadC gene (13).

In sum, E. coli NGF-1 is both engineerable and able to colonize the mouse gut and
other experimentally relevant environments. Knowledge of its genome sequence
should facilitate further studies of gut colonization and may facilitate development of
living therapeutics and diagnostics.

Data availability. This whole-genome sequencing project has been deposited in
GenBank under the accession number CP016007. Raw reads are available under the
BioProject accession number PRJNA380756.
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TABLE 1 Applications of NGF-1 using artificial genetic circuits

Application Engineeringa Reference

Gut sensor (molecule) ATC-inducible trigger element; memory element 2
Gut sensor (pathogen) Tetrathionate-inducible trigger element; memory element 3
Chronic infection sensor ATC-inducible trigger element; memory element 4
Interspecies quorum sensing ATC-inducible signaling element; Lux-triggered memory element 5
Metabolite cross-feeding consortium member in the gut Triple KO of amino acid biosynthetic pathways; methionine

overproduction through antimetabolite selection
6

a ATC, anhydrotetracycline; KO, knockout; Lux, luciferase.
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