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Abstract: Currently, it is known that irisin can participate in the processes of thermoregulation and
browning of adipose tissue, and, therefore, it is possible that it is involved in the microevolutionary
mechanisms of adaptation to a cold. The aim of this study is to investigate the relationship between
the uncoupling protein genes (UCP1, UCP2, UCP3) and the irisin levels in the residents of the coldest
region of Siberia. The sample consisted of 279 Yakut people (185 females, 94 males, average age
19.8 ± 2.03 years). The females plasma irisin concentration was 8.33 ± 2.74 mcg/mL and the males
was 7.76 ± 1.86 mcg/mL. Comparative analysis of irisin levels with the genotypes of six studied
SNP-markers in females revealed a significant association of irisin with rs1800849-UCP3. The TT
genotype of rs1800849 was associated with elevated levels of irisin (p = 0.01). It was also found that
this TT genotype in females was associated with reduced weight and height (p = 0.03). We searched
for natural selection signals for the T-allele rs1800849-UCP3; as a result of which, it was found that this
allele has a significantly high frequency of distribution in northern (45%, CI: 0.42–0.484) compared
with southern Asian populations (28%, CI: 0.244–0.316) (p = 0.01). The results obtained indicate the
probable involvement of irisin and the UCP3 gene in thermoregulation, and the spread of its allelic
variants is probably related to adaptation to a cold climate.

Keywords: irisin; uncoupling protein genes; UCP1; UCP2; UCP3; thermoregulation; browning; cold
climate; adaptation

1. Introduction

Thermoregulation is one of the main physiology mechanisms in warm-blooded organ-
isms. The ability to deal with cold stress is crucial for survival. When ambient temperature
decreases, adaptive (also known as facultative) thermogenic mechanisms are activated to
maintain optimal body temperature and normal functioning of the organism. In response to
cold, the shivering thermogenesis activates first [1]. Shivering is an iterative process of the
reduction and relaxation of skeletal muscle, activated by stimulation of the neuromuscular
junction, which activates the hydrolysis of ATP with the release of heat [2]. However,
this type of thermogenesis is considered as short-term, since it can lead to damage of the
skeletal muscles [3]. Therefore, with prolonged cold stress, nonshivering thermogenesis
in brown adipose tissue (BAT) and, to a lesser degree, in white adipose tissue (WAT) is
activated [4,5]. Recent studies suggest that BAT-mediated thermogenesis may play one of
the main roles in energy balance [6].

Nonshivering thermogenesis is related by the uncoupling protein 1 (UCP1), which,
in turn, reduces the proton gradient in oxidative phosphorylation and weakens the work

Genes 2022, 13, 1612. https://doi.org/10.3390/genes13091612 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13091612
https://doi.org/10.3390/genes13091612
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0002-7129-6633
https://orcid.org/0000-0002-6984-7934
https://orcid.org/0000-0002-2936-5818
https://orcid.org/0000-0002-6952-3868
https://doi.org/10.3390/genes13091612
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13091612?type=check_update&version=2


Genes 2022, 13, 1612 2 of 13

of mitochondrial ATP synthase, resulting in increased heat production [5]. In addition, it
is currently known that nonshivering thermogenesis can occur in beige adipocytes, origi-
nating from a subpopulation of white adipocytes during the browning process, which are
found as inclusions in white adipose tissue [7–10]. Prolonged exposure to cold tempera-
tures results in browning, and the process is currently being investigated by many studies
around the world [7,11–19]. In addition to UCP1, several other uncoupling proteins are
known. The uncoupling proteins (UCP1–UCP3) of the mitochondria in brown adipose
tissue are specific components unique to mammalian cells. UCP1 diverts energy from
ATP synthesis to thermogenesis in the mitochondria of brown adipose, by catalyzing a
regulated leak of protons across the inner membrane. UCP2 and UCP3 are present, though
with much lower abundance than UCP1. The main function of UCP2 is the control of
mitochondria-derived reactive oxygen species. UCP3 was handled for a long time as a
twin of UCP2, due to its very high homology and the history of its discovery. However, the
exact roles of UCP2 and UCP3 in thermoregulation are not fully known [20–22].

Irisin is a myokine and is produced by the FNDC5 protein (Fibronectin Type III
Domain Containing 5), in response to the activation of the γ coactivator 1 of the α receptor
activated by the proliferator peroxisome (PGC-1 α) [23]. While irisin is primarily known as
a myokine [23], it is also released from adipose tissue (adipo-myokine) [19,24]. Studies have
also shown that irisin is foremost released in response to physical activity [23,25] and from
muscle-shivering-related cold exposure, serving to augment brown fat thermogenesis [23,26].
Irisin can stimulate the browning of white adipocytes, which increases the expression
of UCP1, increasing energy expenditure and improving glucose tolerance in vivo and
in vitro [23,27]. Thereby, it may be assumed that irisin plays a role in the energy metabolism
and thermogenesis of indigenous people living in cold environmental conditions. The
Sakha Republic is the largest region of Siberia as well as the subarctic and Arctic regions.
The climate of the republic is characterized as sharply continental, with a long winter
period and a short summer. The recorded minimal air temperature in this Siberian region is
−71.2 ◦C [28]. The Yakuts (Sakha) are one of the numerous indigenous peoples of the Sakha
Republic (466,492 people, according to the Russian Census, 2010). The indigenous peoples
of Siberia (including the Yakuts) have developed certain physiological and metabolic
features to adapt to the climatic conditions: higher levels of energy metabolism, lower lipid
levels in blood serum [29], higher blood pressure levels [4,29–32], and seasonal variation
in free thyroid hormones in the blood [33]. Thus, we assume that the Siberian peoples
may have developed genetic features regulating blood irisin levels as an adaptation to the
cold climate.

Consequently, the aim of this study is to identify the relationship between uncoupling
protein genes (UCP1, UCP2, UCP3) and the irisin blood levels in the Yakut population
living in the coldest region of Siberia.

2. Materials and Methods
2.1. Subjects

The study sample was comprised of 279 Yakut individuals: 185 females and 94 males
(mean age 19.8 ± 2.03 years). They presented no health issues at the time of the study
and had completed a questionnaire in which they specified their ethnicity, age, and sex.
All participants gave written informed consent for participation in the study. This study
was approved by the local Biomedical Ethics Committee at the Yakut Scientific Center of
Complex Medical Problems, Siberian Branch of the Russian Academy Scientific of Medical
Sciences, Yakutsk, Russia (Yakutsk, Protocol No. 16, 13 December 2014).

2.2. Anthropometric Measurements

Anthropometric data (height in centimeters, body weight in kilograms) were measured
for all participants by standardized methods. Body mass index (BMI) was calculated by
dividing body mass by the square of the body height. The sample was divided into three
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groups by BMI [34]: normal weight (18.5–24.99 kg/m2), underweight (≤18.49 kg/m2), and
overweight/obese (≥25 kg/m2).

2.3. Plasma Irisin Analyses

Fasting plasma irisin levels (mcg/mL) were determined with the human irisin sand-
wich enzyme-linked immunoassay (ELISA) “Irisin ELISA BioVendor” (BioVendor–Laboratorni
medicina A.S., Czech Republic, Brno). The concentration of irisin in the samples was
measured at the wavelength of 450 nm on a VICTOR X5 Multilabel Plate Reader (Perkin
Elmer Inc., Waltham, MA, USA).

2.4. DNA Analysis

DNA was isolated from the blood using phenol–chloroform method. A total of
6 polymorphisms of uncoupling protein genes were genotyped using the PCR-RFLP
method (polymerase chain reaction–restriction fragment length polymorphism). Poly-
merase chain reaction was performed on a BioRad T100 Thermal Cycler (Bio-Rad Laborato-
ries, Inc., Hercules, CA, USA). The data, including the PCR product size, primer sequence,
annealing temperature, and restriction enzymes, are given in Supplementary Table S1 [35].

2.5. Search for Signals of Natural Selection

Data from the database “1000 Genomes Project” [36] and Stepanov et al. [37] were
used in the search for possible indicators of natural selection for cold climate adaptation.
Data were extracted for the following 28 populations: Nivkhs (Russia), Koryaks (Russia),
Chukchi (Russia), Buryats (Russia), Khanty (Russia), Kets (Russia), Esan (Nigeria), Luhya
(Webuye, Kenya), Gambians (Gambia), Mende (Sierra Leone), Yoruba (Ibadan, Nigeria),
Britons (England and Scotland), Finns (Finland), Iberians (Spain), Tuscans (Italy), Punjabis
(Lahore, Pakistan), Bengalis (Bangladesh), Gujarati Indian (USA), Indian Telugu (United
Kingdom), Sri Lankan Tamils (United Kingdom), Han Chinese (Beijing, China), Chinese
Dai (Xishuangbanna, China), southern Han Chinese (China), Japanese (Tokyo, Japan),
Vietnamese (Ho Chi Minh City, Vietnam), Colombians (Medellín, Colombia), Puerto Ri-
cans (Puerto Rico), and Peruvians (Lima, Peru). Thus, the total sample size comprised
1300 individuals. Using Surfer 12.0 software (Golden Software, Golden, CO, USA), a
map of the allele frequency distribution in populations of North and South America,
Africa, and Eurasia was composed, which included data on the allele frequencies of these
1300 individuals.

2.6. Statistical Analysis

The received data were analyzed using Statistica 13.5 (TIBCO Software Inc., Palo
Alto, CA, USA). Values of p ≤ 0.05 were considered statistically significant. Quantitative
results are reported as the mean ± standard deviation. The Kolmogorov–Smirnov test was
performed to test the normal distribution and homogeneity of the examined data. The
association of BMI with irisin levels was assessed with the correlation analysis. Compar-
ative analysis of the three BMI groups between females and males was performed with
a Mann–Whitney U test for the underweight and overweight/obese groups and with a
Student’s t-test for the individuals with normal weight. To identify statistically signifi-
cant associations between the genotypes of the 6 SNPs of the uncoupling protein UCP1,
UCP2, and UCP3 genes and plasma irisin concentrations, a one-factor analysis of variance
(ANOVA) was performed. A comparative analysis of the average levels of irisin, BMI,
weight, and height in females for rs1800849 of the UCP3 gene was performed using a
Mann–Whitney U test. Statistical analysis of the frequencies of T-allele of the rs1800849
of the UCP3 gene was performed using the Sampling program, kindly provided by M.
Macaulay and M. Metspalu. Differences at the 95% significance level were considered
statistically significant.
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3. Results
3.1. Plasma Irisin Levels

The plasma irisin concentration was 8.33± 2.74 mcg/mL in females and 7.76± 1.86 mcg/mL
in males. There was no statistically significant association of plasma irisin levels with BMI
in either females (p = 0.537; r = 0.05) or males (p = 0.51; r = −0.0687) (Figure 1). Data
presented in the study are provided in Supplementary Table S2.
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Figure 1. Correlation analysis of BMI and plasma irisin levels in females (a) and males (b).

Table 1 presents irisin levels and anthropometric characteristics of the sample (n = 279),
stratified by BMI into three groups—underweight, normal weight, and overweight/obese.
Males displayed significantly higher height and weight than females (p = 0.01) in all groups.
Males with a normal weight displayed a significantly higher BMI than females (p = 0.03). In
the normal weight group, statistically significant differences in irisin levels were detected
(p = 0.02).

Table 1. Irisin levels and anthropometric data of the subjects, stratified by BMI and sex.

Characteristics
Underweight (n = 36)

p 1
Normal Weight (n = 214)

p 2
Overweight and Obese (n = 29)

p 1

F (n = 25) M (n = 11) F (n = 144) M (n = 70) F (n = 16) M (n = 13)

Weight (kg) 44.88 ± 3.71 50.45 ± 3.42 0.01 55.53 ± 5.8 66.19 ± 7.44 0.01 72.75 ± 11.13 81.46 ± 8.3 0.01

Height (cm) 160.24 ± 5.14 170.36 ± 5.89 0.01 160.92 ± 6.03 173.33 ± 5.98 0.01 162.19 ± 4.96 174.69 ± 6.64 0.01

BMI (kg/m2) 17.45 ± 0.73 17.39 ± 0.91 0.868 21.42 ± 1.62 22 ± 1.89 0.03 27.56 ± 2.88 26.64 ± 1.49 0.539

Irisin (mcg/mL) 7.88 ± 1.96 8.52 ± 2.64 0.904 8.42 ± 2.92 7.51 ± 1.61 0.02 8.27 ± 1.96 8.48 ± 2.16 0.965

Note. 1 Mann–Whitney U test; 2 Student’s t-test; F—females; M—males. Data are presented as mean ± std. dev.
Statistically significant differences highlighted are bold.

3.2. Association Analysis between Irisin Levels and Six Single Nucleotid Polymorphisms of the
Uncoupling Protein Genes

The allele frequencies and the genotypes of the six single nucleotide polymorphisms
of the uncoupling proteins genes (UCP1, UCP2, UCP3), which are potentially related to
processes of thermogenesis, are given in Supplementary Table S3. Comparative analysis of
irisin levels with the genotypes of the six SNP variants of the uncoupling protein genes were
performed separately for females and males with normal weight (Supplementary Table S4). As
the result, in males there was no association between irisin levels and the studied genotypes.
Irisin levels, weight, and height divided by the rs1800849 (UCP3) genotypes are presented
in Figure 2.



Genes 2022, 13, 1612 5 of 13

Genes 2022, 13, x FOR PEER REVIEW 5 of 14 
 

 

were performed separately for females and males with normal weight (Supplementary 

Table S4). As the result, in males there was no association between irisin levels and the 

studied genotypes. Irisin levels, weight, and height divided by the rs1800849 (UCP3) 

genotypes are presented in Figure 2. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Irisin levels, weight, and height divided by the rs1800849 (UCP3) genotypes: (a) compar-

ison of irisin levels for the rs1800849 genotypes for the group of females with normal BMI (n = 144); 

(b) comparison of weight for the rs1800849 genotypes for all females (n = 185); (c) comparison of 

height for the rs1800849 genotypes for all females (n = 185). A comparative analysis was performed 

using a Mann–Whitney U test. Values of p ≤ 0.05 were considered statistically significant. Values 

are shown as mean ± SEM. 

Figure 2. Irisin levels, weight, and height divided by the rs1800849 (UCP3) genotypes: (a) comparison
of irisin levels for the rs1800849 genotypes for the group of females with normal BMI (n = 144);
(b) comparison of weight for the rs1800849 genotypes for all females (n = 185); (c) comparison of
height for the rs1800849 genotypes for all females (n = 185). A comparative analysis was performed
using a Mann–Whitney U test. Values of p ≤ 0.05 were considered statistically significant. Values are
shown as mean ± SEM.

In females, association between irisin levels and studied genotypes were found for
rs1800849 (UCP3). For rs1800849 (UCP3), irisin levels were higher in the TT homozygotes
(9.47 ± 3.77 mcg/mL) compared to the CT heterozygotes (7.73 ± 2.24 mcg/mL) (p = 0.01)
(Supplementary Table S4). An additional analysis was performed in order to identify the
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relationship of BMI, height, and weight, with the genotypes of the studied SNP (rs1800849–
UCP3) in all females. Associations of the TT genotype with reduced weight and height
were revealed. In females with the TT genotype, weight (53.61 ± 6.97 kg) and height
(160.04 ± 5.85 cm) were significantly lower than in the homozygotes for the CC genotype
(weight 58.27 ± 11.56 kg, p = 0.03; height 163.18 ± 5.9 cm, p = 0.03) (Supplementary Table S5).
However, we can say that there is a certain tendency towards a reduction in BMI in females
with the TT genotype (Supplementary Table S5). Thus, it can be said that the polymorphism
of rs1800849 (UCP3) can affect anthropometric parameters (BMI, weight, height) and irisin
levels in the blood.

3.3. Search for Signals of Natural Selection for Cold Climate Adaptation for rs1800849 of the
UCP3 Gene

The single nucleotide polymorphism of the UCP3 gene (rs1800849) that was identi-
fied to be associated with irisin levels in the Yakut population was analyzed for possible
signals of natural selection towards cold-climate adaptation. We used the “1000 Genomes
Project” [36] database and published studies [37] for comparative analysis of the preva-
lence of the polymorphisms in 12 East Asian populations from different climatic zones
(Supplementary Table S6). Seven populations of Siberia (Yakuts, Nivkhs, Koryaks, Chukchi,
Buryats, Khanty, Kets) living in subarctic and temperate climates were included in the
“North Asia” group. Other East Asian populations from temperate (Han Chinese—CHB),
subtropical (Japanese—JPT; southern Han Chinese—CHS; Chinese Dai—CDX), and sube-
quatorial (Vietnamese–KHV) climate zones were combined into the “South Asia” group.
The prevalence of the T-allele of rs1800849 (UCP3) was found to be significantly higher in
the “North Asia” group (45%, CI: 0.42–0.484) compared to the “South Asia” group (28%,
CI: 0.244–0.316) (p = 0.01) (Figure 3).
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Figure 3. Geographical distribution of T-allele frequency of rs1800849 (UCP3). Allele frequency
gradations are indicated on the color scale. CZ—climatic zone; “North Asia” [33]: YAK –Yakuts (this
study), CHU—Chukchi, KOR—Koryaks, KET—Kets, KHA—Khanty, BUR—Buryats, NIV—Nivkhs;
“South Asia” [32]: JPT—Japanese, Tokyo, Japan; CHB—Han Chinese, Beijing, China; CHS—Southern
Han Chinese, China; CDX—Chinese Dai, Xishuangbanna, China; KHV—Kinh, Ho Chi Minh City, Vietnam.

4. Discussion

In this study, we analyzed the plasma irisin levels and data for six SNPs of uncou-
pling protein genes (UCP1, UCP2, UCP3) that are possibly involved in thermogenesis
processes [38–46] in the residents of the coldest region of Eastern Siberia (Yakut popula-
tion). In the Yakut population, irisin levels were found to be independent of BMI (females
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p = 0.537; males p = 0.51). Moreover, in the normal weight group, we found a significantly
higher irisin levels in females (p = 0.02) compared to males. Such differences were not
revealed in the groups with deficient and excessive weight. However, the results of other
studies on the relationship of irisin with sex and with BMI are too contradictory to draw
certain conclusions [25,47–61]. Therefore, further research is required in order to define the
influence of sex and anthropometric indicators on the blood irisin levels.

Comparative analysis of irisin levels and the studied SNP markers demonstrated an
association with the rs1800849 polymorphism of the UCP3 gene. In females with the TT
genotype, irisin levels (9.47 ± 3.77 mcg/mL) were significantly higher (p = 0.01) compared
to those of the CT genotype (7.73 ± 2.24 mcg/mL). In addition, it was found that females
with the TT genotype have a smaller height and weight than females with the CC genotype
(on average, females with the TT genotype are 3.14 cm shorter and weigh 4.66 kg fewer)
(Figure 2). Thus, we can assume that female carriers of the TT genotype are at risk of a delay
in growth and being underweight. The effect of the rs1800849 of the UCP3 gene on BMI and
obesity is still being discussed, as there are conflicting research results [62,63]. However,
the association of rs1800849 polymorphism with height was found in children from China,
where carriers of TT and CT genotypes had a lower height compared to CC carriers [62].
In Pima Indians, T-allele was associated with increased expression of UCP3 mRNA in
skeletal muscles [63], and the expression level negatively correlated with BMI [64]. It can
be assumed that carriers of the TT genotype (rs1800849) have an increased expression of
UCP3 in skeletal muscles, and this overexpression suppresses physical development (lower
weight and height). This effect somewhat can be explained because rs1800849 (-55C>T) is
located in the promoter region, at 6 bp from the TATA-box, and this location suggests a
possible effect on the transcription of the UCP3 gene [65].

The UCP3 gene (SLC25A9) is located in chromosome 11 (11q13.4), contains 7 exons,
and encodes the mitochondrial uncoupling protein 3, which is mainly expressed in skeletal
muscles and in BAT [66–69], and its expression may increase during exposure to cold
conditions [70]. The main function of the mitochondrial protein UCP3 is considered to
be proton transport, in the presence of fatty acids [71,72]. UCP3 may also play a protective
function, by inhibiting the action of reactive oxygen species (ROS) in mitochondria [73,74].
Previously, the association of rs1800849 (-55C>T) with atmospheric air temperature has
been demonstrated [37,40] and it is possible that variations in the UCP3 gene are impli-
cated in resistance to cold [40]. Therefore, our study suggests that the distribution of
allelic variants of the UCP3 gene is probably related to human adaptation to a cold con-
dition. However, the accurate role of UCP3 in thermoregulation is not fully known, and,
perhaps, its thermoregulatory actions are dependent on irisin. Currently, it is already
known that irisin can increase the expression of UCP3 in skeletal muscles. In a study on
rats, it was shown that the administration of exogenous irisin increases the expression
of UCP3 mRNA in muscles and UCP1 in WAT and BAT [75]. In an in vitro study by
Vaughan et al. [76], it was found that trypsin-treated myocytes demonstrated enhanced
oxidative metabolism and mitochondrial biogenesis and increased expression of UCP3.
Therefore, irisin and UCP3 may play an important role in shivering thermogenesis [77].
Thus, when exposed to low temperatures, shivering thermogenesis is activated in the body,
which is accompanied by a contraction of skeletal muscles, during which irisin is released
and UCP3 expression begins. It is possible that irisin simultaneously induces mitochondrial
biogenesis in muscles and browning (in which UCP1 expression increases), and UCP3 per-
forms two functions: proton transport and protection of mitochondria from ROS. ROS are
discussed in the regulation of thermogenesis [20–22]. Meanwhile, stress and inflammation
have been linked to the activation of the tryptophan (Trp)–kynurenine (KYN) metabolic
system [78]. According to some researchers, revealing the link between mitochondrial
biogenesis and the KYN metabolic system may be a promising option [78]. Experimental
data have shown that ROS production is increased in mice with knockout UCP3 [79,80].
Since irisin can stimulate mitochondrial biogenesis [77], in which the number of mitochon-
drial copies in myocytes increases to produce a large volume of ATP, the amount of ROS
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increases and lipid peroxidation processes are activated. The uncoupling protein UCP3
inhibits the production of ROS in mitochondria, by reducing the mitochondrial membrane
potential [74]. At the same moment, by reducing the mitochondrial membrane potential,
the transfer of electrons in the electron transport chain can be accelerated, and the likelihood
of electrons being directly transferred to O2 can be minimized [81]. Consequently, mild
uncoupling occurs as a feedback mechanism adopted by the body to prevent excessive
ROS in the mitochondria, which was termed “uncoupling to survive” [82] (Figure 4). Thus,
we can suggest that females with the TT rs1800849 (−55C>T) genotype of the UCP3 gene
might have a greater thermal effect from shivering thermogenesis, to protect the body
from cold.
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Figure 4. Possible mechanisms of action of irisin in shivering and nonshivering thermogenesis.
Note: the dotted rectangle is a possible mechanism based on other studies [67–70,72,77]. Shivering
thermogenesis: when exposed to cold on the body, shivering thermogenesis in skeletal muscles is
primarily activated. With this thermogenesis, myocytes begin to release irisin and express UCP3.
In turn, irisin acts in three directions: increasing the expression of UCP3, activating mitochondrial
biogenesis (MB), and browning. Further, UCP3 participates in the protection of mitochondria
from reactive oxygen species (ROS) and produces a soft separation in which the resulting energy
is released as heat. Nonshivering thermogenesis: with prolonged exposure to low temperatures,
nonshivering thermogenesis is activated in brown adipocytes, with the participation of uncoupling
protein-1 (UCP1). Irisin-activated browning of white adipocytes leads to a longer use of nonshivering
thermogenesis, to maintain optimal body temperature under cold exposure.

Limitations of the Study

Although the strength of this study is its investigation of indigenous people of the
coldest region of Siberia, who have most likely developed certain metabolic and physi-
ological features to adapt to the climatic conditions, the main limitation is the absence
of comparative data of UCP3 gene variants and irisin levels in peoples of other climatic
regions. Since this is a first study about the association between irisin levels with the
UCP3 gene, further extensive studies in different worldwide populations are needed. In
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addition, our study is limited by the applied research methods based on the associative
analyses between SNPs variants of the uncoupling protein genes and irisin levels. For
deeper understanding of the relationship between UCPs and irisin in cold tolerance, other
experimental studies are needed.

5. Conclusions

In this study, we found sex differences in irisin levels in the group of people with
normal weight, where females had an increased level of irisin in contrast to males (p = 0.02).
In the other two groups (underweight and overweight/obesity), no sex-related differences
were found (p > 0.05). Most likely, this is due to the presence of certain metabolic features
in the people from these two groups, which affect the levels of irisin in the blood, or it is
due to the small sample of these two groups. Therefore, the sex-related reasons for the
difference in irisin levels found in the present work should be investigated in detail in
future studies.

We found that in females, the TT genotype of the rs1800849 polymorphism of the
UCP3 gene is associated with increased irisin levels and reduced weight and height. The
relationship of the TT genotype of the rs1800849 polymorphism with weight and height
may be a consequence of the irisin–UCP3 association, but this requires further study. At
the moment, we can only say that the TT genotype in the Yakuts’ females is associated with
the risk of a delay in growth and underweight.

Further analysis of worldwide data showed that the T-allele of rs1800849 (UCP3)
has a significantly high frequency of distribution in northern Asian populations (45%,
CI: 0.42–0.484), compared with southern Asian populations (28%, CI: 0.244–0.316) (p = 0.01).
These results support the previously stated assumption about the possible association of
the rs1800849 polymorphism of the UCP3 gene with human adaptation to a cold climate.

Finding relationships between UCP3 and irisin levels can be explained by the possible
mechanisms of action of irisin in thermogenesis. We assume that irisin simultaneously
induces mitochondrial biogenesis in muscles and browning in which uncoupling proteins
expression increases, including UCP3, which is involved in the process of “uncoupling to
survive” and the protection of mitochondria from reactive oxygen species, producing a
soft separation in which the resulting energy is released as heat. However, this assumption
requires experimental confirmation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13091612/s1. Table S1: List of primers sequences, annealing
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results of genotyping and ELISA analysis of irisin in 279 individuals in a random sample of Yakuts.
Table S3: Allele frequencies of studied SNP-markers of UCP1, UCP2, and UCP3 genes in the Yakut
population. Table S4: ANOVA analysis of plasma irisin levels depending on genotypes in Yakuts
with normal weight (n = 214). Table S5: Analysis of irisin levels, weight, height, and BMI depending
on genotypes in the women’s SNP rs1800849 gene, UCP3. Table S6: Frequencies of the T allele of the
rs1800849 polymorphism (UCP3) in 12 Asian populations living in different climatic zones.
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